AGRICOLA GOLD LIMITED ABN: 21 071 888 634

ANNUAL REPORT

FOR

EXPLORATION LICENCE 10321

January 2008 to December 2008

ACN: 127 977 468

Prepared by Salisbury Resources Limited for and on Behalf of Agricola Gold Limited Author C M Horn: BSc, F AusIMM, MGSA, Assoc MEIANZ, Assoc MASEG

Agricola Gold Limited 27 Matthews Street BEDFORD PARK SA 5042

31 January 2009

Contents

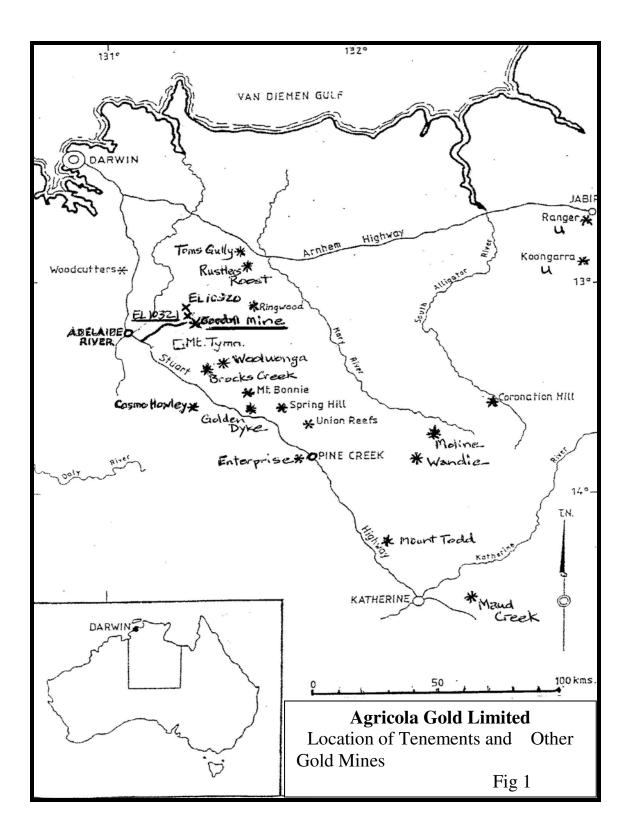
			Page							
1.	Introc	3								
2.	Locat	3								
3.	Tenu	5								
4.	Regio	Regional Geology								
5.	-	ect Geology	10							
	5.1	Cook Prospect	10							
	5.2	Fisher Prospect	10							
	5.3	Reid Prospect	10							
6.	Previ	ous Exploration	11							
	6.1	Cook Prospect	11							
	6.2	Fisher Prospect	11							
	6.3	Reid Prospect	12							
7.	Explo	bration in 2008	12							
	7.1	Cook Prospect	15							
	7.2	Fisher Prospect	17							
	7.3	Reid Prospect	18							
8.	Expe	nditure in 2008	23							
9.	Work	Planned for 2009	23							
10.	Conc	lusion	24							
11.	Refer	rences	25							
12.	Figur	es	25							
13.	Plates	5	25							
14.	Appe	ndices	26							
	1.	Cook Prospect Geology & POI GPS Readings	27							
	2.	Fisher Prospect Geology & POI GPS Readings	28							
	3.	Reid Prospect Geology & POI GPS Readings	29							
	4.	Cook Soil & rock Chip Sample Results	30							
	5.	Fisher Soil & rock Chip Sample Results	32							
	6.	Reid Soil & rock Chip Sample Results	33							

Disclaimer

Agricola Gold Limited and Salisbury Resources Limited is not making any representation or warranty, express or implied, as to the accuracy or completeness of the information data and does not accept any responsibility whatsoever for any interpretation, opinion of conclusion expressed in this report.

1. Introduction

This document has been prepared by Salisbury Resources Limited (SBY) for and on behalf of Agricola Gold Limited (AGL) to report on exploration activities and results undertaken during 2008. SBY entered into an Option and Farm in Joint Venture Agreement with AGL on 14 December 2007. Details of the Option are included in Section 3, Tenure.


Exploration activities during 2008 comprised soil and rock chip sampling over three prospect areas, namely Cook, Fisher and Reid together with GPS location of old drill holes, topographic features and geology using Garmin GPS instrumentation. Results are listed in Appendices A, B and C and are discussed in Sections 7.1, 7.2 and 7.3.

Under the terms of the Joint Venture Agreement between SBY and AGL, SBY have agreed to spend \$200,000 on airborne electro-magnetic surveys and reverse circulation drilling within the first year of the formation of the Joint Venture following the successful listing of SBY on the Australian Stock Exchange (ASX). Due to the unprecedented Global Financial Crisis and significant downturn in the availability of exploration capital, SBY was unable to list on the ASX and meet the drilling commitment. However, available funds were committed to a limited sampling program designed to confirm the prospectivity of the Licence.

2. Location and Topography

Exploration Licence No. 10321 is located between 131° 16' E and 131° 17' E and 13° 12' S and 13° 14' S (Fig 1) is approximately 114 kms south of Darwin. The tenement is accessible from Darwin via the Stuart Highway to Adelaide River Township, thence by station track to the Mount Keppler yards on the Mount Ringwood HS station track. Station tracks provide access within the Licence. An alternative access can be gained from the Tortilla Road via Tortilla HS thence south to Mt Keppler yards.

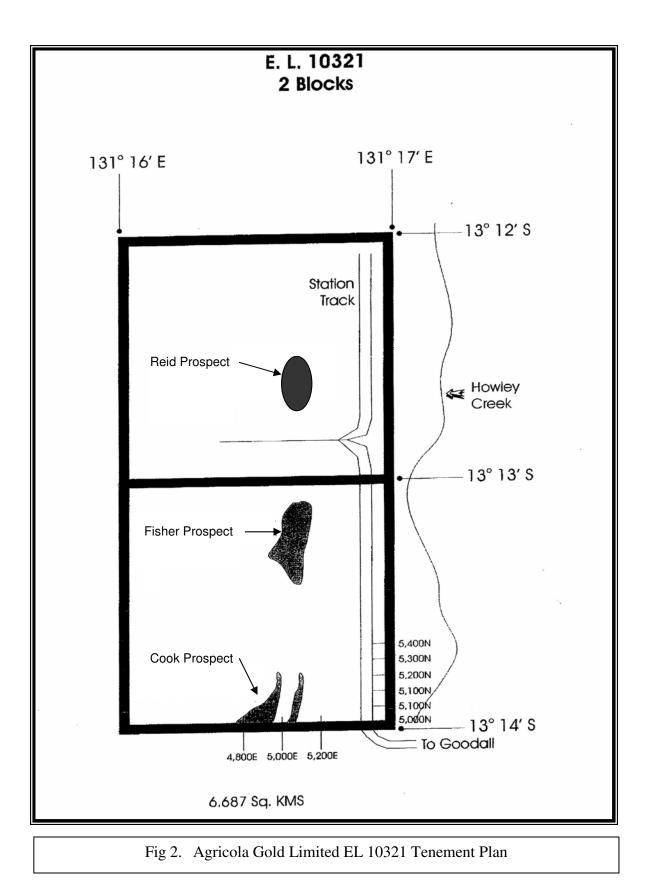
The topography within the Licence comprises a series of low north-south trending hills and intervening alluvial valleys. Ephemeral creeks and drainages drain north-easterly toward Howley Creek and Margaret River and north-westerly towards Burrell Creek and Adelaide River. Within the Licence area the drainage lines are very active each wet season (November to March) which severely restricts ground work during this period.

2. Tenure

Exploration Licence EL 10321 was granted to Agricola Gold Ltd., in December 2002 and expired in December 2008. Renewal of the Licence was lodged in accordance with Section 29A (1 of the Mining Act) and subsequently expires in December 2010.

The tenement (EL 10321) consists of 2 graticular blocks located on the Batchelor 1:100,000 Topographic Survey sheet approximately 18 kms due east of Adelaide River township (Fig 2). The Licence comprises an area of approximately 6.687 square kms.

Salisbury Exploration Pty Ltd, a wholly owned subsidiary of Salisbury Resources Limited, entered into an Option and Farm-in Joint Venture Agreement with Agricola Gold Ltd on 14 December 2007 in relation to the Northern Territory Exploration Licence 10321.


The option is granted for an initial term of 6 months (with a right to renew for up to a further 6 months on payment of \$8,000 for each additional month of renewal). Salisbury must keep the Agricola Tenements in good standing during the option period and in particular must have spent \$30,000 on exploration on the Tenements prior to 31 December 2007. Subject to the Company listing, it may exercise its option to earn a joint venture interest in the Agricola Tenements at any time within the option period.

On exercise of the option the Company will be entitled to a 51% interest in the Tenements by the payment to Agricola of \$100,000 and issue of 500,000 Salisbury Shares and 250,000 Salisbury options (with an exercise price of \$0.20 and a term of 2 years from their date of grant). In order to maintain this initial interest, the Company must spend \$200,000 on exploration within 12 months from commencement of the joint venture (at least $\frac{1}{2}$ of which must be on drilling).

If the Company meets the conditions set out above it may elect to earn an additional 39% (up to 90%) in the Agricola Tenements by paying Agricola a further \$100,000 and issuing 100,000 Salisbury Shares and 250,000 Salisbury option (on the same terms as above). If the Company fails or elects not to earn the additional interest, the joint venture will terminate and Salisbury will have no further interest in the Agricola Tenements (other than an obligation to meet 51% of rehabilitation costs on the tenements).

On Salisbury earning its 90% interest, Agricola's 10% interest is free carried through to decision to mine.

The Agreement was made subject to Ministerial approval being sought and obtained and that condition has been fulfilled.

4. **Regional Geology**

The regional geology is shown on Fig 3 adapted from the Pine Creek 1:250,000 geological map sheet.

The Pine Creek Inlier comprises mainly sedimentary rocks of Early Proterozoic age (1,800 million years) which have been extensively intruded by granite (Fig 3). The tenements are underlain throughout by the Lower Proterozoic Burrell Creek Formation and consist of a grey-wacke to mud-stone suite representing a series of cyclic turbidity events throughout the Finnis River Group depositional history.

The Early Proterozoic Burnside and Margaret granites, which form part of the Cullen Batholith, are located approximately 30 kms SSE of the tenements. Approximately 30 kms W of the tenements is the Archaean Waterhouse granite complex which is unconformably overlain by the Pine Creek Orogen sequence, comprising an alternating sequence of psammitic and pelitic rocks with minor carbonate and volcanics.

EL 10321 lies within Western Mining Corporation Ltd.'s (WMC) Central Zone which was explored in the mid-late 1980's as part of their regional program on ground surrounding the Goodall gold mine. As part of that exploration effort, a great deal of work was done on the depositional and deformational history of this area which represents the deepest part of the Pine Creek Geosyncline.

The stratigraphic sequence is similar to that found around the Goodall Mine (Hancock and Ward, 1988), and consists of:

Upper Wacke Sequence:

Thickness: $\geq 1500 \text{ m}$ DescriptionComprises medium-grained, clast-supported, buff-weathering,
tufaceous wackes, silts and lesser lithic pebble conglomerate
turbidity. The lower portion is a relatively distinctive, but-
weathering wacke.

Red Silty Unit:

Thickness: $\geq 600 \text{ m}$ Description:A relatively poor exposed unit dominated by a distinctive red-
brown weathering phyllitic metasiltstone, graded and bedded
phyllite, distinctive laminated phyllite and matrix-supported
medium-grained quartzo-feldpathic wacke. Laminated chlorotic-
phyllite, with thin tufaceous interbeds, form a distinctive
association with the unit. The unit can be internally considered as
compromising a lower unit dominated by phyllite and matrix-
supported wacke and an upper unit distinguished by laterally
persistent wacke units, which include clast-supported lithologies
similar to those that dominate the overlying wacke-rich unit
traceable around the structure in the area mapped in detail.

Bundey Sequence:

Thickness:

≥ 1000 m

Description Includes boldly outcropping, medium-grained, tufaceous, quartzofeldspathic wacke with matrix chlorite and muscovite and interbedded chlorite-sericite-quartz phyllitic metasiltstones. Grade, medium grained, clast-supported wacke dominant, and a distinctive sub-zone of wackes with nodules to 5 – 8 cm of quartzex-digenetic chert occurs near the top. Thick phyllitic metasiltstones, often with local ex-andalusite and ex-cordierite spotting occur.

Lower Transitional Zone:

Thickness: $\simeq 500 \text{ m}$ DescriptionNot mapped in detail, but reconnaissance observations structurally
beneath the Bundey Sequence in the axial zone of the Howley
Anticline indicate poorly outcropping, mixed successions of
medium-grained, quartz-feldspar wacke and significant thickness
of ferruginous, probably ex-graphitic phyllite, reminiscent of the
underlying Mt Bonnie Formation.

