KURUNDI PROJECT

FIRST PARTIAL RELINQUISHMENT REPORT May 2009

Exploration Licence EL23937

HELD BY WASHINGTON RESOURCES LIMITED

JOINTLY OPERATED BY
NORTHERN URANIUM LIMITED
(Uranium and Phosphate Rights)
AND
WASHINGTON RESOURCES LIMITED
(All other Minerals)

PARTIAL RELINQUISHEMENT REPORT

NTU Report No: 2009-03

NAME: KURUNDI PROJECT – FIRST PARTIAL RELINQUISHMENT REPORT EL23937

PREPARED BY: R.WILSON, P.BURGER

DATE: MAY 2009

SUMMARY

Location:

The tenement EL23937 is located approximately 400kms NNE of Alice Springs and 100km SE of Tennant Creek. The eastern portion of EL23937 lies on the western edge of Epenarra Station, and the western portion lies on Kurundi Station.

Geology:

The tenement covers the contact between the western Georgina Basin and the Tennant Creek Inlier on the northern side of the Davenport Range. The regional basement rocks are Proterozoic (1870Ma) deepwater marine interbedded greywacke, siltstone and minor porphyritic felsic volcanics of the Warramunga Group which were moderately to tightly-folded about 1810Ma. The Warramunga Group is intruded by members of the Tennant Creek Supersuite. This includes the Hill of Leaders Granite (Pgb) which outcrops extensively in the northwest of the tenement area. The primary Georgina Basin unit present within the project area is the near-basal Gum Ridge Formation which is known to contain phosphate.

Work Done:

Exploration activities completed within the relinquished portions of EL23937 were targeted at uranium, tungsten and phosphate and comprised airborne magnetics and radiometrics survey, reconnaissance geological investigations, rock chip sampling and ground scintillometer measurements.

Results:

The work completed failed to define any targets requiring follow-up work.

Conclusions:

The relinquished portions of EL23937 are considered to have been adequately tested by the work conducted by Northern Uranium and Washington Resources. The area has low potential for the occurrence of economic mineralisation of the targeted commodities, and has hence been relinquished.

TABLE OF CONTENTS

1.0	SUMMARY1								
2.0	INTRO	DDUCTION1							
3.0	LOCATION, GEOMORPHOLOGY AND ACCESS1								
4.0	TENU	RE AND AGREEMENTS2							
5.0	GEOL	.OGY2							
6.0	EXPL	ORATION ACTIVITIES3							
	7.1 7.2 7.3 7.4	Airborne Magnetics and Radiometrics Survey Reconnaissance geological investiagations Rock Chip Sampling Ground Scintillometer survey							
8.0	REFE	RENCES4							
		<u>TABLES</u>							
Table	1: Ten	ement Schedule							
Table	2: Gro	und Scintillometer readings							
		<u>FIGURES</u>							
Figure	1: Te	nement location							
Figure	2: Ro	ock Chip Sample Locations with geology							
Figure	3: Ai	rborne geophysical survey outline							
		APPENDICES							
		Airborne Magnetics and Radiometrics Survey (Digital data only) Rock Chip sample results and locations							
		Rock Chip sample - Assay Methods							
1. 1. 2.		i an in a cary and an in-							

1.0 SUMMARY

Exploration activities conducted on the relinquished portions of EL23937 by Northern Uranium/Washington Resources were as follows:

- 1) Airborne Magnetics and Radiometrics survey in 2007.
- 2) Reconnaissance geological investigations including rock chip sampling, for uranium and tungsten mineralisation in 2007/2008
- 3) Reconnaisance geological investigations of the phosphate potential of the area underlain by the Georgina Basin, including rock chip sampling in 2008

2.0 INTRODUCTION

This report details exploration activities conducted on the relinquished portions of tenement EL23937 between 13 February 2004 and 12 February 2009. The tenement is held by Washington Resources Limited and exploration work was undertaken by Northern Uranium Limited pursuant to two agreements relating to phosphate and uranium rights. Washington Resources Limited retains the rights to all other minerals on the tenements and has been conducting exploration for other minerals in parallel with Northern Uranium's activities.

3.0 LOCATION, GEOMORPHOLOGY AND ACCESS

EL23937 lies approximately 400kms NNE of Alice Springs and 100kms SE of Tennant Creek (see Figure 1 below). EL23937 extends across both Kurundi and Epenarra Pastoral Stations.

Access to EL23937 is via the unsealed Wauchope-Epenarra road which passes in an easterly direction along the southern portion of the tenement. Station tracks give access to the northern and southern portions of the tenement from this road.

