Tianda Resources (Australia) Pty Ltd

Annual Report
EL 25691 Davenport Range
Northern Territory

David Jenkins
Charles Poynton
Terra Search Pty Ltd
For Tianda Resources
October 2008

Perth, 3rd October, 2008
Executive Summary

The Davenport Range is comprised of Proterozoic sediments and volcanics of the Hatches Creek Group, encompassing the Elkedra Dome in the centre of the exploration license.

A review of all available public information on EL 25691 Davenport Range, was completed. This work identified several radiometric anomalies coincident with possible Cainozoic and Quaternary stream sediments in the northwest of the tenement near a public road. Elsewhere, extensive radiometric anomalism was associated with Newlands Volcanics within the Elkedra Dome, which were plainly formational and not investigated further.

A field crew visited the northwest of the tenement, where a number of flight line radiometric anomalies were possibly associated with Cainozoic and Quaternary stream sediments. Reconnaissance traverses were made along the flight lines using an Exploranium GR-135 Plus gamma ray spectrometer. Four rock chip samples were taken at radiometric high points and submitted for analysis using ICP-MS. The assays for the samples ranged between 1.62ppm and 3.69ppm U, with thorium between 10.3 and 16.9ppm and potassium in the range of 0.58 – 0.86%.

ASTER imagery was obtained over the region and processed to give colour mineral and alteration assemblage maps. These were considered and showed a probable zone of alteration within the Elkedra Dome. Here a dacitic granophyre was associated with an adjacent alteration halo in the Newlands Volcanics. The historic geochemical sampling of the Elkedra Dome did not test this halo.

The low uranium analyses and their occurrence within the Arabulja Volcanics dismisses the uranium potential northwestern part of the exploration license. However, the alteration halo interpreted from the ASTER imagery is of interest and should be investigated further before relinquishing the tenement.
Table of Contents

Executive Summary.. i
Table of Contents.. ii
Table of Figures.. ii

1 Introduction .. 1
2 Location and access ... 2
3 Tenement Status .. 3
4 Regional Geology ... 4
5 Local Geology ... 5
6 Previous Work .. 7
7 Geophysics ... 8
8 Exploration Completed ... 9
 8.1 Exploration Model ... 9
 8.2 Navigation .. 9
 8.3 Field Work Undertaken ... 10
9 ASTER ... 13
 9.1 250k Geology .. 14
 9.2 True colour .. 15
 9.3 False Colour ... 16
 9.4 Alunite, Kaolinite, Pyrophyllite pseudocolour .. 17
 9.5 Clay Amphibole Laterite RGB image ... 18
 9.6 Gossan/Alteration/Host RGB image .. 19
10 Conclusions .. 20
11 Further work ... 20
Appendix 1 ... 21

Table of Figures

Figure 1 EL25691 location map .. 2
Figure 2 EL 24691 Davenport Range Sub-block Diagram ... 3
Figure 3 EL 25691 Elkedra dome 250k geology overlaid with Au geochem (rockchips red, stream seds black) ... 5
Figure 4 Geological cross-section through Elkedra Dome ... 6
Figure 5 Historic geochemical samples in the Elkedra Pound: circled assay is for 4740ppm of cobalt ... 7
Figure 6 EL 25691 GPS Trackmaker map ... 9
Figure 7 Radiometric anomalies in the northwest of EL25691 10
Figure 8 Photo 8154 ... 11
Figure 9 Photo 8156 ... 12
Figure 10 EL25693 250k Geology with radiometric point data and ICP-MS assays (in yellow box) ... 14
Figure 11 EL25693 250k Geology detail and ICP-MS assays – detail from boxed inset
Figure 12 EL25693 ASTER “true” colour with U channel point data and ICP-MS assays (in yellow box)
Figure 13 EL25693 ASTER “true” colour NW corner detail view with ICP-MS assays – detail from inset
Figure 14 EL25693 ASTER false colour with U channel point data and ICP-MS assays (yellow box)
Figure 15 EL25693 ASTER false colour NW corner detail view with ICP-MS assays
Figure 16 EL25693 ASTER Alunite, Kaolinite, Pyrophyllite pseudocolour and ICP-MS assays
Figure 17 EL25693 ASTER Alunite, Kaolinite, Pyrophyllite pseudocolour overlaid with geology historic geochemical sample locations shown with green dots
Figure 18 EL25693 Davenport Range Clay Amphibole Laterite RGB
Figure 19 EL25693 Davenport Range Clay Amphibole Laterite RGB southeastern detail
Figure 20 EL25693 Davenport Range Gossan Alteration Host RGB
Figure 21 EL25693 Davenport Range Gossan Alteration Host RGB southeastern detail
1 Introduction

The Davenport Range project was identified as a prospective area by examination of publicly available geophysical datasets. This report covers exploration work undertaken by Tianda Resources (Australia) Pty Ltd over the EL 25691 for the period from the 18th of October 2007 to the 18th of October 2008. Terra Search Pty Ltd, a consulting group with 20 years experience was contracted to complete exploration over this tenement.

