FINAL REPORT

DASHWOOD PROJECT
EL25414

FOR THE PERIOD
26 JUNE 2008 TO 27 FEBRUARY 2009

LAKE LEWIS BASIN
NORTHERN TERRITORY

REPORT NUMBER: EK/200/DAS
DATE: MAY 2009
AUTHOR: MARTIN MOLONEY
DISTRIBUTION: NTDPISM
THUNDELARRA EXPLORATION LTD
BIBLIOGRAPHIC DATA SHEET

PROJECT NAME: Dashwood

REPORT TITLE: Final Report, Dashwood Project; EL25414, for the period 26 June 2008 to 27 February 2009, Lake Lewis Basin, Northern Territory

REPORT TYPE: Final

TARGET COMMODITY: U

KEYWORDS: Data compilation, geological mapping, airborne magnetics & radiometrics processing & interpretation, rock-chip sampling, Ground Penetrating Radar (GPR) surveys, water bore sampling.

PROSPECTS DRILLED: None

HOLDER: Thundelarra Exploration Ltd

OPERATOR: Thundelarra Exploration Ltd

TENEMENT: EL25414

REPORT PERIOD: 26 June 2008 to 27 February 2009

1:250,000 SHEET AREA: HERMANNSBURG (SF5313)

1:100,000 SHEET AREAS: GLEN HELEN (5351) & NARWIETOOMA (5451)

AUTHOR: Martin Moloney

DATE OF SUBMISSION: May 2009
ABSTRACT:

Location: The Dashwood Project comprises Exploration License 25414. The tenement is located approximately 150km west-northwest of Alice Springs.

Geology: The tenement is located on the northern margin of the MacDonnell Ranges, where Cenozoic sediments of the Lake Lewis Basin cover the Proterozoic Arunta Block. Permian spores have been also identified in non-marine black clays water borehole RN4755 located near Derwent Creek, suggesting that isolated equivalents of the Amadeus and Ngalia Basin rocks may also occur beneath Cenozoic cover sequences.

Work done: Exploration work during the tenure period comprised data compilation, geological mapping, airborne magnetics & radiometrics processing & interpretation, rock-chip sampling, Ground Penetrating Radar (GPR) surveys and a water-bore sampling program.

Results: Water-bore and GPR data provide targets for follow-up drilling, however the GPR data has not been thoroughly analysed.

Conclusions: The license has been relinquished for corporate reasons.
TABLE OF CONTENTS

1. INTRODUCTION AND TENURE ... 1

2. GEOLOGICAL AND STRUCTURAL SETTING .. 1

3. MINERALISATION AND EXPLORATION MODELS 1

4. HISTORICAL WORK ... 1

4.1. CRA EXPLORATION PTY LIMITED (EL 754,755) 1

4.2. AGIP AUSTRALIA PTY LTD (EL 2194) ... 2

4.3. ALCOA OF AUSTRALIA LIMITED (EL 2822) 2

5. 2007–2008 EXPLORATION PROGRAM ... 3

5.1. DATA COMPILATION & PROCESSING ... 3

5.2. FIELD RECONNAISSANCE .. 3

5.3. SURFACE GEOCHEMISTRY .. 5

5.4. GROUND PENETRATING RADAR SURVEY .. 5

5.5. WATER BORE SAMPLING ... 5

6. DISCUSSION AND RECOMMENDATIONS .. 5

7. REFERENCES ... 1
LIST OF FIGURES

FIGURE 1: Location Map
FIGURE 2: Regional Geology
FIGURE 3: Rock Chip Sampling
FIGURE 4: GPR Lines showing lines 104 & 149.
FIGURE 5: Preliminary analysis of GPR Line 104
FIGURE 6: Preliminary analysis of GPR Line 149

LIST OF MAPS

MAP 1: Water Bore Sampling Results

LIST OF TABLES

TABLE 1: Tenement details for EL25414

APPENDICIES

APPENDIX 1: ASTER Imagery (see DVD)
APPENDIX 2: Rock Geochemistry (see DVD)
APPENDIX 3: Ground Penetrating Radar data (see DVD) & logistical report by Ecophyte Technologies
APPENDIX 4: Report on 2008 Water Bore Sampling

DVD

DVD1: Report pdf and digital data (attached, back cover)
1. INTRODUCTION AND TENURE

Exploration License 25414 “Dashwood” covers 499 blocks (approximately 1559km²). The License is located approximately 150km west-northwest of Alice Springs, and coincides with the Derwent and Narwietooma pastoral leases on the western and eastern sides respectively. The area covered by the M’Bungara aboriginal community, located along the Dashwood Creek, has been excised from the License.