Topographically, the south-western corner of EL23937 overlies part of the Murchison Range with long, steep –sided, narrow to broad, ridges and valleys. Adjacent to the Murchison Range are areas of dissected terrain consisting of low ridges and hills of sedimentary, volcanic and granitic rocks. An erosional, weathered surface with little organised drainage covers the area in the eastern third of the tenement. Kurundi and Whistleduck Creeks are areas of alluvium and may have surrounding areas of dune fields and sand plains.

Elevation ranges from 300m in the eastern region to over 500m in the southwest. The south western and southern ranges display a mostly erosional regime grading to residual in the northwest, to more depositional in the drainage channels in the northeast. All areas can be overlain by Quaternary colluvial and alluvial cover. Intermittent lateritic duricrust and backslope material of uncertain age is also evident, in particular in the central tenement area. The laterite often displays a vermiform texture and a relatively vuggy matrix. The texture indicates an in-situ lateritic duricrust that has undergone little deflation due to toploading.

The major streams of the area are bound by extensive open grasslands and often provide the best access into areas, provided the streams can be crossed if required. Several major streams transect the area with the Kurundi Creek forming the major drainage channel. The latter transects the central licensed area in a southwest to northeast direction. It is fed by the easterly flowing Granite Creek on its western flank approximately in the center of the license. The Mosquito Creek, situated near the northern boundary of the license, merges with the Kurundi Creek in the Fork Creek Bore area and forms a large floodplain. Whistleduck Creek is located in the southeastern quadrant of the exploration license and flows to the northeast. Steep gullies and gorges drain the Murchison Range while gentle silt filled depressions as well as steeply incised creeks form the main tributaries on the plains.

All streams flow intermittently during the 'wet' season which ranges from October to March. Numerous waterholes are located along the individual streams although only few are permanent. Annual rainfall is in the region of 300mm.

4.0 TENURE AND AGREEMENTS

Details of the tenure are shown in Table 1 below.

Northern Uranium Limited acquired the uranium rights to EL23937 from Washington Resources in August 2006, in exchange for shares in Northern Uranium Limited. In June 2008 a Letter of intent was signed between Northern Uranium and Washington Resources whereby the parties agreed to enter in a Joint Venture arrangement with Northern Uranium earning a 60% interest in the phosphate rights of EL23937 in exchange for exploration expenditure.

<u>Table 1 – Tenement Details</u>

Tenement	Grant Date Expiry Date		Relinquished Area	Holder
EL23937	13 Feb 04	12 Feb 10	226 blocks	Washington Resources Ltd

5.0 GEOLOGY

The tenement lies within the Davenport Province on the southern part of the Tennant Creek Inlier. The regional basement rocks are Proterozoic (1870Ma) deepwater marine interbedded greywacke, siltstone and minor porphyritic felsic volcanics of the Warramunga Group. The Warramunga Group is intruded by members of the Tennant Creek Supersuite which includes the Hill of Leaders Granite (Pgb). The eastern portion of the tenement and the eastern relinquished portions is underlain by Georgina Basin sediments which is predominantly represented by the Cambrian-aged Gum Ridge Formation.

6.0 EXPLORATION ACTIVITIES

6.1 Airborne Magnetics and Radiometrics survey

A detailed airborne magnetic and radiometric survey was completed over the western portion of EL23937 by Washington Resources and Northern Uranium in early 2007. The survey was completed by GPX Airborne, and the survey specifications were as follows:

Line Spacing 200m Tie Line Spacing 2000m Line Direction F-W N-S Tie Line Direction Magnetometer Sample Rate 10hz Spectrometer Sample Rate 1hz **GPS Sample Rate** 1hz Altimeter Sample Rate 1hz Base Magnetometer Sample Rate 1hz

Flying Height 40m subject to risk analysis

The newly acquired data was merged with the existing government data to give effectively 100m spaced flight lines.

The radiometric data was used to identify uranium channel radiometric anomalies. Several radiometric anomalies were identified within the relinquished areas. Basic structural interpretation of the aeromagnetic data was also completed and integrated with the radiometric data to determine whether there was any spatial relationship between the structures and the uranium channel radiometric anomalies. Two linear, magnetically low features, one striking northeasterly and the other southeasterly were noted within the relinquished area.

Figure 3 below shows an outline of the area covered by the survey. The data from within the relinquished portions of EL23937 is attached as Appendix 1 in digital format only.