The units above show variations in the abundance of sand and silt, but rarely, to the exclusion of either lithology. The change in character probably reflects the changes in the character of the provenance area of detritus, as bed organisation and the depositional environment area similar in both the clast-supported and matrix-supported (Red Silty Unit) lithologies.

Elements of all the above units may be found within the area of the tenements, with variants from the quartz pebble conglomerate to the fine, matrix-supported Red Silty Unit in areas of sub-crop to postulated alluvium-covered areas.

Structurally, the dominant features in the area of the tenements are the Mt. Shoobridge Fault and the Howley Anticline. The Mt Shoobridge Fault Zone which trends north-south through EL's 10320 and 10321 dissects several anticline/ syncline pairs intruded by concordant and discordant quartz veins and / or stock-works. The fault has been shown to contain very minor mineralisation and can be regarded as a dry conduit for both mineralising fluids and ground water.

Gold occurrences are typically associated with quartz veins along or close to the axial zones of regional anticlines. The proximity to major faults as structural controls and the importance of granite intrusions providing heat and fluid source are considered essential for the deposition of gold mineralisation throughout the region.

The main type of gold mineralisation consists of quartz veins, in which gold concentrates in portion of the veins composed of cellular goethite. These concentrations form irregular patches in otherwise barren pods and "blows" of milky white quartz (Appendix Photos 1-2). Goethite is formed by oxidation of pyrite, which occurs in un-oxidised ore about 12 m below the surface (Ahmad, et.al. 2001).

Minor amounts of gold occur as free gold, the remainder being associated with pyrite and arsenopyrite, plus minor chalcopyrite, galena and sphalerite.

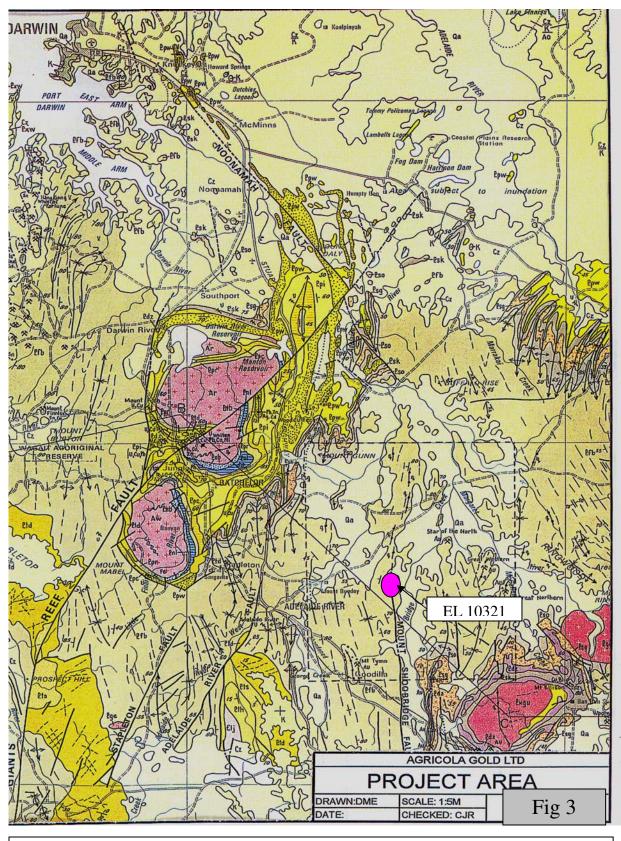


Fig 3 Regional Geology from the Pine Creek 1:250,000 Geological Map Sheet

5. Prospect Geology

Three prospects have been located within EL 10321, namely Reid, Fisher and Cook.

5.1 Cook

At the southern end of the tenement the Cook prospect revealed scattered gold occurrences trending into Exploration Licence (EL25228) adjoining the southern boundary. The prospect is approximately 400m east of the Shoobridge Fault, a major north-south trending structure, (Fig 2). A series of parallel to sub-parallel quartz veins, varying from 30 cms to 4m in width, outcrop discontinuously over a strike length of some 600m in a 200m wide zone. Phyllitic siltstones/shales and medium grained quartzo-feldspathic wackes form the country rock within the prospect area.

5.2 Fisher

The central prospect is designated the Fisher prospect and is located approximately 500m east of the Shoobridge Fault. A series of parallel to sub-parallel quartz veins outcrop discontinuously along a north south trending ridge over a strike length of approximately 300m in a 75m wide zone. A second parallel zone of quartz reefs striking north south outcrop on the eastern slope toward Howley Creek, 100m east of the main zone.

The quartz veins are generally parallel to the shale/wacke country rock and vary in thickness from 30 cms – 5m. At the southern end of the ridge the outcropping veins appear to be coalescing over a 20m wide zone. The veins generally dip steeply to the east and strike between 340° and 360° . The quartz is generally milky white with ferruginous coatings and blebs considered to be oxidation after sulphides.

5.3 Reid

The northern-most prospect is located to the east of the Shoobridge Fault. An outcrop of gossanous quartz-vein and siliceous breccia, approximately 15 m wide, occurs as a discontinuous unit over some 300 m trending north north west-south south east and appears to cut diagonally across the stratigraphy. Five main elongated pods have been mapped, surface samples collected and results are discussed in Section 7. Dips are steep and close to vertical, the quartz breccia appears to be located within a small anticline and parasitic folding. Anomalous gold values occur within the brecciated zone along with anomalous lead and arsenic values.

A series of north-south striking quartz veins varying in width from 30 cms to 3m outcrop sporadically over an area 250m x 50m on the eastern side of the siliceous gossan. The surrounding country comprises tightly folded siltstones, shales and wackes which have been sheared along axial plains of the folds.

6. **Previous Exploration**

The licence area was originally explored by WMC Ltd in the late 1980's as part of their regional exploration program in conjunction with mining at the nearby Goodall Mine. Previous work involved B horizon soil sampling on 20m intervals on lines separated 800m apart. Closer spread sampling on 200m line spacing was undertaken where anomalous point highs had been encountered.

6.1 Cook

A helicopter generated target by WMC, the discovery was a 78 g/t goldscorodite vein. Subsequent soil sampling by WMC over 1100m on lines of 300m spacing and samples 100m apart revealed a long narrow anomaly of approximately 850m and 20-30m wide with the highest value of 570ppb Au and a broad anomaly over 400m by 160m at its widest point with values of 20 - 860ppb Au.

Quartz outcrops with variable limonite gossan content sampled by WMC from the same area yielded results between 0.31 and 1.96 g/t Au.

Thirteen holes were drilled for 494m producing 247 x 2m samples for assay. Drilling showed most veining dips to the east. Some holes intersected abundant quartz veining with minor pyrite and arsenopyrite in places. Best values were confined to the top 2m of the drill holes recording values between 0.2 and 24.5 g/t Au.

Surface samples collected by Morestoe Pty Ltd near the southern boundary produced results up to 20.1 g/t Au. Morestoe drilled several shallow hand auger holes over the previously identified geochemical anomaly highs confirming the existence of an anomalous zone on the western side of the ridge. Some 20 rock chip samples were taken over a stacked vein set 0.5 - 2m thick which averaged 1.5 g/t Au.

6.2 Fisher

WMC extended their geochemical sample grid northward from the Cook prospect to cover an area of auriferous veining on a small hill, approximately 1 km north of Cook. Three rock-chip samples returned values from 1.11 - 2.10 g/t Au, but only 1 of 13 soil samples exceeded 6 ppb Au.

Morestoe Pty Ltd sampled the northern end of the prospects over a 250m strike length. Results from the western side returned values averaging 1.9 g/t over continuous 0.5m wide quartz veins. Sampling on the eastern side of the ridge over discontinuous quartz veining returned values up to 0.59 g/t Au. At the southern end of the hill the outcropping quartz veins coalesce with values up to 3.2 g/t Au.

6.3 Reid

The prospect was found as a result of a helicopter-borne sampling program by WMC Ltd. The initial sampling revealed complex mineralogy in 2 samples of 1.35 g/t Au, 4% As and 6.4% Pb; and 1.1 g/t Au, 7.4% As and 3.3% Pb. WMC followed up the discovery with 8 short, shallow costeans and 6 shallow drill holes. Mineralisation was found to extend over 230m with the best values of 12m @ 2.9 g/t Au and 6m @ 1.25 g/t Au.

Morestoe Pty re-established the WMC grid and air-track sampled to 2.5m on lines 10m spacing with holes 2m apart. This shallow drilling produced gold grades ranging from 1.1 - 2.14 g/t Au with lead values up to 3%.

7. Exploration in 2008

Salisbury Resources Limited undertook a limited soil and rock chip sampling program over a 10 day period from the 8th – 18th of October 2008 on the Cook, Fisher and Reid prospects within EL 10321 and on the Scullen, Bruce and Hughes prospects within EL 10320 located 5 kms north of El 10321. A combined total of 267 samples were collected from both tenements. A total of 164 soil and rock chip samples were collected from prospects within EL 10321 (see Table 1 below).

Prospect	Soils	Rock Chips	Total
Cook	62	7	69
Fisher	28	1	29
Reid	42	24	66
Total			164

Table 1. Soil and Rock Chip Samples Collected from EL 10321

Soil samples were collected by Phil Merry from Arnhem Exploration Services (see Plates 1 & 2). The depth of samples varied from 10 - 40 cms and as far as practical were collected from the C horizon although on areas of deeper cover the B horizon was sampled. All sample and GPS locations were recorded on a standard sample sheet. A sample of the standard sheet is shown below (Fig 5). Sample locations are included in Appendix 2.

Samples were sieved in the field to 300 mesh and placed in numbered plastic bags together with the sample ticket. Samples were delivered to Northern Analytical Laboratories at Pine Creek where they were assayed for gold by fire assay and copper, lead, zinc, silver and arsenic by ICP. Results are included in Appendix 3.

Plate 1 Soil Sample Collection & Sieving by Phil Merry of Arnhem Exploration Services Pty Ltd

Plate 2 Soil Sample 094648 from the Reid Prospect B Horizon 25-40cm Depth

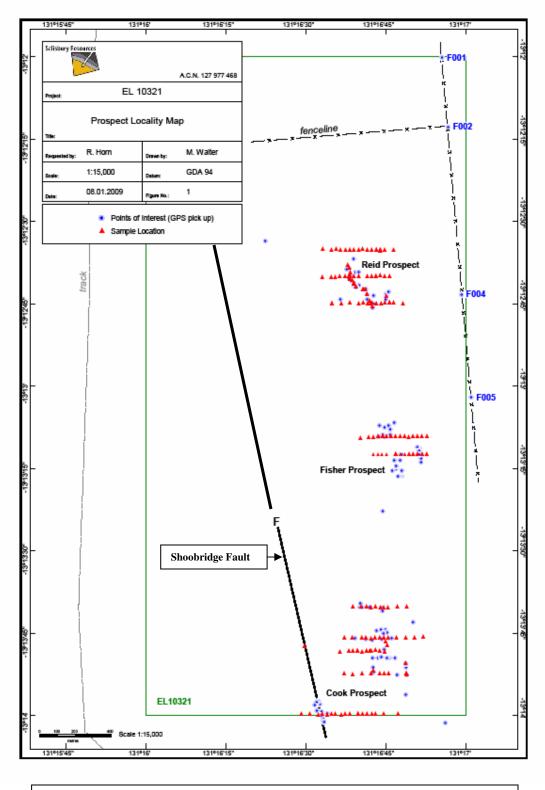
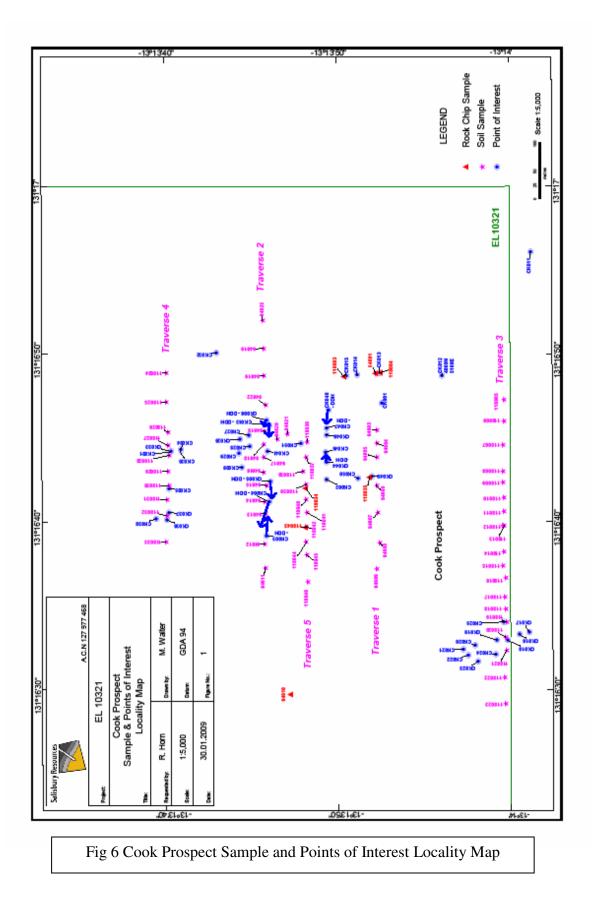


Fig 4 Prospect Locality Map

Map Sheet:	1G/Photo Ref	Hole No: Hole N	Keep with Pulp WF 118007 Analysis Instructions:					
	A - E - Other Rotary/ Percussion: Wet Dry Dry	Sendrud (22 vir 2 vir Ledrude of Stale Duplicate of: Description & Analyses Over To (Lab): Order No.	Analysis Instructions:					
ne-onder Phone GEMINEX = (08) 8947 020	2		IMAGE OFFSET					
Fig 5 Typical Soil/Rock Chip Sample Sheet								

7.1 Cook Prospect


Five soil sample traverses each approximately 300m in length were completed. The southern most traverse (CK3) was along the southern boundary of EL 10321 and extended over the projected location of the Shoobridge Fault (Fig 4).