<table>
<thead>
<tr>
<th>TABLE 1: TENEMENT DETAILS FOR EL25414</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>Dashwood</td>
</tr>
</tbody>
</table>

2. GEOLOGICAL AND STRUCTURAL SETTING

The Dashwood Project lies entirely with the Hermannsburg 1:250K geological sheet. The tectonic evolution of this region has been divided into three stages by Warren and Shaw (1995). The first stage is the formation and cratonization of the Arunta Basement ending with the emplacement of the Teapot Granite Complex (Figure 2). The second stage is the development of the Amadeus & Ngalia Basins beginning with the deposition of the Heavitree & Vaughan Quartzites and ending with the Alice Springs Orogeny in the late Devonian. Epeirogenic movements and neotectonic activity from 300Ma to the present characterize the final stage, and have resulted in the deposition of the Cenozoic Lake Lewis Basin. The stratigraphy and geological evolution of the Lake Lewis Basin is well documented in English, 2001.

3. MINERALISATION AND EXPLORATION MODELS

The main target of exploration on the Dashwood Project is uranium mineralization hosted by Tertiary or recent sediments draining off of the uranium anomalous rocks of the Arunta Block to the south. The only drilling that has been carried out on the area is the wide spaced auger drilling program completed by CRA back in the 1970’s and a few very widely spaced rotary holes by Alcoa in the 1980’s. The Alcoa drilling confirmed that there were substantial thicknesses of Tertiary sediments within the area. While their drilling did not intersect significant sand sequences the very wide drillhole spacings does not preclude the existence of narrower sand rich channels within the area.

More detailed recent airborne surveys have revealed low level anomalies which appear to be related to drainage channels originating in the relatively radioactive Arunta Block rocks to the south.

4. HISTORICAL WORK

4.1. CRA Exploration Pty Limited (EL 754,755)

CRA previously explored the western half of the area for calcrete-style uranium mineralization in the early 1970’s. Their interest in the area was sparked by the discovery of uranium in calcrete at Yeelirrie, WA and at the New Well (Napperby) occurrence located just to the north of their tenement. They thought that their area had a chance of containing the upstream portion of the extensive New Well and Queen’s Bore calcrete as it straddled the Dashwood Creek drainage
system. Exploration by CRA consisted of geological mapping, radiometric investigations, gamma logging of water bores and a reconnaissance auger drilling program across the tenement.

They carried out car-borne radiometric traverses across an anomalous area outlined by the regional high level survey flown in the 1960's by the BMR. The survey located weakly anomalous radioactivity associated with claypans and small alluvial flats. Similar radiometric levels were found associated with the banks and alluvial flats in the Dashwood Creek drainage. Water samples were collected from a number of existing water bores in the area with results ranging from 0.003ppm U to 0.013ppm U. Gamma logging of the bores showed no anomalous radioactivity.

An auger drilling program totalling 27 holes for 507.5m was completed on two (2) east-west traverses approximately 10km apart on EL 755. Holes were drilled at roughly 2km spacings. The drilling intersected unconsolidated silts and sands together with minor impure silty calcrete. No anomalous downhole radioactivity or drillhole samples were reported. They concluded that the EL has no uranium-bearing potential.

4.2. AGIP Australia Pty Ltd (EL 2194)

Agip held a small portion of the northwestern corner of the project area as part of EL 2194. They reviewed the available geophysical data which showed that the tenement covered an area of very subdued magnetic relief with low gravity values over much of it. Their exploration program was designed to test the theory that the geophysical signatures may indicate that there exists a significant sedimentary basin in the area. A short program of eight rotary holes was completed to the north of the Dashwood tenement. No major sedimentary basin was located with all holes intersecting basement at shallow depths. No anomalous radioactivity was detected and the tenement was surrendered.