6.2 Reconnaissance geological prospecting

Prospecting activities conducted by Northern Uranium involved locating of the radiometric anomalies, basic geological mapping if possible, spectrometric analysis to locate anomalous lithologies and sampling of a range of material. Four significant uranium radiometric anomalies were investigated and rock chip samples were taken (see below for details). None of these anomalies warranted further follow-up work.

Washington Resources found no outcrops of any rocks typically associated with tungsten mineralisation within the relinquished area in the course of their prospecting activities.

6.3 Rock-chip Sampling

A total of 12 rock samples were taken from areas associated with uranium radiometric anomalies within the relinquished portions of EL23937. Rock chips were submitted to ALS, Alice Springs for sample preparation and then forwarded to ALS, Perth for multi-element analyses using method ME-MS41.

A second rock chip sampling program was carried out in the eastern portion of EL23937 in September 2008. This followed the signing of a Heads of Agreement between Northern Uranium Ltd and Washington Resources Ltd whereby Northern Uranium would acquire an interest in the phosphate rights of the tenement in exchange for exploration expenditure. Two samples were taken from within the relinquished portions of EL23937, which were submitted to ALS, Alice Springs for sample preparation and then forwarded to ALS, Adelaide for multi-element analyses using methods ICP-MS and ICP-AES. Results from these samples warranted no further follow-up work.

All rock chip sample locations are shown on Figure 2 below and results are attached as Appendix 2. All assay method details are attached as Appendix 3.

6.4 Ground Scintillometer Survey

Total-count readings were taken by Washington Resources with a hand-held Scintrex BGS-1SL scintillometer at two locations within the relinquished area. At both locations the counts were effectively at background levels. Results are shown in the table below.

Table 2 – Ground Scintillometer readings

			Counts
Easting	Northing	Surface Lithology	scinters/second
512319	7739556	Ferricrete & brecciated silcrete	40
		Gravel pit; ferricrete, minor silcrete, calcrete,	
509259	7740671	quartz	70

7.0 REFERENCES

Wyche, S. And Simons, B., 1987. 1:250 000 Geological Maps Series Explanatory Notes, Bonney Well SF 53-2.

Walley, A.M., 1987., 1:250 000 Geological Maps Series Explanatory Notes, Frew River SF 53-3.

FIGURES

APPENDIX 1

Airborne Magnetics and Radiometrics Survey (Digital Data only)