The Davenport Range project is a southern extension of the Tennant Creek Block, and comprised mostly of Proterozoic clastic and volcanic sediments of the Hatches Creek Group. These have been subjected to folding, faulting and metamorphism, resulting in features such as the Elkedra Dome. The Hatches Creek group are overlain to the south, west and east by Palaeozoic sediments of the Georgina Basin.

Within the exploration license, 1:250,000 geological map showed felsic volcanics and a creek corresponding to a series of radiometric anomalies on the northwestern corner of the tenement. The possibility of calcrete uranium deposits was investigated. Otherwise, the felsic volcanics were similar in radiometric character to the Newlands Volcanics within the Elkedra Dome, which are of a formational nature.

Five anomalous flight lines of airborne radiometrics were ground-truthed using an Exploranium GR135 Plus gamma-ray spectrometer. This instrument is capable of determining radionucleide (K, U, Th) abundance in the field. The most active rocks were sampled for laboratory geochemical analysis by ICP-MS.

ASTER data was obtained from Geoimagery Pty Ltd of Brisbane and processed to reveal a variety of mineralisation and alteration styles. This imagery was analysed with reference to the current and past exploration programs, looking for environments which thus far have not been evaluated for possible economic mineral deposits.
2 Location and access

Access to the exploration license is via a dirt road turning off from Stuart Highway 44 kilometres north of Barrow Creek. From Stuart Highway, it is about a hundred kilometres to EL25691.

The tenement is entirely within Elkedra Station, contact details being:-
Elkedra Pastoral Company
Alice Springs 8556 9889
elkedrasn@bigpond.com.au

Though the proprietors were contacted by telephone, the station homestead was a long way east of the tenement via a circuitous dirt track.

Due to confusion with a Northern Territory road map, a route along the southern boundary of the exploration license was taken first. This turned out to provide as good access as existed to the anomalous cobalt location, but to get to this was still a good eight-kilometre hike through the ranges on the south side of the tenement. A locked gate at the end of the track prevented further exploration and we returned to look at the northwestern radiometric anomalies.

A rough road/track led northeast through the corner of EL25691 as shown on the map above. This route followed a substantial creek through the Davenport Ranges and it was the Cainozoic and Quaternary creek deposits which were considered to have potential for calcrete uranium.
3 Tenement Status

EL 25691 has its boundaries as shown on Figure 2. It is altogether 91 graticular blocks, covering a total of 291.6 square kilometres. It was granted to Tianda Resources on the 18 October 2007 for a period of 6 years.

The 91 sub-blocks are as follows:

<table>
<thead>
<tr>
<th>Block No</th>
<th>Sub-Blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>900</td>
<td>stuvwxyz</td>
</tr>
<tr>
<td>901</td>
<td>q-z</td>
</tr>
<tr>
<td>902</td>
<td>q-z</td>
</tr>
<tr>
<td>972</td>
<td>cdehjknoptuxyz</td>
</tr>
<tr>
<td>973</td>
<td>a-z</td>
</tr>
<tr>
<td>974</td>
<td>a-z</td>
</tr>
</tbody>
</table>

![Figure 2 EL 24691 Davenport Range Sub-block Diagram](image-url)
4 Regional Geology

Davenport Province (1840 – 1700 Ma) represents an extension of the North Australian Platform Cover and includes volcanic sedimentary successions of the Davenport and Murchison Ranges. In comparison to other Proterozoic Basins to the north it is more deformed and is metamorphosed to lower greenschist facies. It unconformably overlies the Palaeoproterozoic Warramunga Province and is unconformably overlain by the Palaeozoic Georgina and Wiso Basins to the east and west, respectively. Stratigraphic equivalents of Davenport Province extend into the Aileron Province of the Arunta Region. The Davenport Province is highly prospective for ore deposits and contains a number of mineral occurrences of gold, silver, tungsten, tin, copper, lead, zinc, nickel, tantalum and niobium. It is part of the Tennant Creek block.