Traverse CK1 is located approximately 200m north of CK3. Traverse CK5 is 100m north of CK1. CK2 is located 100m north of CK5 and covers an area where previous shallow drilling was undertaken by Morestoe Pty Limited. The northernmost traverse, CK4 is 600m north of the southern boundary.

The rock chip sample gold assays ranged from 0.1 - 3.49 g/t Au. The highest sample of 3.49 g/t Au was recorded in Sample 118034 from a ferruginous quartz vein on traverse CK4 (Fig 6). Anomalous gold in soils occurred on traverses CK1, CK2 and CK5 near the crest of the ridge and western slope.

A number of anomalous soil samples were recorded on traverse CK2 (Fig 6) on the western side of the main ridge where there was little obvious quartz veining present. Lower but still anomalous gold in soils were recorded on traverse CK1 in samples 94604 – 94607. Sample 118018 on traverse CK3 along the southern boundary of the exploration licence recorded a value of 0.16 g/t Au with a check analysis of 0.17 g/t Au adjacent to the Shoobridge Fault.

Follow up soil sampling is required on intermediate lines between CK3 and CK1 and CK2 and CK4. A soil sample line is also required 100m north of CK4.

7.2 Fisher

Two soil sample traverses were completed at the Fisher prospect where 28 soil samples were collected (Fig 7). The traverses were located 100m apart. Each of the traverses was approximately 300m long in an east-west direction, with samples collected at 25m intervals.

Outcropping quartz veins (Plate 3) and quartz float areas were GPS mapped south of the southern traverse (F1) and north of the northern traverse (F2) with fewer outcrops noted in between the traverses.

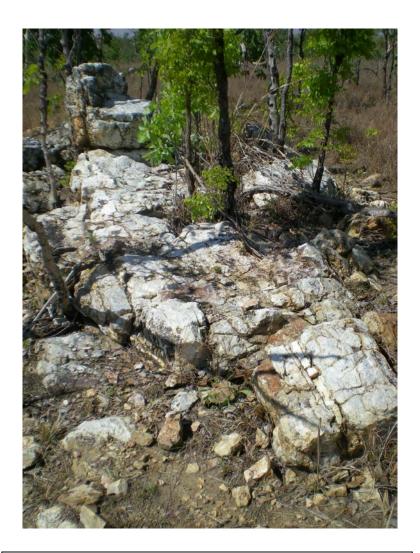


Plate 3 Typical Quartz Vein Outcrop from Fisher Prospect

Soil sample results were disappointing. The samples from F1 all assayed less than 0.01 ppm. Samples 104360 - 104362 on the eastern end of traverse F2 assayed 0.05 ppm, 0.36 ppm and 0.02 ppm respectively. These results are regarded as anomalous and may represent ferruginous quartz veining encountered on traverse F1. Interestingly all arsenic values were anomalous in the soil samples with the highest value being 612 ppm.

A quartz vein on traverse F2 on the western side of the ridge was rock chip sample and recorded 2.06 g/t Au with a check sample of 2.18 g/t Au. Copper, lead, zinc, silver and arsenic were all anomalous in the sample with lead as high as 1.82% and arsenic up to 1.28%.

The quartz veining outcrops south of traverse F1 require 2 soil traverses 50m apart and rock chip sampling of the veins. A soil sample traverse should be established 100m north of traverse F2 and systematic sampling of the quartz vein outcrops should be undertaken.

7.3 Reid

Three soil sample traverses, each 100m apart and approximately 400m in length were completed at the Reid prospect (see fig 8), to test a series of north north-west striking siliceous brecciated gossan outcrops (Plate 3) which appear to cut diagonally across the country rock and the outcropping quartz veins. Forty two soil samples were collected together with 24 rock chip samples, mainly of ferruginous gossan and quartz veining.

The Siliceous gossan outcrops were GPS mapped and a number of the quartz veins were located using GPS. The location of the rock chip samples is shown on Fig (8)

This was the most exciting prospect sampled as far as results are concerned. Anomalous gold, lead, zinc and arsenic values were encountered on all three traverses.

Traverse RD1 crossed the southern end of the gossan outcrop. Soil samples 094632 – 094634 and 094636 were all anomalous in gold with values ranging from0.02 ppm to 0.12ppm. Lead and arsenic values were also anomalous with lead ranging from 157ppm – 6737 ppm and arsenic from 414 ppm to 3414 ppm. Rock chip sample 094635 located between soil samples 094634 and 094636, collected from a brecciated shale gave 0.91 g/t Au and 0.92 g/t Au in the check analysis. Copper was 581 ppm, lead 51219 ppm (5.12%), zinc 327 ppm, silver 2 ppm (2 g/t) and arsenic 21734 ppm (2.2%).

Traverse RD2 produced a 250 m wide zone of anomalous gold values in samples 094646 - 094653 ranging from 0.02 ppm to 1.25 ppm (1.25 g/t Au). Anomalous lead, zinc, silver and arsenic values were recorded from these samples.

Sporadic anomalous soil samples were recorded from the northern traverse (RD3). A quartz vein located 75 m from the eastern end of the traverse assayed 0.08 ppm Au and 1508 ppm arsenic.

Systematic rock chip sampling of the siliceous gossan outcrop (Plates 4 - 5) averaged 1.44g/t Au, 22,154 ppm Pb, 1.6 g/t Ag and 42,494 ppm As. The peak lead value was 65,835 ppm (6.6%) and the peak arsenic value was 76,274 ppm (7.6%).

Future work at the Reid prospect should involve the establishment of 2 intermediate soil sample lines between traverses RD1 and RD2 and RD2 and RD3 as well as lines 50m south of traverse RD1 and 50m north of traverse RD3. The previous geological mapping carried out by Morestoe appears adequate. The prospect requires reverse circulation drilling particularly along traverse RD2 on the eastern side of the gossan outcrop.

Plate 4 Reid Prospect Siliceous Gossan Outcrop

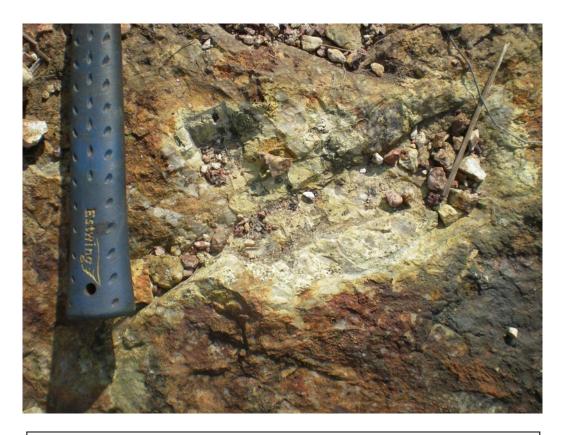
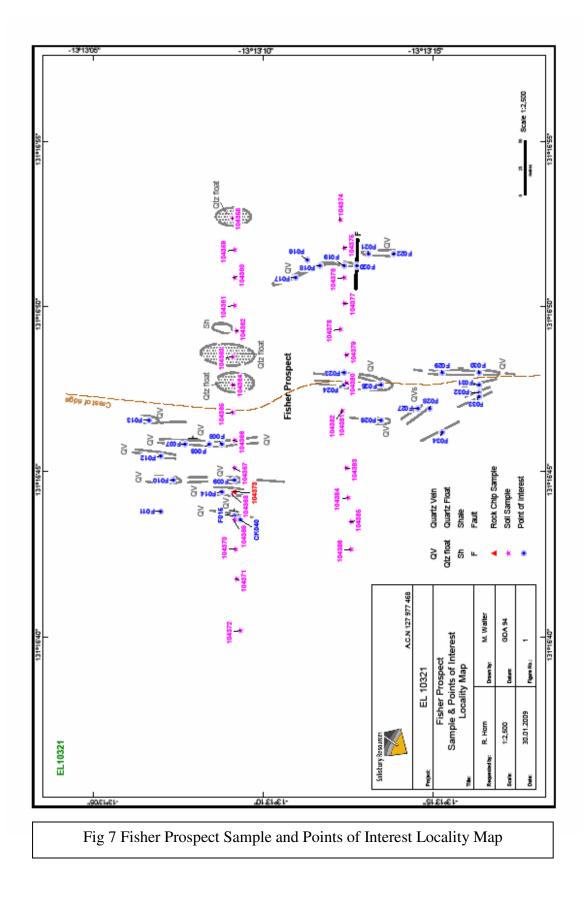
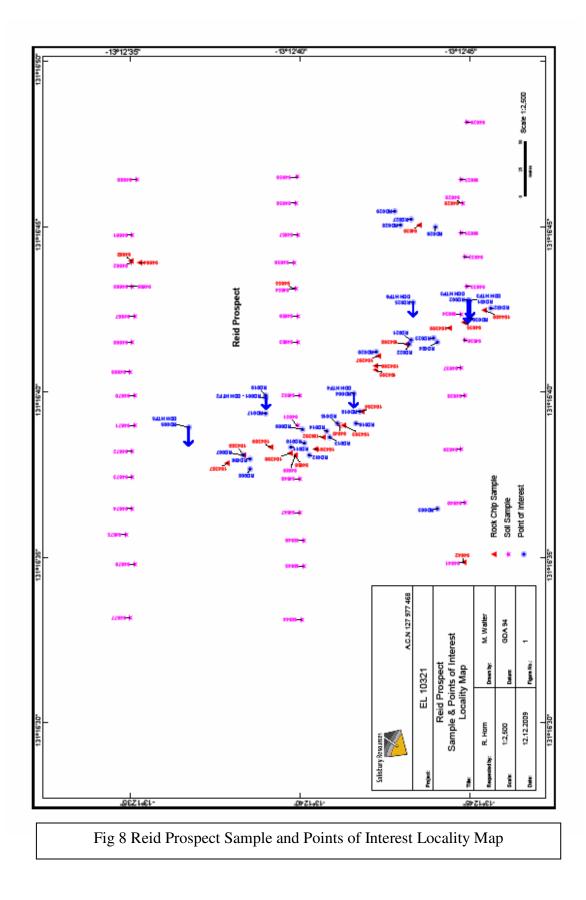




Plate 5 Typical Siliceous Gossan Outcrop with Iron Oxide Box Work

Plate 6 Typical Siliceous Gossan Outcrop

8 Expenditure in 2008

Office Studies	\$
Literature search	1000
Data base compilation	2000
Computer modelling	
Reprocessing of data	
General research	1000
Report preparation	5500
Office overheads/Supervision	5000
Ground Exploration Surveys	
Geological mapping (Prospect)	5500
Soil sampling	9495
Rock chip sampling	5680
Laboratory analysis	4485
Other Operations	
Mill process testing	1000
Ore reserve estimation	1500
Access and Rehabilitation	
Track maintenance	1000
Monitoring	500
Total	<u>43660</u>

9 Work Planned for 2009

Provided funding is available and appropriate joint venture terms and conditions are agreed to the joint venture partner proposes to undertake further soil sampling as follows:

Cook Prospect

Three traverses are required

One between CK1 & CK3 (20 sample points)

One between CK2 & CK\$ (20 sample points)

One located 150m north of traverse CK4 (25 sample points)

Fisher Prospect

Three traverses required

One 100m north of traverse F2 (15 sample points)

Two located 50m & 100m south of traverse F1 (15 sample points)

Reid Prospect

Two traverses required

One 100m south of traverse RD1 (20 sample points) One 100m north of traverse RD3 (20 sample points)

In order to test the mineral potential of these prospects for economic development it is considered a requirement to undertake the following reverse circulation drilling program if funds permit.