APPENDIX 2 Rock Chip Sampling Results

H0002 Version

H0003 Date_generated 18-May-09

3

H0004 Reporting_period_end_date 28/04/2009

H0005 State NT

H0100 Tenement_no EL23937

H0101 Tenement_Holder Northern Uranium

H0102 Project_name Kurundi

H0106 Tenement_operator Northern Uranium

H0200 Start_date_of_data_acquisition 1/05/2007

H0201 End_date_of_data_acquisition 28/04/2009

H0202 Data_format SG3

H0203 Number_of_data_records 14

H0204 Date_of_metadata_update 18-May-09

H0500 Feature_type Sample point

H0501 Geodetic_datum GDA94

H0502 Vertical_datum AHD

H0503 Projection MGA

H0505 Surveying_instrument not known

H0600 Sample_Code ROCK

```
H0601 Sample_type ROCK
```

H0602 Sample_description ROCK CHIP

H0602 Sample_description not known

H0800 Assay_code ME_MS41 ICP Pass75um_PUL_QC

H0801 Assay_company not known

H0900 Remarks not known

```
H1000 SampleID
                Project Code POINTPROSPECT
                                            PointEast
                                                       PointNorth
     PointRL
                SAMPLETYPE
                                 POINTTENEMENTID POINTGRIDNAME
     POINTZONE PRIORITY
                            DATE Wpt ID
                                            PCOMPANY
     LITH_DESCRIPTION Ag_ME_MS41_ppm Al_ME_ICP61_pct
     Al ME MS41 pct
                      As ME ICP61 ppm As ME MS41 ppm
     Au ME MS41 ppm B ME MS41 ppm
                                       Ba ME MS41 ppm
     Be_ME_MS41_ppm Bi_ME_MS41_ppm
                                      Ca_ME_MS41_pct
     Cd_ME_MS41_ppm Ce_ME_MS41_ppm Co_ME_MS41_ppm
     Cr_ME_MS41_ppm
                      Cs_ME_MS41_ppm Cu_ME_MS41_ppm
     Fe_ME_ICP61_pct
                      Fe_ME_MS41_pct
                                       Ga_ME_MS41_ppm
     Ge_ME_MS41_ppm Hf_ME_MS41_ppm
                                      Hg_ME_MS41_ppm
     In ME MS41 ppm
                      K ME ICP61 pct
                                       K ME MS41 pct
     La ME MS41 ppm
                      Li ME MS41 ppm
                                       Mg ME ICP61 pct
     Mg ME MS41 pct
                      Mn ME ICP61 ppm Mn ME MS41 ppm
     Mo_ME_MS41_ppm Na_ME_MS41_pct
                                       Nb_ME_MS41_ppm
     Ni_ME_MS41_ppm
                      P_ME_ICP61_ppm
                                       P_ME_MS41_ppm
     Pas_PUL_QC_pct
                      Pb_ME_MS41_ppm
                                      Rb_ME_MS41_ppm
     Re ME MS41 ppm S ME MS41 pct
                                       Sb ME MS41 ppm
     Sc ME MS41 ppm
                      Se ME MS41 ppm Sn ME MS41 ppm
     Sr ME MS41 ppm
                      Ta ME MS41 ppm
                                      Te ME MS41 ppm
     Th_ME_ICP61_ppm Th_ME_MS41_ppm
                                      Ti_ME_MS41_pct
     TI ME MS41 ppm
                      U ME MS41 ppm
                                       V ME MS41 ppm
     W_ME_MS41_ppm
                      Y_ME_MS41_ppm
                                       Zn_ME_MS41_ppm
     Zr_ME_MS41_ppm
                      LabJobNo_D Drill_code
                                            Sample_code
H1001
                      metres metres metres
                      ppm
                           pct
                                 pct
                                            ppm
                                                             ppm
                                       ppm
                                                  ppm
                                                       ppm
     ppm
           ppm
                pct
                      ppm
                           ppm
                                 ppm
                                       ppm
                                            ppm
                                                  ppm
                                                       pct
                                                             pct
     ppm
           ppm
                           ppm
                                 pct
                                       pct
                                                             pct
                ppm
                      ppm
                                            ppm
                                                  ppm
                                                       pct
           ppm
                ppm
                      pct
                           ppm
                                 ppm
                                       ppm
                                            ppm
                                                  pct
     ppm
                                                       ppm
                                                             ppm
     ppm
           pct
                ppm
                      ppm
                           ppm
                                 ppm
                                      ppm
                                            ppm
                                                  ppm
                                                       ppm
                                                             ppm
     pct
           ppm
                ppm
                      ppm
                           ppm
                                 ppm
                                      ppm
                                            ppm
```