4.3. Alcoa of Australia Limited (EL 2822)

Alcoa held most of the central part of the area as part of a much larger tenement targeting sedimentary uranium deposits hosted by Tertiary fluviatile sands. Exploration carried out by Alcoa included water bore sampling, a ground resistivity survey and rotary mud drilling (Figure 2). Four existing water bores within the Dashwood area were sampled and analysed for TDS, \(\text{SO}_4^{2-}\), \(\text{HCO}_3^-\), \(\text{V}_2\text{O}_5\) and \(\text{U}_3\text{O}_8\). Uranium values ranged up to a maximum of 52ppb U\(\text{O}_8\). The drilling program totalled 11 rotary drillholes for 1555m with 5 holes for 896m falling within the Dashwood Project. These holes were drilled at a spacing of from 6km to over 10km. All holes were down hole logged with a portable borehole logger with no anomalous peaks recorded. Selective lithologies were also assayed for uranium with no anomalous values recorded.

This drilling identified a widespread basal unit of grey-green clay, overlying crystalline basement, and an overlying series of reddish, sandy clay and sandy deposits, commonly exceeding 100 m in thickness. The basal clay contains pyrite, and is sometimes blue in colour (Howard, 2001). This basal clay is identical to and contiguous with the Mount Wedge Clay at depth in Mount Wedge basin (Lau et al., 1997).

The drillhole and geophysical data represent two “sedimentary packages”, comprising the basal unoxidised Mount Wedge Clay, <100m thick, although the depth to basement is not well-constrained, and the overlying more reddened and heterogeneous sands and clays >100m thick (English, 2001). The Mount Wedge Clay is regarded as a lacustrine or swamp/wetland deposit, based on comparable stratigraphic and paleo-environmental data from the Witchetty, Burt and Mount Wedge basins (English, 2001).
5. 2007–2008 EXPLORATION PROGRAM

The work conducted by Thundelarra Exploration in relation to the Dashwood Project is detailed below.

5.1. Data Compilation & Processing

Data compilation commenced with a thorough review of the relevant open-file exploration data available. ASTER imagery datasets were acquired and processed into a mosaic image (Appendix 1).

5.2. Field Reconnaissance

A field reconnaissance trip was conducted in February 2008 using a Radiation Solutions International RS-125 handheld spectrometer, which gave those “assay” results provided in the text below which were not from the Ultra Trace rock chip report (Appendix 2).

During the reconnaissance visit, Teapot Granite outcrops with elevated radioactivity were identified. Some of these rocks are caught within the north-west trending Alice Springs mylonitic zones (Photo 1), immediately east of the Spears Bore. Felsic and mafic mylonitised rocks can be recognised within these high strain zones. The melanocratic lithology appears to be highly radioactive due to the abundance of biotite within the matrix of the rock.

![Photo 1. View from mylonitised Teapot granite outcrop looking west-southwest toward Haast Bluff (210090mE, 7412120 mN).](image)

These mylonites could be derived from rafts of the Teapot Granite affected by dynamic metamorphism. Values up to 2,000cps were recorded with a uranium-thorium ratio of 34.9 to
Figure 2
Simplified 250k Geology

Legend:
- Alcoa Collars (1982, EL 2822)
- Localities
- BMR Seismic Line / Gas Pipeline
- Public Roads
- DASHWOOD EL25414
- Dashwood Gabbro
- Teapot Granite
- Redbank High-Strain Zone (commonly reactivated during the Alice Springs Orogeny)
- Arunta Block Metamorphics (undiff.)

Darwin
Alice Springs
Ngalia Basin
Dashwood
M' Bungarra Community
Narwietooma Station
Derwent Station
Glen Helen Station (aban.)

Author: MPM
Report No.: NT / 011 / DAS
Plan No.: THD0098
Drawn By: MPM
Scale: 1:356,500
Projection: GDA94 / MGA53
Date: 14/7/2008
Legend:

- Thundelarra Rock-Chip Sampling
- Localities
- BMR Seismic Line / Gas Pipeline
- Public Roads
- Fault mapped/inferred

Thundelarra Rock-Chip Sampling

- Redbank High-Strain Zone
 (commonly reactivated during the Alice Springs Orogeny)

- Dashwood EL25414
- TK651181
- TK651182
- TK651185.6
- TK651187
- TK651188
- Glen Helen Station (aband.)