Cook Prospect	
Four holes on each of Traverses CK4, CK1 and CK2	
Four holes half way between traverse CK2 and CK4	
Total of 800m of drilling	
Fisher Prospect	
Five holes on traverse F2	
Two holes on traverse F1	
Total of 350m of drilling	
Reid Prospect	
Two holes on RD1	
Two holes on traverse RD2	
Three holes on traverse RD1.5	
Total 550m of drilling	
The estimated cost of the proposed 2009 program is:	
Soil samples (135) collection plus analysis \$ 10	0,000
Reverse circulation drilling (1,700m) \$13	5,000
Total \$14	5,000

10 Conclusions

Exploration of EL 10321 is in the early (grass roots) stage on all prospects, although some earlier drilling results have returned significant grades which have encouraged further exploration. The sampling undertaken by SBY has been positive and confirms the preliminary work carried out by WMC Limited and Morestoe Pty Limited.

Work carried out by Salisbury Resources at the Cook prospect outlined a zone of gold anomalism associated with intense quartz veining parallel to an anticlinal axis which requires drilling to determine the extent and grade of the mineralisation.

At the Reid prospect a siliceous gossan outcrops over a strike length of 250m and averages 10m in width. Surface sampling produced results averaging 1.44g/t Au, 22,154 ppm Pb, 1.6 g/t Ag and 42,494 ppm As. The peak lead value was 65,835 ppm (6.6%) and the peak arsenic value was 76,274 ppm (7.6%).

Additional soil sampling is required to extend the known gold anomalism to provide targets worthy of follow up drilling.

Once these targets have been defined a follow up reverse circulation drilling program may be warranted.

11 References

- Hancock, S.L. and Ward, M.A., 1998. Annual & Terminal Report on Adjoining EL's 1656, 4778, 2361, 2362 and 4919 to May 1987 (unpublished)
- Needham, R.S. & DeRoss, G.J., 1990. Pine Creek Inlier Regional Geology and Mineralisation. In Hughes, F.F., (Ed) Geology and Mineral Deposits of Australia and Papua New Guinea, AusIMM, Melbourne, pp 881 – 902
- Nicholson, P.M., & Eupene, G.S., 1984, Controls on Gold Mineralisation in the Pine Creek Geosyncline, Proc. AusIMM Conf. Darwin, NT 1984 pp 377 – 396, AusIMM, Melbourne
- Nicholson, P.M., & Eupene, G.S., 1990. Gold Deposits in the Pine Creek Inlier. In Hughes, F.E., (Ed) Geology of Mineral Deposits of Australia and Papua New Guinea. Pp 739 – 742 AusIMM, Melbourne
- Quick, D.R., 1994 Exploration & Geology of the Goodall Mine, in Darwin Conference, 1994. (AusIMM, 1994).

Robinson, C.J., 1996. Report on Northern Territory Gold Properties for Agricola Gold Limited. For inclusion in a Prospectus.

12 Figures

- 1 Location of Tenements and Other Gold Mines
- 2 EL 10321 Tenement Plan
- 3 Regional Geology
- 4 Prospect Locality Map
- 5 Typical Soil/Rock Chip Sample Sheet
- 6 Cook Prospect Sample and Point of Interest Locality Map
- 7 Fisher Prospect Sample and Point of Interest Locality Map
- 8 Reid Prospect Sample and Point of Interest Locality Map

13 Plates

- 1 Soil Sample Collection and Sieving by Phil Merry Arnhem Exploration Services Pty Ltd
- 2 Soil Sample 094648 from the Reid Prospect B Horizon 25 40 cm Depth
- 3 Typical Quartz vein Outcrop from Fisher Prospect
- 4 Reid Prospect Siliceous Gossan Outcrop
- 5 Typical Siliceous Gossan Outcrop with Iron oxide Box Work
- 6 Typical Siliceous Gossan Outcrop

14 Appendices

- 1 Cook Prospect Geology and Points of Interest GPS Readings
- 2 Fisher Prospect Geology and Points of Interest GPS Readings
- 3 Reid Prospect Geology and Points of Interest GPS Readings
- 4 Cook Prospect Soil & Rock Chip Sample Results
- 5 Fisher Prospect Soil & Rock Chip Sample Results
- 6 Reid Prospect Soil & Rock Chip Sample Results

rppen			ology and I offits of interest of 5 Readings
	Latitude	Longitude	Comments
1	13.13.875	131.16.785	Old grid peg 4900N-5050E
2	13.13.822	131.16.709	Old grid peg 5000N-4955E?
3	13.13.764	131.16.653	Drill hole collar dir 090deg depressed 55deg
4	13.13.767	131.16.687	drill hole collar dir 285deg depressed 55deg
5	13.13.768	131.16.707	drill hole collar dir 270deg dep 55deg
6	13.13.764	131.16.768	drll hole collar E side of qtz vein outcrop dir 280 deg dep 55
7	13.16.010	131.17.495	Access from Fisher Rd-turn Nth at start of causeway to abandoned fence line
8	13.14.800	131.17.008	At old gateway on E-W fence line turn Nth
9	13.14.513	131.16.981	CL of old track & fence line
10	13.14.336	131.16.965	sandy creek
11	13.14.020	131.16.935	Cnr of old fence line. Bear NW to Cook prospect
12	13.13.934	131.16.812	old grid peg 4800N-5100E
13	13.13.874	131.16.815	qtz vein ocp near start of soil traverse 1
14	13.13.852	131.16.813	qtz vein same as previous point rock sample?
15	13.13.841	131.16.812	gtz vein Fe same vein as above
16	13.14.008	131.16.555	gtz vein ocp strikes 163deg
17	13.14.018	131.16.557	qtz vein ocp 2m wide
18	13.13.997	131.16.549	gtz vein ocp with interbedded shale 3-4m wide
19	13.13.986	131.16.549	gtz vein 2-3m wide
20	13.13.965	131.16.544	gtz vein ocp 4m wide
21	13.13.954	131.16.540	qtz vein ocp
22	13.13.958	131.16.534	sst wacke ocp
23	13.13.968	131.16.528	sheared sst wacke ocp
24	13.13.985	131.16.535	lge area of sst wacke ocp
25	13.13.993	131.16.567	shale ocp
26	13.13.738	131.16.749	gtz ocp 3 veins over 5m interbedded shale
27	13.13.747	131.16.753	as above middle vein
28	13.13.748	131.16.742	qtz vein strikes 336deg
29	13.13.737	131.16.735	same gtz vein as above
30	13.13.681	131.16.737	qtz vein strikes 339deg
31	13.13.671	131.16.736	gtz vein same as above
32	13.13.716	131.16.835	shale ocps over area 30m x 30m dips steep to E
33	13.13.672	131.16.737	qtz vein on soil sample line strikes 170deg
34	13.13.681	131.16.739	qtz vein same as above
35	13.13.670	131.16.700	Fe gtz vein 1m wide in ctct with shale to W
36	13.13.668	131.16.669	sheared shale ocps strikes 185deg poss dips to E
37	13.13.667	131.16.676	gtz vein strikes 327deg
38	13.13.657	131.16.670	qtz same as above
39	13.13.740	131.16.721	qtz vein Nth end of ocp
40	13.13.155	131.16.726	gtz vein same as above
41	13.13.765	131.16.737	qtz vein strikes 156deg dips 70deg to E
41	13.13.766	131.16.740	drill hole collar dir 275deg
42	13.13.767	131.16.763	drill hole collar same line as above
43	13.13.822	131.16.726	drill hole collar dir 090deg depressed 60deg
44	13.13.821	131.16.736	qtz vein ocp western ctct
45			
46	13.13.822	131.16.753	qtz vein ocp E ctct lage with interbedded shale 6 veins
	13.13.822	131.16.760	drill hole collar drilled at 275deg dep 60deg
48	13.13.824	131.16.778	drill hole collar dir 275deg dep 60deg
49	13.13.866	131.16.712	Fe qtz vein ocp strikes at 346deg
50	13.13.853	131.16.710	Fe qtz vein as above in ctct with shale on Western side dips 60deg to E
51	13.13.797	131.16.745	qtz vein top of hill strikes at 349deg dips 60deg to E