H1002

```
ICP
                                            ME_MS41
                                                         ICP
                         ME_MS41
                                                                ME_MS41
      ME MS41
                   ME MS41
                                ME_MS41
                                            ME MS41
                                                         ME MS41
      ME MS41
                   ME MS41
                                ME MS41
                                            ME MS41
                                                         ME MS41
      ME MS41
                   ME MS41
                                ICP
                                      ME MS41
                                                   ME MS41
                                                                ME MS41
      ME MS41
                   ME MS41
                                ME MS41
                                            ICP
                                                   ME MS41
                                                                ME MS41
      ME MS41
                   ICP
                         ME MS41
                                      ICP
                                            ME MS41
                                                         ME MS41
      ME_MS41
                   ME_MS41
                                ME_MS41
                                            ICP
                                                   ME_MS41
      Pass75um_PUL_QC ME_MS41
                                      ME MS41
                                                   ME MS41
                                                                ME MS41
                                            ME MS41
                                                         ME MS41
      ME MS41
                   ME MS41
                                ME MS41
      ME MS41
                   ME MS41
                                ICP
                                      ME MS41
                                                   ME MS41
                                                                ME MS41
      ME MS41
                   ME MS41
                                ME MS41
                                            ME MS41
                                                         ME MS41
      ME MS41
H1003
                         0
                                0
                                      0
                                            0
                                                   0
                                                         0.2
                                                                10
                                                                      0
                                                                             0
            0
                   5
                                5
                                            0
      0
                         0
                                      0
                                                   0
                                                         0
                                                                0
                                                                      0
                         0.005
                                                                            0
      0.05
            0
                   0.01
                               0
                                      0
                                            0
                                                   0
                                                         0
                                                                0.01
                                                                      0
            0.01
                                            0
                                                   5
      5
                   0
                         0
                                0
                                      0
                                                         0
                                                                0.001
                                                                      0.01
                                                                            0
      0
            0.2
                   0
                         0
                                0.01
                                      0.01
                                            0
                                                   0
                                                         0.005 0.02
                                                                      0
                                                                             0
      5
            0
                   5
                         0
H1004
                         0.0000001
                                      0.0000001
                                                   0.0000001
      0.0000001
                   0.0000001
                                                         0.0000001
      0.0000001
                   0.0000001
                                0.0000001
                                            0.0000001
                                                         0.0000001
                                0.0000001
                                            0.0000001
                                                         0.0000001
      0.0000001
                   0.0000001
      0.0000001
                   0.0000001
                                0.0000001
                                            0.0000001
                                                         0.0000001
      0.0000001
                   0.0000001
                                0.0000001
                                            0.0000001
                                                         0.0000001
      0.0000001
                   0.0000001
                                0.0000001
                                            0.0000001
                                                         0.0000001
      0.0000001
                   0.0000001
                                0.0000001
                                            0.0000001
                                                         0.0000001
      0.0000001
                   0.0000001
                                0.0000001
                                            0.0000001
                                                         0.0000001
                   0.0000001
                                0.0000001
                                            0.0000001
                                                         0.0000001
      0.0000001
      0.0000001
                   0.0000001
                                0.0000001
                                            0.0000001
                                                         0.0000001
      0.0000001
                   0.0000001
                                0.0000001
                                            0.0000001
                                                         0.0000001
      0.0000001
                   0.0000001
                                0.0000001
                                            0.0000001
                                                         0.0000001
                   0.0000001
                                0.0000001
                                            0.0000001
      0.0000001
D
      KU337534
                   KU
                         KURUNDI
                                      472734.59
                                                   7757686.94
                                                                      ROCK
                   MGA94
                                                         KU50 NORTH URAN
      EL23937
                                53
                                      1
                                             1-May-07
                                                         130
            0.48
                         1.87
                                            -0.2
                                                   -10
                                                                1.13
                                                                      0.51
                                      28.9
                                40
                                            22.2
                                                                6.28
      0.06
            0.02
                   6.55
                         2.2
                                      0.19
                                                         24.7
                                                                      0.2
      0.42
            0.06
                   0.083
                                0.05
                                                         0.02
                                                                      47
                                      3.1
                                             1.2
      2.02
                   0.54
                         5.4
                                      590
                                                         4.2
                                                                -0.001 0.09
            0.01
                                                   30.2
      1.45
                                10.7
                                                                0.037 0.03
            14.7
                   0.6
                         1
                                      -0.01
                                            0.23
                                                         8.1
                                            AS07046740
      7.88
            565
                   1.07
                         3.58
                                9
                                      15.2
                                                                ROCK
D
      KU337535
                   KU
                         KURUNDI
                                      472590.01
                                                   7756808.03
                                                                      ROCK
      EL23937
                   MGA94
                                53
                                      1
                                             1-May-07
                                                         KU51
                                                                NORTH URAN
                                                   -10
                                                                      0.06
            0.08
                         1.88
                                      34.4
                                             -0.2
                                                         90
                                                                3.51
      0.03
            0.07
                   13.8
                         4.6
                                43
                                      0.4
                                             155.5
                                                         22.6
                                                                4.21
                                                                      0.13
                                                                      250
      0.1
            0.01
                   0.042
                                0.07
                                      7.8
                                             1.2
                                                         0.02
                                                         4.6
                                                                -0.001 0.04
      1.65
            0.01
                   0.59
                         18.4
                                      3290
                                                   20.7
                                                                0.025 0.06
      0.3
            9.5
                   0.7
                         0.6
                                17.3
                                      -0.01
                                            0.04
                                                         3.1
      14.45 52
                                99
                                      4.2
                                            AS07046740
                                                                ROCK
                   1.15
                         5.75
      KU337536
                   KU
                         KURUNDI
                                                                      ROCK
D
                                      466791.64
                                                   7737071.88
      EL23937
                   MGA94
                                53
                                      1
                                             1-May-07
                                                         KU54
                                                                NORTH URAN
            0.01
                         1.7
                                            -0.2
                                                   -10
                                                         110
                                                                1.09
                                                                      0.25
                                      1.2
      0.27
            0.02
                   87.4
                         7.4
                                15
                                      13.15 20.6
                                                         3.25
                                                                7.32
                                                                      0.1
      0.71
            -0.01
                   0.022
                                1.05
                                      42
                                            44.8
                                                         0.44
                                                                      311
```