- M' Bungarra Community

Figure 3
Rock Chip Sampling

DASHWOOD EL25414

Author: Warren & Shaw, 1995
Date: 14/7/2008
Drawn By: MPM
Plan No.: THD0098
Report No.: NT / 011 / DAS
Projection: GDA94 / MGA53
Scale: 1:145,800
158.9 on spectrometer readings (TK651185). Geochemical results show a lower uranium/thorium ratio of 11.2ppmU/157ppmTh.

Quartz-epidote veining with minor sulphides are present along the contact between the mafic and felsic rocks. One rock chip sample was collected (TK 651186). Assay results show a much better ratio due to the remobilisation and redistribution during the dynamic metamorphism (54.4ppmU/7.4ppmTh).

Boudins of amphibolitic rocks and small pods of pegmatite were encountered within mylonitic zones further to the east/north-east. The pegmatites display high-thorium anomalism with a ratio of 0.8ppmU/4.4ppmTh (TK651188).

On the south-western corner of the tenement a relatively large, less deformed Teapot Granite body crops out (Photo 2). One rock chip sample was collected (TK651187). The background radioactivity is around 600cps with an uranium-thorium ratio of approximately 1:8 (9.5:86.3ppm).

Photo 2. Relatively undeformed Teapot granite in contact with mylonitic zone near Speares Bore (209940 mE, 7411740 mN).

This less tectonically affected Teapot Granite has returned 10.2ppmU/47.2ppmTh (TK 651187). In 1977 Esso recorded rock-chip sample values of up to 1,932ppm U and 703ppm Th along with outcropping secondary uranium minerals in the Teapot Granite (Crossland, 2007).

Examination of the gravity and magnetic data has shown that the Arunta basement and the associated structures are present under shallow cover to the west/north-west. The depth to the granitic rocks, from the water bore data, varies between 27m and 50m along the Derwent Creek. Most of the area to the west is covered by sand and colluvial deposits. Development of calcrete on granitic rock with secondary uranium minerals enrichment is expected under the sand cover.
Potential Tertiary paleochannels are also targeted within this area.

5.3. Surface Geochemistry

Geochemical results have been provided in Appendix 2. A total of six (6) rock-chip samples were collected and sent to Ultra Trace laboratories in Perth for analysis.

5.4. Ground Penetrating Radar survey

Ecophyte Technologies (Ecophyte) was contracted to undertake Ground Penetrating Radar (GPR) surveys during May 2007. The Ecophyte logistics report & data is included as Appendix 3.

The GPR data has not been thoroughly interpreted. However, the utility of this data has been confirmed by preliminary analysis of two lines – 104 & 149; see Figures 4 – 6 for further discussion.

5.5. Water Bore Sampling

A water bore sampling program was conducted during May 2008. A total of 36 samples were collected from 34 bores by means of pumps (if one was attached) or by bailing. The sampling procedures described by Giblin (2001) were adopted, including in-field measurement of pH, eH, temperature, conductivity & iron concentration.

A spreadsheet with all sampling results is included in Appendix 4, and these results are presented on Map 1.

Water samples were collected in 500 ml plastic bottles. One bottle was sent to Angela Giblin for analysis of fluorine (report Careena_FlourideResults.xls), and the other was sent to Genalysis Laboratory Services (Perth) for multi-element analysis (report 749_0_0807605.csv). The raw laboratory result files are provided in Appendix 4.

Giblin (2008a & b) undertook an interpretation of the water bore sampling results – these reports are also provided in Appendix 4.