Appendix 1 Cook Prospect Geology and Points of Interest GPS Readings

old fence line along Eastern margin of EL 10321 - Northern 1 131.16.925 boundary 2 13.12.214 131.16.944 cnr of old fence line NS & EW 3 13.12.563 131.16.377 CL of old track to S 4 13.12.723 131.16.990 small drainage Howley Creek trib access point to Reid prospect 5 13.13.035 131.17.791 qtz vein ocp Fe 5m wide strike 005deg dips E 7 13.13.130 131.17.791 qtz vein /wall same as above strike 005deg fm wide dips E 8 13.13.151 131.16.769 qtz vein 2-3m wide with interbedded sh strikes @ 350 dip? 9 13.13.154 131.16.746 feq tz vein 2-3m wide with interbedded sh strikes @ 350 dip? 9 13.13.154 131.16.746 feq tz vein 2-3m wide with interbedded sh strikes @ 350 dip? 9 13.13.151 131.16.746 qtz vein ocp 131.13.141 131.16.745 qtz vein ocp 131.13.141 131.16.776 qtz vein ocp 14 13.13.151 131.16.782 qtz vein cct 131.13.141 131.16.782 131.3.151 131.16.853 qtz vein C		Lat	Long	Comments					
2 13.12.214 131.16.944 cm of old fence line NS & EW 3 13.12.663 131.16.990 small drainage Howley Creek trib access point to Reid prospect 5 13.13.035 131.17.791 qtz vein ocp Fe 5m wide strike 005deg dips E 7 13.13.140 131.17.791 qtz vein f/wall same as above strike 005deg fm wide dips E 8 13.13.151 131.16.769 qtz vein 2-3m wide with interbedded sh strikes @ 350 dip? 9 13.13.154 131.16.746 qtz vein ocp strikes 005/185 13 13.13.151 131.16.743 lge qtz lioat & ocp area 30m x 30m 12 13.13.117 131.16.726 qtz vein ocp strikes 005/185 13 13.13.114 131.16.857 qtz vein W ctct 18 13.13.128 131.16.857 qtz vein W ctct 19 13.13.206 131.16.857 qtz vein V ctct									
3 13.12.563 131.16.377 CL of old track to S 4 13.12.723 131.16.990 small drainage Howley Creek trib access point to Reid prospect 5 13.13.035 131.17.018 CL od old track fence post access point to Fisher 6 13.13.140 131.17.791 qtz vein ocp Fe 5m wide strike 005deg dips E 7 13.13.151 131.16.769 qtz vein f/wall same as above strike 005deg 5m wide dips E 8 13.13.151 131.16.746 Fe qtz vein 10 13.13.151 131.16.746 Fe qtz vein 11 13.13.117 131.16.762 qtz vein ocp strikes 005/185 13 13.117 131.16.762 qtz vein ocp 14 13.13.151 131.16.770 qtz vein ocp 14 13.13.152 131.16.728 Fe qtz vein - mineralised? Strikes 005/185 dips E sh ocp up slope 16 13.13.181 131.16.857 qtz vein W ctct 18 13.13.197 131.16.857 qtz vein W ctct 19 13.13.206 131.16.857 qtz vein W ctct 20 13.13.211	1	13.12.000	131.16.925						
4 13.12.723 131.16.990 small drainage Howley Creek trib access point to Reid prospect 5 13.13.035 131.17.018 CL od old track fence post access point to Fisher 6 13.13.13 131.17.791 qtz vein ocp Fe 5m wide strike 005deg dips E 8 13.13.13 131.17.791 qtz vein fwall same as above strike 005deg 5m wide dips E 8 13.13.151 131.16.746 qtz vein 2-3m wide with interbedded sh strikes @ 350 dip? 9 13.13.154 131.16.746 qtz vein ocp strikes 005/185 11 13.13.117 131.16.762 qtz vein ocp strikes 005/185 13 13.13.114 131.16.776 qtz vein ocp strikes 005/185 14 13.13.151 131.16.776 qtz vein qtz vein 2 strikes 005/185 13 13.13.151 131.16.776 qtz vein 2 wein 2 strikes 005/185 dips E sh ocp up slope 16 13.13.181 131.16.857 qtz vein W ctct 19 13.13.206 131.16.857 qtz vein W ctct 20 13.13.21 131.16.857 qtz vein 0 cp 22 21 13.13.221 131.16.857	2	13.12.214	131.16.944	cnr of old fence line NS & EW					
5 13.13.035 13.1.7.018 CL od old track fence post access point to Fisher 6 13.13.140 131.17.791 qtz vein cop Fe Sm wide strike 005deg dips E 7 13.13.13 13.1.77.91 qtz vein f/wall same as above strike 005deg 5m wide dips E 8 13.13.151 131.16.769 qtz vein 2.3m wide with interbedded sh strikes @ 350 dip? 9 13.13.154 131.16.746 Fe qtz vein 10 13.13.151 131.16.746 Fe qtz vein 11 13.13.151 131.16.746 Fe qtz vein 12 13.13.114 131.16.746 qtz vein ocp strikes 005/185 13 13.13.117 131.16.726 qtz vein ocp 14 13.13.151 131.16.728 Fe qtz vein - mineralised? Strikes 005/185 dips E sh ocp up slope 16 13.13.182 131.16.853 qtz vein W ctct 18 13 13.13.197 131.16.857 qtz vein W ctct 19 13.13.206 131.16.857 qtz vein du tot 12 13.13.21 131.16.857 qtz vein du tot 12 13.13.209	3	13.12.563	131.16.377	CL of old track to S					
6 13.13.140 131.17.791 qtz vein ocp Fe 5m wide strike 005deg dips E 7 13.13.133 131.17.791 qtz vein f/wall same as above strike 005deg 5m wide dips E 8 13.13.151 131.16.769 qtz veining 10 13.13.154 131.16.746 Fe qtz vein 11 13.13.151 131.16.746 Fe qtz vein 11 13.13.117 131.16.746 Fe qtz vein 11 13.13.117 131.16.746 Fe qtz vein 11 13.13.117 131.16.726 qtz vein ocp strikes 005/185 13 13.13.114 131.16.770 qtz vein ocp 14 13.13.151 131.16.728 Fe qtz vein - mineralised? Strikes 005/185 dips E sh ocp up slope 16 13.13.181 131.16.357 qtz vein W ctct 18 13.1.16.357 qtz vein W ctct 19 13.13.206 131.16.858 qtz vein Gt 12 13.13.21 131.16.857 qtz vein Gt 12 13.13.201 131.16.850 qtz vein Gt 13 13 13.221 </td <td>4</td> <td>13.12.723</td> <td>131.16.990</td> <td colspan="5">small drainage Howley Creek trib access point to Reid prospect</td>	4	13.12.723	131.16.990	small drainage Howley Creek trib access point to Reid prospect					
7 13.13.133 131.17.791 qtz vein f/wall same as above strike 005deg 5m wide dips E 8 13.13.151 131.16.769 qtz vein 2·3m wide with interbedded sh strikes @ 350 dip? 9 13.13.154 131.16.746 qtz vein qtz vein 10 13.13.155 131.16.746 Fe qtz vein 11 13.13.119 131.16.740 qtz vein ocp strikes 005/185 13 13.13.111 131.16.740 qtz vein ge area of float 15 13.13.151 131.16.720 qtz vein ge area of float 15 13.13.152 131.16.720 qtz vein win - mineralised? Strikes 005/185 dips E sh ocp up slope 16 13.13.184 131.16.857 qtz vein W ctct 11 17 13.13.184 131.16.857 qtz vein W ctct 12 18 13.13.197 131.16.857 qtz vein Gop 22 13.13.220 131.16.860 qtz vein Gop 22 13.13.200 131.16.860 qtz vein W ctct interbedded sh/wacke - top of hill 25 23 13.13.228 131.16.860 qtz vein 2·3m wide 24 13.13.228 131.16.776 qtz vein 2·3m wide	5	13.13.035	131.17.018	CL od old track fence post access point to Fisher					
8 13.13.151 131.16.769 qtz vein 2-3m wide with interbedded sh strikes @ 350 dip? 9 13.13.154 131.16.746 Fe qtz vein 10 13.13.152 131.16.746 Fe qtz vein 11 13.13.151 131.16.746 Fe qtz vein 12 13.13.117 131.16.746 qtz vein ocp strikes 005/185 13 13.13.114 131.16.760 qtz vein ocp 14 13.13.151 131.16.776 qtz vein ocp 14 13.13.152 131.16.728 Fe qtz vein - mineralised? Strikes 005/185 dips E sh ocp up slope 16 13.13.182 131.16.857 qtz vein W ctct 18 13.1.16.857 qtz vein W ctct 19 13.13.206 131.16.857 qtz vein W ctct 20 13.13.214 131.16.860 qtz vein Cett 101 21 13.13.206 131.16.860 qtz vein Cett 102 21 13.13.209 131.16.860 qtz vein Cett 103 22 13.13.213 131.16.860 qtz vein Cot wide 103	6	13.13.140	131.17.791	qtz vein ocp Fe 5m wide strike 005deg dips E					
9 13.13.154 131.16.746 qtz veining 10 13.13.125 131.16.746 Fe qtz vein 11 13.13.119 131.16.746 Fe qtz vein 12 13.13.119 131.16.746 Fe qtz vein ocp strikes 005/185 13 13.13.117 131.16.76 qtz vein ocp strikes 005/185 13 13.13.114 131.16.776 qtz vein ocp 14 13.13.151 131.16.728 Fe qtz vein - mineralised? Strikes 005/185 dips E sh ocp up slope 16 13.13.182 131.16.728 Fe qtz vein V ctt 17 13.13.182 131.16.857 qtz vein W ctt 18 13.13.206 131.16.857 qtz vein W ctt 19 13.13.214 131.16.857 qtz vein cp 21 13.13.221 131.16.860 qtz vein float 2m wide 23 13.13.209 131.16.860 qtz vein W ctct 24 13.13.209 131.16.796 qtz vein S0m wide 24 13.13.201 131.16.860 qtz vein 2.3m wide 25 13.13.228 1	7	13.13.133	131.17.791	qtz vein f/wall same as above strike 005deg 5m wide dips E					
10 13.13.125 131.16.746 Fe qtz vein 11 13.13.125 131.16.743 Ige qtz float & ocp area 30m x 30m 12 13.13.117 131.16.762 qtz vein ocp strikes 005/185 13 13.13.114 131.16.776 qtz vein ocp 14 13.13.114 131.16.776 qtz vein lge area of float 15 13.13.151 131.16.728 Fe qtz vein - mineralised? Strikes 005/185 dips E sh ocp up slope 16 13.13.182 131.16.737 qtz vein W ctct 18 13.13.197 131.16.853 qtz vein W ctct 19 13.3.206 131.16.857 qtz vein Ctc 20 13.13.211 131.16.860 qtz vein Gtc 21 13.13.209 131.16.860 qtz vein float 2m wide 23 13.13.209 131.16.860 qtz vein E ctct 20m wide 24 13.13.228 131.16.777 qtz vein 2.3m wide 25 13.13.228 131.16.777 qtz vein 2.3m wide 26 13.13.228 131.16.777 qtz vein 4.5m wide 27	8	13.13.151	131.16.769	qtz vein 2-3m wide with interbedded sh strikes @ 350 dip?					
11 13.13.119 131.16.143 Ige qtz float & ocp area 30m x 30m 12 13.13.117 131.16.762 qtz vein ocp strikes 005/185 13 13.13.114 131.16.776 qtz vein ocp 14 13.13.114 131.16.776 qtz vein lge area of float 15 13.13.152 131.16.770 qtz vein mineralised? Strikes 005/185 dips E sh ocp up slope 16 13.13.152 131.16.357 qtz vein W ctct 11 17 13.13.182 131.16.857 qtz vein W ctct 11 18 13.1.3.197 131.16.857 qtz vein W ctct 12 13 13.206 131.16.857 qtz vein W ctct 12 13 13.214 131.16.857 qtz vein E W fault offset? 12 13 13.221 131.16.860 qtz vein float 2m wide 13 13 13.229 131.16.860 qtz vein E ctct 20m wide 13 13 13.228 131.16.777 qtz vein 2-3m wide 13 13 13.228 131.16.777 qtz vein 4-5m wide 13<	9	13.13.154	131.16.746	qtz veining					
12 13.13.117 131.16.762 qtz vein ocp strikes 005/185 13 13.13.114 131.16.776 qtz vein ocp 14 13.13.151 131.16.740 qtz vein lge area of float 15 13.13.152 131.16.728 Fe qtz vein - mineralised? Strikes 005/185 dips E sh ocp up slope 16 13.13.188 131.16.357 qtz vein E ctct 17 13.13.182 131.16.853 qtz vein W ctct 19 13.13.206 131.16.857 qtz vein W ctct 20 13.13.214 131.16.857 qtz vein ocp 21 13.13.201 131.16.860 qtz vein Vein V 22 13.13.221 131.16.860 qtz vein Qt 23 13.13.209 131.16.800 qtz vein M ctct 24 13.13.214 131.16.800 qtz vein Cp 25 13.13.209 131.16.800 qtz vein Veit interbedded sh/wacke - top of hill 25 13.13.228 131.16.798 coalescing qtz veins 20m wide interbedde wacke S end of ridge 26 13.13.253 131.16.782 qtz vein 4-5m wide 29 13.13.253 131.16.786 qtz vein 50m long x	10	13.13.125	131.16.746	Fe qtz vein					
13 13.13.114 131.16.776 qtz vein ocp 14 13.13.114 131.16.740 qtz vein ocp 15 13.13.151 131.16.728 Fe qtz vein - mineralised? Strikes 005/185 dips E sh ocp up slope 16 13.13.152 131.16.357 qtz vein E ctct 17 13.13.182 131.16.853 qtz vein W ctct 18 13.13.197 131.16.857 qtz vein W ctct 19 13.13.206 131.16.857 qtz vein W ctct 20 13.13.214 131.16.857 qtz vein Qtct 21 13.13.221 131.16.860 qtz vein cop 22 13.13.209 131.16.860 qtz vein float 2m wide 23 13.13.209 131.16.800 qtz vein 2 win 20m wide 24 13.13.228 131.16.795 qtz vein 2.3m wide 25 13.13.228 131.16.792 qtz vein 42 win 2.3m wide 26 13.13.228 131.16.782 qtz vein 4.5m wide 29 13.13.253 131.16.781 qtz vein 50m long x 3m wide 31 13.13.256	11	13.13.119	131.16.143	lge qtz float & ocp area 30m x 30m					
14 13.13.151 13.1.16.740 qtz vein lge area of float 15 13.13.152 131.16.728 Fe qtz vein - mineralised? Strikes 005/185 dips E sh ocp up slope 16 13.13.188 131.16.728 Fe qtz vein E ctct 17 13.13.182 131.16.853 qtz vein W ctct 18 13.13.197 131.16.853 qtz vein W ctct 19 13.13.206 131.16.858 qtz vein W ctct 20 13.13.214 131.16.860 qtz vein ocp 22 13.13.201 131.16.860 qtz vein float 2m wide 23 13.13.209 131.16.860 qtz vein W ctct interbedded sh/wacke - top of hill 24 13.13.201 131.16.795 qtz vein 2-3m wide 24 13.13.228 131.16.796 qtz vein 4-5m wide 25 13.13.253 131.16.777 qtz vein 4-5m wide 26 13.13.259 131.16.786 qtz vein 50m long x 3m wide 27 13.13.259 131.16.797 qtz vein 50m long x 3m wide 30 13.13.256 131.16.797 qtz vein 50m long x 3m wide	12	13.13.117	131.16.762	qtz vein ocp strikes 005/185					
15 13.13.152 131.16.728 Fe qtz vein - mineralised? Strikes 005/185 dips E sh ocp up slope 16 13.13.188 131.16.357 qtz vein E ctct 17 13.13.182 131.16.853 qtz vein W ctct 18 13.13.197 131.16.857 qtz vein W ctct 20 13.13.206 131.16.857 qtz vein W ctct 20 13.13.214 131.16.857 qtz vein Qt ctct 21 13.13.221 131.16.860 qtz vein ocp 22 13.13.200 131.16.860 qtz vein Gcd 23 13.13.201 131.16.800 gtz vein W ctct interbedded sh/wacke - top of hill 24 13.13.201 131.16.795 qtz vein W ctct interbedded sh/wacke - top of hill 25 13.13.228 131.16.796 qtz vein 4.50 wide 26 13.13.228 131.16.792 qtz vein 4.50 wide 27 13.13.231 131.16.782 qtz vein 4.50 wide 28 13.13.253 131.16.784 qtz vein 4.50 wide 30 13.13.277 131.16.801 qtz vein 50m long x 3m wide	13	13.13.114	131.16.776	qtz vein ocp					
16 13.13.188 131.16.357 qtz vein E ctct 17 13.13.182 131.16.853 qtz vein W ctct 18 13.13.197 131.16.857 qtz vein W ctct 20 13.13.206 131.16.857 qtz vein W ctct 20 13.13.214 131.16.857 qtz vein W ctct 21 13.13.221 131.16.857 qtz vein ocp 22 13.13.200 131.16.860 qtz vein ocp 23 13.13.201 131.16.860 qtz vein Gtz vein W ctct interbedded sh/wacke - top of hill 25 13.13.201 131.16.795 qtz vein W ctct interbedded sh/wacke - top of hill 25 13.13.228 131.16.798 coalescing qtz veins 20m wide interbedde wacke S end of ridge 26 13.13.228 131.16.777 qtz vein 4-5m wide 27 13.13.233 131.16.782 qtz vein 4-5m wide 29 13.13.253 131.16.784 qtz vein 4-5m wide 30 13.13.277 131.16.801 qtz vein 50m long x 3m wide 31 13.13.277 131.16.804 middle of qtz vein 50m long x	14	13.13.151	131.16.740	qtz vein Ige area of float					