	1.23 0.17	0.1 6.8	1.59 0.8	9.2 3.6	10.7	940 0.02	0.01	13.4	151.5 21.1	-0.001 0.162	
D	10.4 KU33	38 7537	0.87 KU	21.7 KURU	55 INDI	18.4 47823)46740 77341	99.34	ROCK	ROCK
	EL239		MGA9		53	1					H URAN
		0.04		2.14		2.6	-0.2	-10	180	2.11	0.15
	0.08	0.03	68	6.9	6	2.16	10.2		3.76	8.05	0.07
	0.89	0.01	0.027	40.4	0.74	35.8	13		0.53	0.004	318
	0.44	0.01	0.1	10.4	6.0	470	0.00	5.7	89	-0.001	
	0.47 2.21	5.6 41	0.7 0.21	1.4 24.7	6.9 46	0.01 32.1	0.02	046740	8.2	0.011 ROCK	
D	KU33		KU	Z4.7 KURU		32.1 47867		77337	28 78	KOCK	ROCK
D	EL239		MGA9		53	1	1-May			NORT	H URAN
		0.05		2.07		5.5	-0.2		1080	1.88	0.31
	0.03	0.01	70	2.6	8	5.54	20.7		3.66	9.3	0.07
	0.77	-0.01	0.033		0.81	34.5	2.1		0.13		90
	0.4	0.01	0.14	3.9		550		12.3		-0.001	
	0.85	5.4	0.7	2.1	32		0.01		8.9	0.012	
5	3.43	15	0.24	16.7	43)46740	00.04	ROCK	
D	KU33		KU	KURU		49158			08.01		ROCK
	EL239	0.02	MGA9	1.14	53	1 0.6	1-May -0.2	-07 -10	330	1.31	H URAN 0.04
	0.01	-0.02	29.1	1.14	5	1.8	11.7	-10	2.11	5.55	-0.05
	0.4	-0.01	0.013	1.4	0.38	13.6	0.7		0.06	0.00	44
	0.08	-0.01	0.09	4.5		470		2.4	28.9	-0.001	
	0.33	2.5	0.5	8.0	10.8	-0.01	0.01		5.9	0.005	0.11
	2.09	10	0.11	15.75		13.5		046740		ROCK	
D	KU33		KU	KURU		47226			46.97		ROCK
	EL239		MGA9		53	1	1-May		KU61		H URAN
	0.02	0.17	0.0	2.61	122	23.7	-0.2	-10	50	0.6 12.95	0.61
	0.02 0.96	0.01 0.01	9.9 0.116	2.4	132 0.11	0.85 5.5	14.9 4.1		13.45 0.03	12.95	90
	1.65	0.01	0.110	5.7	0.11	210	4.1	20	11.8	-0.001	
	0.76	5.7	1.3	1.5	4.8	-0.01	0.14	20	22.6	0.043	
	2.4	191	0.38	3.05	9			046740		ROCK	
D	KU33	7541	KU	KURU	INDI		5.99	77493	11.49		ROCK
	EL239		MGA9		53	1	-	-07			H URAN
		0.14		2.96		23.4	-0.2	-10	170	0.83	0.52
	0.04	0.01	4.18	3.9	73	0.33	11.3		24.1	16.8	0.15
	0.88 1.13	0.02 0.01	0.136 0.7	6.6	0.04	2.7 540	2	24.1	0.01 3.8	-0.001	79 0.1
	0.6	11.4	0.7	2.9	7.7	-0.01	0.11	24 .1	22.2	0.081	
	4.2	143	0.46	3.45	13)46740	22.2	ROCK	
D	KU33		KU	KURU				77402	86.03	110011	ROCK
	EL239		MGA9		53	1		-07		NORT	H URAN
		0.11		3.46		16.8	-0.2		30	0.59	0.99
	0.02	0.01	9.9	2.6	122	0.93	10.2		15.05	21.8	0.13
	1.36	0.02	0.151		0.1	5.8	5.3		0.03		78
	1.73	0.01	0.45	6.2		180	0.04	20.2	11.6	-0.001	
	0.83	7	1.5	2.8	4	-0.01	0.21	146740	39.5	0.056	
D	2.45 KU33	272 7543	0.44 KU	3.74 KURU	ы 9	50.5 40107	2.03)46740 77408	21 06	ROCK	ROCK
D	EL239		MGA9		53	1				NORT	H URAN
		0.09	1410/10	3.28	00	27.1	-0.2		30	0.73	
	0.02	0.01	9.65	3.2	122	0.77	10.4	-	15.7	21.8	0.13