6. DISCUSSION AND RECOMMENDATIONS

The water bore sampling has identified several areas that U/F ratio analysis has determined may be down hydraulic gradient from a deposit of uranium in the poorly consolidated Tertiary sandy sedimentary rocks. Preliminary analysis of the GPR data suggests that dipping reflectors can be identified in the data, and therefore that paleodrainage information can be deduced. However, a decision to relinquish the ground has been made on corporate grounds. The GPR data remains to be thoroughly interpreted and the water bore anomalies remain to be followed-up.
Figure 4. GPR Lines and Water Bore Sample IDs (note duplicates at 1/36 & 2/35. Preliminary analysis from lines 104 & 109 is presented in Figures 5 & 6.
Figure 5. False-colour GPR data from line 104 (topographically corrected) using Reflex 2D software (looking southwest). The “Phase Follower” tool has been used (red line) as an objective analysis tool to help identify the dip of strata within the semi-consolidated Tertiary sandy sedimentary package. “Paleochannels” are interpreted to exist at depth at approximately 2500m, 4900m and 11700m. The Right Bower Bore (water sample DWS033) is located 2.7km off-section and was identified by Giblin (2008a) as being downstream from a “local uranium sedimentary accumulation”. The GPR data therefore provides channel targets, upstream from the water bore anomaly, which can be tested with drilling.
Figure 6. False-colour GPR data from line 149 (non-topographically corrected) using Reflex 2D software (looking north-northeast). Again, the “Phase Follower” tool has been used - this time two separate results are presented. The results of the Phase Follower tool are almost always unique and depend on the selected starting point (left termination of white/red lines), however in this case a single, broad paleochannel can be identified from approximately 4500m to 9000m, beneath the modern Derwent Creek.
7. REFERENCES

GIBLIN, A. 2008a. Short Summary of Exploration Implications from Thundelarra Groundwaters. (Appendix 4)

GIBLIN, A. 2008b. Short Summary of Exploration Implications from Thundelarra Groundwaters - Addendum. (Appendix 4)

CRA EXPLORATION PTY LTD (CRA). 1973. EL 754 Derwent NT Final Report NTGS CR19730122

APPENDIX 4

Report on 2008 Water Bore Sampling
Short Summary of Some Preliminary Uranium Exploration Implications from Thundelarra Groundwaters 1-36

Preliminary Comments
The belief that central Australia is prospective for economic uranium deposits appears to be based on the fact that uranium rich felsic igneous units are common in this region. The assumption is that these units will have, at some stage in their history, released uranium into a fluid phase from which uranium eventually precipitated into an economic deposit. Possible exploration targets could be based on previously identified economic uranium deposit types, already found in Australia, such as the sediment hosted palaeochannel deposits, unconformity located deposits or Olympic Dam (IOCG) styles of uranium deposit. Groundwater geochemical data, from aquifers that intersect Australian examples of each of these, have been documented. In each case, groundwater solutes and properties provide exploration indicators applicable to each of these styles of uranium deposit.

In this central Australian region the only identified uranium deposit appears to be Bigryli. The acquisition of groundwater data from aquifers that intersect this deposit could provide exploration indicators for at least this one type of uranium deposit that has been discovered in the region. Without this, there is no previously established groundwater expression of uranium deposits in this part of Australia.

Preliminary Conclusions
- In the region covered by the 36 groundwater samples in this Thundelarra data set, the density of groundwater sample locations is too low to conclude that any part of the area has NO uranium exploration potential. (36 samples from approx 3000 square kms)

- Figure 1 illustrates the sorting of groundwater sample locations into 3 groups on the basis that a single groundwater U:F relationship derives from leaching all uranium rich felsic igneous units in the large area sampled. Having established this U:F trend, locations where uranium plots below the trend, can indicate an upflow uranium deposition site. Conversely, locations where groundwater uranium exceeds the trend, suggest that uranium is being leached from a uranium enriched location that may constitute an ore deposit. Having identified these U:F relationships, sampled locations can then be sorted as those that could have been associated with the formation and/or the preservation of a specific style of uranium deposit within the area sampled. Unfortunately, this groundwater geochemical interpretation is based on the unlikely assumption that all groundwaters in the large area covered by this data set carry uranium that genetically originated from the same type of felsic igneous rock unit. Figure 2 illustrates sampled locations where –

1. Yellow circle (group 1) - The groundwaters are carrying uranium leached directly from its original felsic igneous source. These locations are indicated by a correlation between the U and F concentrations in the groundwaters, (Figure 2).
2. Green circle (group 2) - Since collecting its uranium from a felsic igneous source, up flow from this sample site, the groundwater has deposited uranium at these green locations. These locations are indicated by groundwater uranium concentrations that are below the trend evident for group 1 samples in Figure 1.
3. Pink circle (group 3) - These groundwaters are carrying more uranium than the correlated concentrations illustrated in Figure 1. This uranium source may indicate a sediment hosted uranium accumulations upflow from the respective sample sites.