17 13.13.182 131.16.853 qtz vein W ctct 18 13.13.197 131.16.857 qtz vein W ctct 19 13.13.206 131.16.858 qtz vein W ctct 20 13.13.214 131.16.857 qtz vein Q ctct 21 13.13.214 131.16.860 qtz vein ocp 22 13.13.209 131.16.800 qtz vein float 2m wide 23 13.13.209 131.16.800 lge qtz vein E ctct 20m wide 24 13.13.211 131.16.795 qtz vein V ctct interbedded sh/wacke - top of hill 25 13.13.228 131.16.798 coalescing qtz veins 20m wide interbedde wacke S end of ridge 26 13.13.228 131.16.777 qtz vein 4-5m wide 27 13.13.243 131.16.782 qtz vein ocp 4-5m wide 28 13.13.253 131.16.801 qtz vein ocp 4-5m wide 30 13.13.277 131.16.804 middle of qtz vein 50m long x 3m wide 31 13.13.276 131.16.797 qtz vein strikes 340/deg 32 13.13.274 131.16.792 qtz vein ocp 30m lond 35 13.13.167 131.16.014 North end	15	13.13.152	131.16.728	Fe qtz vein - mineralised? Strikes 005/185 dips E sh ocp up slope					
18 13.13.197 131.16.857 qtz vein W ctct 19 13.13.206 131.16.858 qtz vein W ctct 20 13.13.214 131.16.857 qtz vein ocp 21 13.13.221 131.16.860 qtz vein ocp 22 13.13.209 131.16.800 qtz vein float 2m wide 23 13.13.209 131.16.800 lge qtz vein E ctct 20m wide 24 13.13.211 131.16.795 qtz vein W ctct interbedded sh/wacke - top of hill 25 13.13.228 131.16.798 coalescing qtz veins 20m wide interbedde wacke S end of ridge 26 13.13.228 131.16.777 qtz vein 4-5m wide 27 13.13.243 131.16.782 qtz vein 4-5m wide 28 13.13.253 131.16.786 qtz vein ocp 4-5m wide 29 13.13.259 131.16.801 qtz vein ocp 4-5m wide 30 13.13.277 131.16.804 middle of qtz vein 50m long x 3m wide 31 13.13.276 131.16.797 qtz vein strikes 340deg 32 13.13.274 131.16.792 qtz vein ocp 30m lond 35 13.13.671 131.16.014 North end	16	13.13.188	131.16.357	qtz vein E ctct					
19 13.13.206 131.16.858 qtz vein W ctct 20 13.13.214 131.16.857 qtz vein - EW fault offset? 21 13.13.221 131.16.860 qtz vein ocp 22 13.13.209 131.16.860 qtz vein E ctct 20m wide 23 13.13.209 131.16.800 lge qtz vein E ctct 20m wide 24 13.13.211 131.16.795 qtz vein W ctct interbedded sh/wacke - top of hill 25 13.13.228 131.16.795 qtz vein 22.3m wide 26 13.13.228 131.16.777 qtz vein 42.3m wide 27 13.13.228 131.16.782 qtz vein 44.5m wide 28 13.13.253 131.16.786 qtz vein 45.5m wide 29 13.13.253 131.16.801 qtz vein ocp 4-5m wide 30 13.13.277 131.16.804 middle of qtz vein 50m long x 3m wide 31 13.13.276 131.16.797 qtz vein strikes 340/46g 33 13.13.277 131.16.792 qtz vein strikes 340/160 34 13.13.256 131.16.771 qtz vein ocp 30m lond	17	13.13.182	131.16.853	qtz vein W ctct					
20 13.13.214 131.16.857 qtz vein - EW fault offset? 21 13.13.221 131.16.860 qtz vein ocp 22 13.13.200 131.16.860 qtz vein float 2m wide 23 13.13.209 131.16.800 lge qtz vein E ctct 20m wide 24 13.13.211 131.16.795 qtz vein W ctct interbedded sh/wacke - top of hill 25 13.13.228 131.16.798 coalescing qtz veins 20m wide interbedde wacke S end of ridge 26 13.13.228 131.16.777 qtz vein 2-3m wide 27 13.13.243 131.16.782 qtz vein 4m wide strikes 330/150 100m long parallel vein 2m to E 28 13.13.253 131.16.786 qtz vein 4-5m wide 29 13.13.259 131.16.801 qtz vein 50m long x 3m wide 30 13.13.277 131.16.804 middle of qtz vein 50m long x 3m wide 31 13.13.276 131.16.790 qtz vein strikes 340deg 33 13.13.277 131.16.792 qtz vein strikes 340/160 34 13.13.256 131.16.771 qtz vein ocp 30m lond 35 13.13.167 131.16.017 middle of lage ocp 10m wide	18	13.13.197	131.16.857	qtz vein W ctct					
21 13.13.221 131.16.860 qtz vein ocp 22 13.13.230 131.16.860 qtz vein float 2m wide 23 13.13.209 131.16.800 lge qtz vein E ctct 20m wide 24 13.13.211 131.16.795 qtz vein W ctct interbedded sh/wacke - top of hill 25 13.13.228 131.16.795 qtz vein 2.3m wide 26 13.13.228 131.16.777 qtz vein 2.3m wide 27 13.13.243 131.16.777 qtz vein 4m wide strikes 330/150 100m long parallel vein 2m to E 28 13.13.253 131.16.786 qtz vein ocp 4-5m wide 29 13.13.259 131.16.801 qtz vein 50m long x 3m wide 30 13.13.277 131.16.804 middle of qtz vein 50m long x 3m wide 31 13.13.276 131.16.797 qtz vein ocp 30m lond 32 13.13.274 131.16.792 qtz vein ocp 30m lond 34 13.13.256 131.16.771 qtz vein ocp 30m lond 35 13.13.167 131.16.014 North end of qtz ocp beside access track from Goodall 36 13.13.188 131.16.017 middle of lage ocp 10m wide 37	19	13.13.206	131.16.858	qtz vein W ctct					
22 13.13.230 131.16.860 qtz vein float 2m wide 23 13.13.209 131.16.800 lge qtz vein E ctct 20m wide 24 13.13.211 131.16.795 qtz vein W ctct interbedded sh/wacke - top of hill 25 13.13.228 131.16.798 coalescing qtz veins 20m wide interbedde wacke S end of ridge 26 13.13.228 131.16.777 qtz vein 2-3m wide 27 13.13.243 131.16.777 qtz vein 4m wide strikes 330/150 100m long parallel vein 2m to E 28 13.13.253 131.16.786 qtz vein 4-5m wide 29 13.13.259 131.16.801 qtz vein 50m long x 3m wide 30 13.13.277 131.16.804 middle of qtz vein 50m long x 3m wide 31 13.13.276 131.16.797 qtz vein strikes 340deg 32 13.13.274 131.16.790 qtz vein strikes 340/160 34 13.13.256 131.16.771 qtz vein ocp 30m lond 35 13.13.167 131.16.014 North end of qtz ocp beside access track from Goodall 36 13.13.188 131.16.017 middle of lage ocp 10m wide 37 13.13.191 131.16.027 qtz ocp	20	13.13.214	131.16.857	qtz vein - EW fault offset?					
23 13.13.209 131.16.800 Ige qtz vein E ctct 20m wide 24 13.13.211 131.16.795 qtz vein W ctct interbedded sh/wacke - top of hill 25 13.13.228 131.16.798 coalescing qtz veins 20m wide interbedde wacke S end of ridge 26 13.13.228 131.16.777 qtz vein 2-3m wide 27 13.13.243 131.16.782 qtz vein 4m wide strikes 330/150 100m long parallel vein 2m to E 28 13.13.253 131.16.786 qtz vein 0cp 4-5m wide 29 13.13.259 131.16.801 qtz vein 50m long x 3m wide 30 13.13.277 131.16.797 qtz vein strikes 175deg 32 13.13.276 131.16.797 qtz vein strikes 340deg 33 13.13.277 131.16.792 qtz vein ocp 30m lond 34 13.13.256 131.16.771 qtz vein ocp 30m lond 35 13.13.167 131.16.014 North end of qtz ocp beside access track from Goodall 36 13.13.212 131.16.027 qtz ocp 37 13.13.212 131.16.027 qtz ocp 39 13.13.224 131.16.035 S end qtz ocp	21	13.13.221	131.16.860	qtz vein ocp					
24 13.13.211 131.16.795 qtz vein W ctct interbedded sh/wacke - top of hill 25 13.13.228 131.16.798 coalescing qtz veins 20m wide interbedde wacke S end of ridge 26 13.13.228 131.16.777 qtz vein 2-3m wide 27 13.13.243 131.16.777 qtz vein 4m wide strikes 330/150 100m long parallel vein 2m to E 28 13.13.253 131.16.786 qtz vein 4-5m wide 29 13.13.259 131.16.801 qtz vein ocp 4-5m wide 30 13.13.277 131.16.801 qtz vein 50m long x 3m wide 31 13.13.276 131.16.797 qtz vein strikes 175deg 32 13.13.274 131.16.790 qtz vein strikes 340deg 33 13.13.277 131.16.792 qtz vein ocp 30m lond 34 13.13.266 131.16.771 qtz vein ocp 30m lond 35 13.13.167 131.16.014 North end of qtz ocp beside access track from Goodall 36 13.13.191 131.16.017 middle of lage ocp 10m wide 37 13.13.191 131.16.027 qtz ocp 39	22	13.13.230	131.16.860	qtz vein float 2m wide					
25 13.13.228 131.16.798 coalescing qtz veins 20m wide interbedde wacke S end of ridge 26 13.13.228 131.16.777 qtz vein 2-3m wide 27 13.13.243 131.16.782 qtz vein 4m wide strikes 330/150 100m long parallel vein 2m to E 28 13.13.253 131.16.786 qtz vein 4-5m wide 29 13.13.259 131.16.801 qtz vein ocp 4-5m wide 30 13.13.277 131.16.801 qtz vein strikes 175deg 31 13.13.276 131.16.797 qtz vein strikes 340deg 33 13.13.277 131.16.792 qtz vein strikes 340/160 34 13.13.256 131.16.771 qtz vein ocp 30m lond 35 13.13.167 131.16.014 North end of qtz ocp beside access track from Goodall 36 13.13.188 131.16.017 middle of lage ocp 10m wide 37 13.13.191 131.16.027 qtz ocp 38 13.13.212 131.16.027 qtz ocp 39 13.13.224 131.16.035 S end qtz ocp	23	13.13.209	131.16.800	lge qtz vein E ctct 20m wide					
26 13.13.228 131.16.777 qtz vein 2-3m wide 27 13.13.243 131.16.782 qtz vein 4m wide strikes 330/150 100m long parallel vein 2m to E 28 13.13.253 131.16.786 qtz vein 4-5m wide 29 13.13.259 131.16.801 qtz vein ocp 4-5m wide 30 13.13.277 131.16.804 middle of qtz vein 50m long x 3m wide 31 13.13.276 131.16.797 qtz vein strikes 175deg 32 13.13.274 131.16.790 qtz vein strikes 340deg 33 13.13.277 131.16.792 qtz vein strikes 340/160 34 13.13.266 131.16.771 qtz vein ocp 30m lond 35 13.13.167 131.16.014 North end of qtz ocp beside access track from Goodall 36 13.13.188 131.16.017 middle of lage ocp 10m wide 37 13.13.191 131.16.027 qtz ocp 38 13.13.224 131.16.027 qtz ocp 39 13.13.224 131.16.035 S end qtz ocp	24	13.13.211	131.16.795	qtz vein W ctct interbedded sh/wacke - top of hill					
27 13.13.243 131.16.782 qtz vein 4m wide strikes 330/150 100m long parallel vein 2m to E 28 13.13.253 131.16.786 qtz vein 4-5m wide 29 13.13.259 131.16.801 qtz vein ocp 4-5m wide 30 13.13.277 131.16.804 middle of qtz vein 50m long x 3m wide 31 13.13.276 131.16.797 qtz vein strikes 175deg 32 13.13.274 131.16.790 qtz vein strikes 340deg 33 13.13.277 131.16.792 qtz vein strikes 340/160 34 13.13.256 131.16.771 qtz vein ocp 30m lond 35 13.13.167 131.16.014 North end of qtz ocp beside access track from Goodall 36 13.13.188 131.16.017 middle of lage ocp 10m wide 37 13.13.191 131.16.027 qtz ocp 38 13.13.212 131.16.027 qtz ocp 39 13.13.224 131.16.035 S end qtz ocp	25	13.13.228	131.16.798	coalescing qtz veins 20m wide interbedde wacke S end of ridge					
28 13.13.253 131.16.786 qtz vein 4-5m wide 29 13.13.259 131.16.801 qtz vein ocp 4-5m wide 30 13.13.277 131.16.804 middle of qtz vein 50m long x 3m wide 31 13.13.276 131.16.797 qtz vein strikes 175deg 32 13.13.274 131.16.790 qtz vein strikes 340deg 33 13.13.277 131.16.792 qtz vein strikes 340/160 34 13.13.256 131.16.771 qtz vein ocp 30m lond 35 13.13.167 131.16.014 North end of qtz ocp beside access track from Goodall 36 13.13.188 131.16.017 middle of lage ocp 10m wide 37 13.13.191 131.16.027 qtz ocp 38 13.13.212 131.16.027 qtz ocp 39 13.13.224 131.16.035 S end qtz ocp	26	13.13.228	131.16.777	qtz vein 2-3m wide					
29 13.13.259 131.16.801 qtz vein ocp 4-5m wide 30 13.13.277 131.16.804 middle of qtz vein 50m long x 3m wide 31 13.13.276 131.16.797 qtz vein strikes 175deg 32 13.13.274 131.16.797 qtz vein strikes 340deg 33 13.13.277 131.16.792 qtz vein strikes 340/160 34 13.13.256 131.16.771 qtz vein ocp 30m lond 35 13.13.167 131.16.014 North end of qtz ocp beside access track from Goodall 36 13.13.188 131.16.017 middle of lage ocp 10m wide 37 13.13.191 131.16.027 qtz ocp 38 13.13.212 131.16.027 qtz ocp 39 13.13.224 131.16.035 S end qtz ocp	27	13.13.243	131.16.782	qtz vein 4m wide strikes 330/150 100m long parallel vein 2m to E					
30 13.13.277 131.16.804 middle of qtz vein 50m long x 3m wide 31 13.13.276 131.16.797 qtz vein strikes 175deg 32 13.13.274 131.16.790 qtz vein strikes 340deg 33 13.13.277 131.16.790 qtz vein strikes 340deg 34 13.13.266 131.16.771 qtz vein ocp 30m lond 35 13.13.167 131.16.014 North end of qtz ocp beside access track from Goodall 36 13.13.188 131.16.017 middle of lage ocp 10m wide 37 13.13.191 131.16.027 qtz ocp 38 13.13.212 131.16.027 qtz ocp 39 13.13.224 131.16.035 S end qtz ocp	28	13.13.253	131.16.786	qtz vein 4-5m wide					
31 13.13.276 131.16.797 qtz vein strikes 175deg 32 13.13.274 131.16.790 qtz vein strikes 340deg 33 13.13.277 131.16.792 qtz vein strikes 340/160 34 13.13.256 131.16.771 qtz vein ocp 30m lond 35 13.13.167 131.16.014 North end of qtz ocp beside access track from Goodall 36 13.13.188 131.16.017 middle of lage ocp 10m wide 37 13.13.191 131.16.027 qtz ocp 38 13.13.212 131.16.027 qtz ocp 39 13.13.224 131.16.035 S end qtz ocp	29	13.13.259	131.16.801	qtz vein ocp 4-5m wide					
32 13.13.274 131.16.790 qtz vein strikes 340deg 33 13.13.277 131.16.792 qtz vein strikes 340/160 34 13.13.256 131.16.771 qtz vein ocp 30m lond 35 13.13.167 131.16.014 North end of qtz ocp beside access track from Goodall 36 13.13.188 131.16.017 middle of lage ocp 10m wide 37 13.13.191 131.16.027 qtz ocp 38 13.13.212 131.16.027 qtz ocp 39 13.13.224 131.16.035 S end qtz ocp	30	13.13.277	131.16.804	middle of qtz vein 50m long x 3m wide					
33 13.13.277 131.16.792 qtz vein strikes 340/160 34 13.13.256 131.16.771 qtz vein ocp 30m lond 35 13.13.167 131.16.014 North end of qtz ocp beside access track from Goodall 36 13.13.188 131.16.017 middle of lage ocp 10m wide 37 13.13.191 131.16.034 CL access track on old NS fence line 38 13.13.212 131.16.027 qtz ocp 39 13.13.224 131.16.035 S end qtz ocp	31	13.13.276	131.16.797	qtz vein strikes 175deg					
34 13.13.256 131.16.771 qtz vein ocp 30m lond 35 13.13.167 131.16.014 North end of qtz ocp beside access track from Goodall 36 13.13.188 131.16.017 middle of lage ocp 10m wide 37 13.13.191 131.16.034 CL access track on old NS fence line 38 13.13.212 131.16.027 qtz ocp 39 13.13.224 131.16.035 S end qtz ocp	32	13.13.274	131.16.790	qtz vein strikes 340deg					
35 13.13.167 131.16.014 North end of qtz ocp beside access track from Goodall 36 13.13.188 131.16.017 middle of lage ocp 10m wide 37 13.13.191 131.16.034 CL access track on old NS fence line 38 13.13.212 131.16.027 qtz ocp 39 13.13.224 131.16.035 S end qtz ocp	33	13.13.277	131.16.792	qtz vein strikes 340/160					
36 13.13.188 131.16.017 middle of lage ocp 10m wide 37 13.13.191 131.16.034 CL access track on old NS fence line 38 13.13.212 131.16.027 qtz ocp 39 13.13.224 131.16.035 S end qtz ocp	34	13.13.256	131.16.771	qtz vein ocp 30m lond					
36 13.13.188 131.16.017 middle of lage ocp 10m wide 37 13.13.191 131.16.034 CL access track on old NS fence line 38 13.13.212 131.16.027 qtz ocp 39 13.13.224 131.16.035 S end qtz ocp	35	13.13.167	131.16.014						
37 13.13.191 131.16.034 CL access track on old NS fence line 38 13.13.212 131.16.027 qtz ocp 39 13.13.224 131.16.035 S end qtz ocp	36								
38 13.13.212 131.16.027 qtz ocp 39 13.13.224 131.16.035 S end qtz ocp	37	13.13.191	131.16.034						
39 13.13.224 131.16.035 S end qtz ocp				qtz ocp					
	40	13.13.223	131.16.022	brecciated qtz vein (fault zone) strikes 329deg					