	1.26 1.82	0.02 0.01	0.14 0.44	7	0.08	5 180	6.3	22.6	0.03 10.1	-0.001	158
	0.9	8.9	1.4	7 2.9	3.6	-0.01	0.21	22.6	27.5	0.063	
	2.83	220	0.52	3.39	9	46.3)46740	21.5	ROCK	
D	KU337		KU	KURU		47450		77557	76.03	110011	ROCK
_	EL239		MGA9		53	1	1-May		KU66	NORT	H URAN
		0.06		0.99		12.7	-0.2		610	2.94	0.23
	0.05	0.06	33.1	2	17	0.37	54.1		22	2.62	0.12
	0.06	-0.01	0.06		0.1	24.9	1		0.02		125
	2.32	0.02	0.42	14		4700		505	4.4	-0.001	0.13
	0.93	3.1	0.6	0.4	81.5	-0.01	0.05		5.4	0.012	
	3.38	18	1.61	7.7	151	2.3)46740		ROCK	
D	KU337		KU	KURU		47462		77556			ROCK
	EL239		MGA9		53	1		-07	KU67		H URAN
		0.06		1.59		16.7	-0.2	-10	80	7.55	0.07
	0.02	0.02	13.45	2.9	108	0.21	249		31.5	3.42	0.16
	0.06	0.01	0.024		0.04	6.9	8.0		0.01		71
	1.68	0.01	0.5	5.4		5490	98.5	90.1	2.7	-0.001	
	0.77	16	0.6	0.6	11.6	-0.01	0.07		3.3	0.012	
	40.1	305		10.35		2.7)46740		ROCK	
D	KU337		KU		NDI	51080		77363		353	ROCK
	EL239		MGA9		53	1	1-May	-07		NORT	H URAN
	chert l	oreccia		0.25		-5					
								0.71			
			0.05 170				0.01		81		
			170		-20						
			ΔD081	146729	20	ROCK	-				
D	KU337	7608	KU		NDI	51081		77367	72	350	ROCK
	EL239		MGA9		53	1	1-May				H URAN
		ented c		•	1.56	•	25	01			0.0
		ornou o					_0		9.41		
				0.12				0.03	0	59	
				360							
						20					
505				AD081	46729		ROCK				

EOF

APPENDIX 3

Rock Chip Sampling – Assay Methods Details

Geochemical Procedure – ME-ICP61 Trace Level Methods Using Conventional ICP-AES Analysis

Sample Decomposition: HNO₃-HClO₄-HF-HCl digestion, HCl Leach

(GEO-4ACID)

Analytical Method: Inductively Coupled Plasma - Atomic Emission

Spectroscopy (ICP - AES)

Each sample was taken from an area up to one metre around a central point. Each weighed approximately one kg. Samples were sent to ALS Laboratory Group in Alice Springs for testing. There they were dried at 110-120 C and then the entire sample crushed with either an oscillating jaw crusher or a roll crusher.

The ALS Chemex QC specification for crushed material is that >70% of the sample must pass a 2mm (10 mesh) screen. It was then riffle split to a maximum of 3kg and pulverized using a ring mill to 85% passing 75 microns or better. The unpulverised reject was bagged and retained.

A prepared sample (0.25 g) is digested with perchloric, nitric, hydrofluoric and hydrochloric acids. The residue is topped up with dilute hydrochloric acid and the resulting solution is analyzed by inductively coupled plasma-atomic emission spectrometry. Results are corrected for spectral interelement interferences.

NOTE: Four acid digestions are able to dissolve most minerals; however, although the term "near-total" is used, depending on the sample matrix, not all elements are quantitatively extracted.

Element	Symbol	Units	Lower Limit	Upper Limit	Default Overlimit Method
Silver	Ag	ppm	0.5	100	Ag-OG62
Aluminum	Al	%	0.01	50	
Arsenic	As	ppm	5	10000	
Barium	Ва	ppm	10	10000	
Beryllium	Be	ppm	0.5	1000	
Bismuth	Bi	ppm	2	10000	
Calcium	Ca	%	0.01	50	
Cadmium	Cd	ppm	0.5	500	
Cobalt	Co	ppm	1	10000	Co-OG62
Chromium	Cr	ppm	1	10000	
Copper	Cu	ppm	1	10000	Cu-OG62
Iron	Fe	%	0.01	50	
Gallium	Ga	ppm	10	10000	
Potassium	K	%	0.01	10	
Lanthanum	La	ppm	10	10000	
Magnesium	Mg	%	0.01	50	
Manganese	Mn	ppm	5	100000	
Molybdenum	Мо	ppm	1	10000	Mo-OG62
Sodium	Na	%	0.01	10	
Nickel	Ni	ppm	1	10000	Ni-OG62
Phosphorus	Р	ppm	10	10000	
Lead	Pb	ppm	2	10000	Pb-OG62
Sulphur	S	%	0.01	10	
Antimony	Sb	ppm	5	10000	
Scandium	Sc	ppm	1	10000	
Strontium	Sr	ppm	1	10000	
Thorium	Th	ppm	20	10000	
Titanium	Ti	%	0.01	10	
Thallium	TI	ppm	10	10000	
Uranium	U	ppm	10	10000	