- Considering the very large area covered by these groundwaters, Figure 2 should be regarded as very general in nature. The locations colored green could indicate locations where uranium is stabilized within a uranium deposit, e.g. where redox conditions are reducing. Similarly, at locations colored pink, the groundwater is able to dissolve uranium from a uranium accumulation because redox conditions are oxidizing. The exploration significance of each possibility should be tested by additional infill samples. Certainly, at least this should be done before making decisions to drop any exploration leased ground.

- Figures 3 and 4 illustrate an alternate interpretation of groundwater uranium-fluorine relativities. For this interpretation, the uranium content in some of the groundwaters at green sample locations in Figure 2, could be reinterpreted as having been derived from leaching one of 5 different felsic igneous rock types, instead of the single unit type assumed for Figure 1. Considering the area covered, this could be a more rational interpretation.

- Figure 5 classifies groundwater samples using pH-redox values, that indicate whether uranium would be dominantly soluble or insoluble in each sample. Locations of samples 2, 10, 16, 18, 22, 20, 25, 35 and 36 are more likely locations for uranium to be present as insoluble minerals than as soluble groundwater species. Because these locations cluster into a reasonably specific region (Figure 6), this region may be considered as having a higher exploration potential than other parts of the sampled area.

- A further possibility that arises from Figure 5 is that samples 2, 10 and 16 are more likely to be from locations where uranium is being deposited from the single felsic igneous unit depicted in Figure 1, than to be from groundwater leaching of the different felsic igneous unit suggested in Figure 3.
Figure 1. Uranium concentrations in Thundelarra groundwater samples plotted against each groundwater sample’s fluorine content. Because dissolved uranium concentrations in samples colored yellow correlate with each sample’s dissolved fluorine, these samples are assumed to constitute a single felsic igneous rock type as the source of uranium and fluorine in the region covered by this sample set. Uranium concentrations in samples colored pink exceed this single U:F trend and are thus assumed to have a possibly enriched U source (possibly a sediment hosted U deposit) additional to the single type of felsic igneous rock depicted in yellow. Samples colored green are interpreted as from locations where uranium has been deposited, possibly into a local accumulation) from groundwaters that originally carried uranium leached from the single felsic igneous source, assumed for this interpretation. From an exploration view, samples that plot as green or pink have more significance as they imply that uranium could have been moved out of its original hard rock source, and has now been deposited into a more leachable rock type.
Figure 2. Central Australia Thundelarra groundwater sample locations colored according to the groundwater uranium source depicted in Figure 1 – yellow from felsic igneous source rocks; green from locations where uranium may have been deposited and pink from local uranium sedimentary accumulations,
Figure 3. An alternative interpretation of uranium concentrations in Thundelarra groundwater samples is based on the assumption that in such a large area (~3000 square kms), it is more likely that rather than the single felsic igneous rock type assumed in Figure 1, several different non-economic uranium source rocks would be contributing uranium to groundwaters. For this interpretation, uranium concentrations are still plotted against each sample’s fluorine content, but the possibility of multiple U source rocks is accepted. Because uranium content in samples colored yellow correlate with a sample’s fluorine content, using 5 different trends, these samples are assumed to indicate that a series of 5 different felsic igneous rock types are the source of uranium in the region covered by this sample set. Uranium concentrations in samples colored pink exceed one of the U:F trends and are thus assumed to have a U source additional to one of the 5 different felsic igneous rocks for which associated groundwaters are depicted in yellow. Samples colored green are interpreted as from locations where uranium had previously been deposited from a groundwater that originally carried uranium leached from one of the suggested 5 different felsic igneous sources. Samples colored both green and pink plot between 2 U:F trend lines so uranium could be seen to be either depositing or being leached, depending on which trend line applies.
Figure 4. An alternate interpretation of uranium concentrations in Thundelarra groundwater samples plotted at each sample’s location. Because uranium content in samples colored yellow correlate with each sample’s fluorine content, using 5 different U:F trends, these samples are assumed to indicate that a series of 5 different felsic igneous rock types are sources for groundwater uranium in the region covered by this sample set. Uranium concentrations in samples colored pink exceed one of the U:F trends and are thus assumed to have a U source additional to one of 5 different felsic igneous rocks depicted in yellow. Samples colored green are interpreted to be from locations where uranium had been deposited from a groundwater that originally carried uranium leached from one of the 5 different felsic igneous sources. Samples colored green and pink plot between 2 U:F trend lines so uranium could be seen to be either depositing or being leached, depending on which trend line applies.
Figure 5. Using pH-redox values, sample sites are classified into two zones (black boundary line) on the basis of uranium stability as either soluble or insoluble species. Locations of samples 2, 10, 16, 18, 20, 22, 25, 35, and 36 are more likely locations for uranium to be present as insoluble minerals (potential ore deposit) than as soluble groundwater species. Because these locations cluster into a reasonably specific zone, this area may warrant closer spaced groundwater sampling and applications of other exploration techniques.
Figure 6. Sample locations (colored blue) where pH-Eh conditions in groundwaters indicate that uranium is more likely to be present as insoluble uranium oxides than as soluble species in the groundwater.