Appendix 2 Fisher Prospect Geology and Points of Interest GPS Readings

	Lat	Long						
1	13.12.695	131.16.664	drill hole collar dir 270, 10m from shale ocp					
2	13.12.749	131.16.713	drill hole collar HTP3 dir 275 dep 65,15m E of qtz ocp					
3	13.12.734	131.16.608	small pit on Fe qtz - reef strikes N-S					
4	13.12.693	131.16.666	drill hole collar dir 270, dep 65, 25m from qtz ocp collared in sandy shale					
5	13.12.612	131.16.649	Drill hole collar dir 275 dep 65, Northern most hole-ocp 60m to W					
6	13.12.642	131.16.633	E end of shallow trench 1m deep					
7	13.12.639	131.16.635	chip sample across sil ocp 10m wide					
8	13.12.643	131.16.628	W end of trench					
9	13.12.668	131.16.648	drill hole collar dir W? dep 65deg? Under gossan ocp					
10	13.12.669	131.16.641	ctct gossan W of Drill Hole					
11	13.12.662	131.16.639	E ctct of goss					
12	13.12.671	131.16.635	W ctct of goss					
13	13.12.681	131.16.644	W ctct goss					
14	13.12.680	131.16.647	E ctct of goss					
15	13.12.685	131.16.651	E ctct of goss					
16	13.12.694	131.16.651	W ctct of goss in old trench					
17	13.12.695	131.16.656	E end of trench E ctct of goss					
18	13.12.696	131.16.657	shallow pit					
19	13.12.695	131.16.665	dh coll dir W					
20	13.12.704	131.16.687	E ctct of goss @ Sth end dips 70deg to E strikes@ 168 deg					
21	13.12.721	131.16.693	E ctct goss					
22	13.12.720	131.16.691	W ctct goss					
23	13.12.732	131.16.694	E ctct goss strikes 169deg					
24	13.12.734	131.16.692	W ctct goss					
25	13.12.722	131.16.712	dh coll dir 272 deg dep 60deg					
26	13.12.733	131.16.750	Sth end of qtz vein 3-4m wide					
27	13.12.721	131.16.754	wacke ocp sheared strike 357deg					
28	13.12.716	131.16.751	Nth end of qtz ocp					
29	13.12.713	131.16.758	qtz vein ocp 10m to N end and 10m - S strike 182deg dip E					
30	13.12.749	131.16.704	E ctct of goss					
31	13.12.750	131.16.713	dh collar dir W dep @ 60deg					
32	13.12.760	131.16.709	Sth end of goss ocp					

Appendix 3 Reid Prospect Geology and Points of Interest GPS Readings

Sample	Туре	Au	Au®	Au®	Cu	Pb	Zn	Ag	As	Comment
No		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
		0.01	0.01	0.01	1	5	2	1	10	Detection Limit
94601	S	0.01			20	8	12	L	110	E slope 3m below gtz ocp
602	R	0.04			36	59	4	L	2294	Fe qtz outcrop
603	S	L			7	L	7	L	L	Fe qtz frags & Sh between qtz reefs
604	S	0.04			12	14	10	L	486	
605	S	0.03			11	13	9	L	86	Mainly sh + few qtz frags
606	S	0.01			10	8	13	L	L	Sh ocp
607	S	0.04			11	6	9	L	10	Abundnt Fe qtz frags outwash plain
608	S	0.01			12	13	10	L	L	Flat area W of Sh & qtz ocp
609	S	L			3	8	8	L	L	Clayey soil
610	R	0.01			7	23	L	L	46	15m wide gtz ocp Shoobridge Flt?
611	S	0.20	0.10		16	20	15	L	L	Sh frags minor qtz alluvial flats
612	S	1.30	0.26	0.77	14	22	13	L	38	Qtz frags
613	S	0.18	0.21	0.23	31	28	19	L	81	Clayey soil + Sh & qtz frags
614	S	0.39	0.47	0.20	27	29	19	L	131	Clayey soil Sh frags
615	S	0.24	0.66	1.04	22	15	15	L	107	Sh ocp
616	S	0.01	L	1.01	15	15	13	L	12	Clayey soil Sh frags
617	S	L	-		7	32	9	L	16	Clayey soil Sh frags bedrock
618	S	0.01			9	14	7	L	164	Sandy soil Sh frags bedrock
619	S	1			8	21	11	L	113	Sandy loam Sh frags
620	S	0.05			11	47	13	2	444	5m downslope E from qtz reef
621	S	0.00			11	40	9	L	249	8m down slope E from qtz reef
622	S	0.01			14	9	10	L	198	Sh frags
623	S	L			17	5	9	L	L	Sh frags
624	S	L	L		16	13	14	L	L	Sh frags
94625	S	L	L		4	L	6	 	L	Clayey soil flats E side of qtz reef
118003	R	0.05			209	61	12	L	3939	Ferruginous qtz vein
4	R	0.03			127	32	9	 L	2354	
5	S	L			127	52 L	3	L	13	Ferruginous qtz vein ocp
6	S	L			1	L	6	 		Sth trav Eend boundary EL All flats
7	S	-			3		10	 L	14 L	Alluvial plain Howley Ck
					1	5				Sandy loam on Sh bedrock
8	S					5	5		L	Sandy loam Alluvial flats
9	S				1	5	6		L	Sandy loam Alluvial flats
10	S	L			L	7	4		L	Sandy loam Alluvial flats
11	S S	0.01			L	6	5		L	Silty loam Alluvial flats
12					L	6	6	L	L	Silty loam Alluvial flats
13	S						2			Silty loam Alluvial flats
14	S	L			L	L	L	L	L	Sandy loam edge alluvial flats
15	S				L	L	L		L	Sandy loam
16	S	L			L	5	2	L	L	Sandy loam
17	S	L			L	5	3	L	L	Sandy loam Sh frags E slope qtz fl
18	S	L			L	6	4		L	Up hill abundant qtz float
19	S	0.16	0.17		L	6	5	L	L	Sandy loam Sh ocp strikes NS