Element	Symbol	Units	Lower Limit	Upper Limit	Default Overlimit Method
Vanadium	V	ppm	1	10000	
Tungsten	W	ppm	10	10000	
Zinc	Zn	ppm	2	10000	Zn-OG62

<u>Geochemical Procedure</u> – ME-MS61U Single Element Trace Level Method Using ICP-MS

Sample Decomposition: HF-HNO₃-HClO₄ acid digestion, HCl leach

(GEO-4ACID)

Analytical Methods: Inductively Coupled Plasma - Mass

Spectrometry (ICP-MS)

Each sample was taken from an area up to one metre around a central point. Each weighed approximately one kg. Samples were sent to ALS Laboratory Group in Adelaide for testing. There they were dried at 110-120 C and then the entire sample crushed with either an oscillating jaw crusher or a roll crusher.

The ALS Chemex QC specification for crushed material is that >70% of the sample must pass a 2mm (10 mesh) screen. It was then riffle split to a maximum of 3kg and pulverized using a ring mill to 85% passing 75 microns or better. The unpulverised reject was bagged and retained.

A prepared sample (0.25 g) is digested with perchloric, nitric, and hydrofluoric acids to near dryness. The sample is then further digested in a small amount of hydrochloric acid. The solution is made up to a final volume of 12.5 mL with 11 % hydrochloric acid, homogenized, and analysed by inductively coupled plasma-atomic emission spectrometry.

NOTE: Four acid digestions are able to dissolve most minerals; however, although the term "near-total" is used, depending on the sample matrix, not all elements are quantitatively extracted.

Nitric-Perchloric-Hydrofluoric Acid Digestion is the most powerful acid dissolution procedure that used at ALS Chemex. Hydrofluoric acid is capable of reacting with silica to completely destroy silicate matrices and thus liberate all trace constituents. This acid mixture must be taken to incipient dryness in order for the reaction to go to completion. The resulting cake is leached with Hydrochloric acid. All elements for determination following this digestion are normally considered to be " near total".

Although the four acid digestion is able to dissolve most minerals, it may sometimes be necessary to use even stronger dissolution techniques such as fusions in order to get fully quantitative results. However, in most cases, this procedure quantitatively dissolves nearly all elements for the majority of geological materials.

In order to be able to report the widest possible concentration range, this method uses both ICP-MS and ICP-AES techniques.

Method code ME-MS61	Analytes & R			
Ag (0.01 - 100)	Cr (1 - 10,000)	Li (0.2 - 10,000)	Re (0.002 - 50)	TI (0.02 - 10,000)
AI (0.01 - 50%)	Cs (0.05 - 500)	Mg (0.01% - 50%)	S (0.01% - 10%)	U (0.1 - 10,000)
Ac (O 2	Cu (0.2 -	Mn (5 -	Sb (0.05 -	V (1 - 10,000)
As (0.2 - 10,000)	10,000)	100,000)	10,000)	W (0.1 - 10,000)
Ba 10 - 10,000)	Fe (0.01% - 50%)	Mo (0.05 - 10,000)	Se (1 - 1,000)	Y (0.1 - 500)
	ŕ		Sn (0.02 -	Zn (2 - 10,000)
Be (0.05 - 1,000)	Ga (0.05 - 10,000)	Na (0.01% - 10%)	500)	Zr (0.5 - 500)
.,000)	. 37333)	. 3 7 3 7	Sr (0.2 -	2. (0.0 000)
Bi (0.01 - 10,000)	Ge (0.05 - 500)	Nb (0.1 - 500)	10,000)	
	ŕ	ŕ	Ta (0.05 -	
Ca (0.01% - 25%)	Hf (0.1 - 500)	Ni (0.2 - 10,000)	100)	
·	In (0.005 -		Te (0.05 -	
Cd (0.02 - 1,000)	500)	P (10 - 10,000)	500)	
	K (0.01% -	·	Th (0.2 -	
Ce (0.01 - 500)	10%)	Pb (0.5 - 10,000)	10,000)	
•	La (0.5 -		Ti (0.005% -	
Co (0.1 - 10,000)	10,000)	Rb (0.1 - 10,000)	10%)	