Angela Giblin
26.7.08
Marty,

Clearly #2 and #35 were not the same aquifer. All field measurement showed variation that confirms this. My guess is that because #2 was sampled soon after the pump was turned on (I was there) and it appears the pump was used during the period between the 2 samplings making the more saline water available. If you want to get groundwater duplicates via a diesel pump, you will have to extend and duplicate the pumping time to get a mixed aquifer sample. Usually this is not part of an initial regional survey unless other exploration data makes a location particularly interesting. Be happy you got the the 2nd higher U value as it demonstrates this location as more interesting than did #2.

Regarding your QA/QC confidence, that's up to you. Certainly the analytical outcomes are fine, but maybe you need to do a bit of water sampling yourself and set up the level of standardised procedures you regard as necessary. I suppose I made no mention of it as I thought the data looked fine considering what was asked of the samplers which was what my experience has found to be financially appropriate at this stage of your exploration.

If you have any further queries I will be happy to comment.

Regards

Angela

Quoting Martin Moloney <Martin.Moloney@gemin.com.au>:

> Hi Angela,
> > Thanks for your report, however it does not address the field QA/QC sampling. For instance, DWS002 & DWS035, from the same hole (sampled via a diesel pump) returned uranium analyses of 9.4 & 49.9 ug/L respectively, whilst the fluorine results were 1.4 & 1.7 mg/L. The Eh & conductivity measurements for this duplicate pair also varied considerably (Eh: -20 vs -76 and cond: 2.39 vs 35.6). Should we be concerned by these variations? I'm inclined to be, especially as the lab repeats for U had no such variation (4.06 vs 4.006 ug/L for DWS001 and 0.054 vs 0.048 ug/L for DWS021).
> > It seems that the methodology of interpreting U/Fl ratios remains relatively unaffected, as these two duplicates plot along the linear trends that you have identified (see attached graph).
> > However, do these variations in the QA/QC sampling data impact on the confidence-level can we have in the data as a whole?
> > Regards
> > Marty Moloney
> > Thundelarra Exploration Ltd
> > Level 3, IBM Building
> > 1060 Hay Street
> > West Perth WA 6000
> > Telephone: +61 8 9321 9680
> > Facsimile: +61 8 9321 9670
> > Email: martin.moloney@gemin.com.au
> >
> Email Confidentiality
> This email may contain privileged or confidential information. You may not copy or disclose this message to anyone without the written permission of Thundelarra Exploration Ltd. If you have received this email in error please kindly delete this message and notify the sender.
> Opinions expressed in this message are those of the sender and not necessarily the opinions of Thundelarra Exploration Ltd.
>
> -----Original Message-----
> From: gib063@tpg.com.au [mailto:gib063@tpg.com.au]
> Sent: Saturday, 26 July 2008 4:41 PM
> To: Brian Richardson
> Cc: Costica Vieru
> Subject: NT groundwater report
>
> Brian,
>
> Slight change to title.
>
> Regards
>
> Angela

Angela Giblin
15 Sylvan St.,
Galston 2159
02 96531273