Appendix 4 Cook Prospect Soil & Rock Chip Sample Results

Appendix 4 (continued)

Sample	Туре	Au	Au®	Au®	Cu	Pb	Zn	Ag	As	Comment
No		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
		0.01	0.01	0.01	1	5	2	1	10	Detection Limit
20	S	L			L	5	4	L	L	Qtz vein 2m W Shoobridge fault?
21	S	L			L	L	11	L	L	Wacke frags crest of hill
22	S	L			L	L	14	L	L	Wacke frags W down slope of hill
23	S	L			2	L	12	L	L	Wacke frags W end of traverse
24	S	L	L		1	5	4	L	11	Sandy loam N soil trav E side hill
25	S	0.01			4	9	8	L	69	Sh frags
26	S	L			6	20	8	L	185	Sh frags
27	S	0.12	0.09		11	15	11	L	87	Sh frags
28	S	0.02			8	11	10	L	79	Sandy loam
29	S	L			13	8	10	L	55	Sandy loam sh frags
30	S	0.03			17	12	10	L	101	Sh frags 5m down slope from QV
31	S	L			3	6	11	L	46	Sh ocp sandy loam
32	S	0.04			1	L	10	L	47	2m wide QV 4m E of sample
33	S	L			6	11	12	L	21	Sh ocp 20m to E, end of traverse
34	R	3.49	2.88		139	206	22	L	887	Fe qtz
35	R	0.39			155	139	33	L	502	Fe qtz vein ocp Strike NS dip E 60
36	S	L			L	25	8	L	64	QV 20m wide Trav 5 top of hill
37	S	L			4	19	8	L	47	Sandy loams + qtz frags
38	S	0.02	L		4	12	8	L	44	Sh frags qtz float
39	S	0.06	0.68	1.99	14	20	10	L	57	Sh frags
40	S	0.27	0.30		9	19	10	L	57	Sh frags qtz float
41	S	0.24	2.91	0.73	6	17	9	L	0.53	Sh & qtz frags
42	S	0.26	0.40	1.22	4	15	8	L	22	Abundant Fe qtz frags
43	R	0.81	0.63		6	22	3	L	77	qtz frags soil hole
44	S	0.07	0.49	0.20	5	10	10	L	13	Silty loam Alluvial flats
45	S	0.14			6	14	11	L	10	Silty loam Alluvial flats
1180.46	S	0.01	0.07		2	9	9	L	L	Alluvial flats 250m W to Shoo Fault

Sample	Туре	Au	Au®	Cu	Pb	Zn	Ag	As	Comment
No		ppm	ppm	ppm	ppm	ppm	ppm	ppm	
		0.01	0.01	1	5	2	1	10	Detection Limit
104358	S	L		1	15	8	L	398	Qtz float Sh Start Nth traverse E end
359	S	L		4	12	6	L	122	Sh frags abundant large qtz frags
360	S	0.05		13	24	7	L	535	Sh & qtz frags
361	S	0.36	0.33	12	28	10	L	276	Sh frags qtz float
362	S	0.02		13	21	11	L	179	Sh frags qtz float up slope 10m Sh ocp
363	S	L		21	48	12	L	255	Sh frags large area of qtz float
364	S	L		18	12	9	L	346	Sh qtz frags large area qtz float
365	S	L		8	8	7	L	162	Sh frags qtz float creat of hill
366	S	L		17	8	11	L	444	8m down slope from QV W slope
367	S	L		20	9	14	L	508	Sst frags qtz float 12m E of QV up slope
368	S	L		9	5	10	L	360	Sh frags qtz float just below QV & float
369	S	L		17	33	23	L	232	Sh frags 4m down slope from QV
370	S	L		6	16	17	L	212	Sh Sst frags
371	S	L		5	20	16	L	237	Sh Sst frags Sst ocp 2m up slope
372	S	L		7	16	13	L	77	Sandy loam end Nth traverse W of ridge
373	R	2.06	2.18	211	18329	1511	5	12832	Fe qtz vein ocp
374	S	L	L	2	23	8	L	603	Sst wacke frags start Sth traverse E end
375	S	L		7	23	12	L	556	10m down slope frm QV
376	S	L		5	18	10	L	462	Wacke Sst frags qtz float
377	S	L		8	19	10	L	403	Qtz/ sh frags
378	S	L		18	17	11	L	439	Sh frags
379	S	L		13	19	9	L	471	Sst frags qtz float 20m dnslope from QV
380	S	L		12	8	9	L	515	Qtz veins interbedded wacke crest of hill
381	S	L		10	12	10	L	503	Sandy loam West slope
382	S	L		7	19	10	L	513	Sh wacke frags W slope
383	S	L		4	18	11	L	602	SSt sh frags
384	S	L		5	32	7	L	596	Qtz float W slope
385	S	L		4	18	8	L	543	Sandy loam alluvial flats
386	S	L		2	11	9	L	158	Sh frags alluvial flats W end of traverse

Appendix 5 Fisher Prospect Soil & Rock Chip Sample Results

Sample	Туре	Au	Au®	Au®	Cu	Pb	Zn	Ag	As	Comment
No	туре	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	Gomment
NO		0.01	0.01	0.01	1	5	2	1	10	Detection Limit
94626	S	L	0.01	0.01	8	L	6	L	16	Sthn traverse Eend E slope from QV
627	S	L			10	35	16	L	62	Fe qtz frags
628	R	L			7	120	L	L	177	Fe qtz frags S of qtz v ocp 50m
629	S	L			11	123	22	L	197	Fe gtz frags
630	R	0.13			9	54	2	L	9436	grab from gtz reef
631	S	L			13	98	31	L	204	Sh & qtz frags
632	S	0.02			15	157	38	L	414	Qtz frags
633	S	0.02			19	1330	61	L	875	abundant Fe qtz frags
634	S	0.10	0.13		103	6737	187	L	3414	Qtz frags 4m from QV outcrop
635	R	0.91	0.92		581	51219	327	2	21734	Fe fault zone + Alt sh with box work
636	S	0.12	0.02		114	2599	486	L	1661	Qts frags
637	S	L	0.03		20	319	128	L	397	silty loam
638	S	L			14	96	54	L	150	Silty loam Sh & gtz frags
639	S	L			12	310	92	L	542	Sst frags & float minor qtz
640	S	0.01			12	315	37	L	335	Fe qtz frags 5m E of QV outcrop
641	S	L			11	636	47	 L	1123	Fe qtz frags Sthn traverse W end
642	R	0.18			60	10109	177	1	5276	Qtz frags from soil hole
643	R	5.02	5.15		247	45414	415	3	69575	Fault breccia
644	S	<u>J.02</u>	5.15		12	96	16	L	115	sh fragsMiddle traverse W end
645	S	L			14	503	52	L	774	Sh & Fe gtz frags
645 646	S	0.02			24	537	73	L	1030	v
640	S	0.02			24	793	67	L	1514	Sh minor qtz frags
647	S	0.03			39	1160	71	L	4063	Sst + qtz frags QV float 3m to W
649	S	1.25	1.21		78	14698	224	2		Sh frags
649 650	R	1.12	0.99		122	17942	175	2	11926 46960	On siliceous QV gossan outcrop Fe sil Sst fault zone?
651	S	0.11	0.99		54	1278	1455	L L	2260	
652	S	0.11	0.08		36	2735	379	L	3951	Qtz frags Sst float
653	S	0.15	0.06		9	373	52	L	462	Sst & Fe qtz frags
654	S	0.05			14	20	9	L	35	Qtz frags Large qtz frags 5m W of QV
655	R	0.02	0.09		28	431	31	L	509	Qtz frags from soil hole
000	n	0.04	0.09		20	431	51		509	Qtz & sh frags 20m E of qtz vein
656	S	L			20	19	13	L	74	float
657	S	0.01			32	29	16	L	108	Sh frags few qtz frags
658	S				37	10	15	L	64	Shfrags 10m Sof Sh ocp Eend Mid
	S	L			9	13 52	15	L	47	trav
659			0.10				23			Coorse Set frage Nth traverse F and
660	S	0.15	0.13		5	16	7		L 25	Coarse Sst frags Nth traverse E end
661	S S				4 9	16	7		25	OV bodrook?
662		_				13	8	L	126	QV bedrock?
663	R	0.05			10	81	3 7	1	327	qtz frags from soil hole 094662
<u>664</u>	R	0.08			30	45		L	1508	qtz vein slightly ferruginous
665	S		L		8	12	10	L	21	10m W of qtz vein strikes 005 deg
<u>666</u>	R	0.03			8	23	2		<u>57</u>	qtz frags from soil hole
667	S	L			7	12	13		29	Qtz frags
668	S	L	0.47		10	12	14	L	29	Fe qtz frags 8m W of Qtz float
669	S	0.11	0.17		9	13	13	L	42	Sh frags
94670	S	L			25	15	14	L	142	Sst frags qtz float

Appendix 6 Reid Prospect Soil & Rock Chip Sample Results

Appendix 6 (continued)

Sample	Туре	Au	Au®	Au®	Cu	Pb	Zn	Ag	As	Comment
No		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
		0.01	0.01	0.01	1	5	2	1	10	Detection Limit
94626	S	L			8	L	6	L	16	Sthn traverse Eend E slope from QV
627	S	L			10	35	16	L	62	Fe qtz frags
628	R	L			7	120	L	L	177	Fe qtz frags S of qtz v ocp 50m
629	S	L			11	123	22	L	197	Fe qtz frags
630	R	0.13			9	54	2	L	9436	grab from qtz reef
631	S	L			13	98	31	L	204	Sh & qtz frags
632	S	0.02			15	157	38	L	414	Qtz frags
633	S	0.07			19	1330	61	L	875	abundant Fe qtz frags
634	S	0.10	0.13		103	6737	187	L	3414	Qtz frags 4m from QV outcrop
635	R	0.91	0.92		581	51219	327	2	21734	Fe fault zone + Alt sh with box work
636	S	0.12	0.09		114	2599	486	L	1661	Qts frags
637	S	L			20	319	128	L	397	silty loam
638	S	L			14	96	54	L	150	Silty loam Sh & qtz frags
639	S	L			12	310	92	L	542	Sst frags & float minor qtz
640	S	0.01			12	315	37	L	335	Fe qtz frags 5m E of QV outcrop
641	S	L			11	636	47	L	1123	Fe qtz frags Sthn traverse W end
642	R	0.18			60	10109	177	1	5276	Qtz frags from soil hole
643	R	5.02	5.15		247	45414	415	3	69575	Fault breccia
644	S	L			12	96	16	L	115	sh fragsMiddle traverse W end
645	S	L			14	503	52	L	774	Sh & Fe qtz frags
646	S	0.02			24	537	73	L	1030	Sh minor qtz frags
647	S	0.03			21	793	67	L	1514	Sst + qtz frags QV float 3m to W
648	S	0.03			39	1160	71	L	4063	Sh frags
649	S	1.25	1.21		78	14698	224	2	11926	On siliceous QV gossan outcrop
650	R	1.12	0.99		122	17942	175	2	46960	Fe sil Sst fault zone?
651	S	0.11	0.06		54	1278	1455	L	2260	Qtz frags Sst float
652	S	0.15	0.08		36	2735	379	L	3951	Sst & Fe qtz frags
653	S	0.05			9	373	52	L	462	Qtz frags
654	S	0.02			14	20	9	L	35	Large qtz frags 5m W of QV
655	R	0.04	0.09		28	431	31	L	509	Qtz frags from soil hole
656	S	L			20	19	13	L	74	Qtz & sh frags 20m Eof qtz vein float
657	S	0.01			32	29	16	L	108	Sh frags few qtz frags
658	s	L			37	13	15	L	64	Sh frags 10m S of Sh ocp E end Mid trav
659	S	L			9	52	23	L	47	
660	S	0.15	0.13		5	L	7	L	4/ L	Coarse Sst frags Nth traverse E end
661	S	L	0.10		4	16	7	L	25	
662	S	L			9	13	8	L	126	QV bedrock?
663	R	0.05			10	81	3	1	327	qtz frags from soil hole 094662
664	R	0.03			30	45	7	L	1508	atz vein slightly ferruginous
665	S	L	L		8	12	10	L	21	10m W of qtz vein strikes 005 deg
666	R	0.03	-		8	23	2	L	57	qtz frags from soil hole
667	S	L			7	12	13	LL	29	Qtz frags
668	S	L			10	12	14	L	29	Fe qtz frags 8m W of Qtz float
669	S	0.11	0.17		9	13	13	 L	42	Sh frags
94670	S	L	0.17		25	15	14	 L	142	Sst frags qtz float
34070	3	L			20	10	14	L	142	Ust hays yiz huai