The Davenport Range area is comprised mostly of the Proterozoic Hatches Creek Group, a succession of sandstones, siltstone and shales interbedded with volcanics, either felsic and dacitic volcanics of the Arabulja and Newlands Volcanics, or (higher in the column) the Kudinga Basalt. The Hatches Creek group is overlain by Cambrian to Devonian Georgina Basin sediments.
5 Local Geology

The Davenport Range project area, consisting of ELA25691, is dominantly covered by Newlands Volcanics and a sequence of sandstones, arenites and siltstones of the Coulters Sandstone and the Andagera Formations. These two sedimentary formations, together with a basalt unit (Kudinga Basalt), form the Davenport Ranges in the north eastern part of the area (Figure 3).

The Newlands Volcanics consisting of porphyritic dacites, basalts, ignimbrites and tuff occupies a third of the project area and poorly outcrops. In contrast, the quartz arenites with subordinate feldspathic and kaolinitic arenites and siltstones of the Coulters Sandstone as well as thick bedded quartz sandstones and conglomerates of the Andagera Formation are well exposed in outcrop over the project area.

Figure 3 EL 25691 Elkedra dome 250k geology overlaid with Au geochem (rockchips red, stream sed black)

The 250k geological map(s) for the Davenport Ranges project on Elkedra Station. Overlaid on these (the adjacent Barrow sheet occupies the western quarter of the area) are some rockchip and stream sediment sampling results. The annotated values are for gold, though some other elements were assayed for the stream sediments. Unfortunately these did not include uranium. The assay results were reported for historic tenement EL 5505.
Elkedra Pound is a dome comprised of Proterozoic sandstones, siltstone and shale, interbedded with volcanics: the Kudinga Basalt and Newlands Volcanics (ignimbrite, lava and tuff). The Newlands Volcanics show a strong total count anomaly.

Along the southern margin of the dome are considerable expanses of Cambrian Andagere Formation, a conglomerate with a pebbly sandstone towards the top.

The northeastern corner of the tenement is within the Barrow 250k geological sheet. A fault separates the dome from another terrain, also comprised of Proterozoic volcanics and sandstone. As is the case within the Elkedra Dome, the volcanics show a strong radiometric anomaly.

![Figure 4 Geological cross-section through Elkedra Dome](image)

Patches of Quaternary alluvium and Cainozoic colluvium occur along the drainage channels within the tenement. A small patch of calcrete exists on another tributary outside the exploration license and there may be opportunity for development of the same within the boundaries.

Some historic geochemistry, both stream sediment samples and rock chips, have been taken within the tenement. One of these samples assayed for an extraordinary 4740 ppm of cobalt, but its position is poorly defined.
6 Previous Work

A total of eight historic exploration licenses intersect EL 25691, with altogether fifteen open file company reports. A number of them have been acquired from the Northern Territory mines department.

The historic tenements, their report numbers and comments from abstracts are listed below.

<table>
<thead>
<tr>
<th>Tenement</th>
<th>report</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP 2742</td>
<td>CR1973-0064</td>
<td>Work to continue on Crawford Range Copper, Nickel Project</td>
</tr>
<tr>
<td></td>
<td>CR1972-0072</td>
<td>Report recommends detailed analysis of area using geophysics</td>
</tr>
<tr>
<td>EL 743</td>
<td>CR1974-0004</td>
<td>final report: map plus mention of two radiometric anomalies</td>
</tr>
<tr>
<td>EL 7987</td>
<td>CR1995-0898</td>
<td>not regarded as having been adequately tested</td>
</tr>
<tr>
<td>EL 7146</td>
<td>CR1994-0375</td>
<td>A maximum of 1ppb Au was obtained</td>
</tr>
<tr>
<td>EL 22507</td>
<td>CR1993-0765</td>
<td>regional geochemical sampling programme and follow up</td>
</tr>
<tr>
<td></td>
<td>CR1992-0010</td>
<td>171 rock chip and 270 soil samples</td>
</tr>
<tr>
<td></td>
<td>CR1993-0123</td>
<td>No significant anomalies</td>
</tr>
<tr>
<td>EL 104</td>
<td>CR1973-0161</td>
<td>final report with very sketchy plans</td>
</tr>
<tr>
<td>EL 5505</td>
<td>CR1992-0354</td>
<td>extensive relinquishment report</td>
</tr>
<tr>
<td>EL 1851</td>
<td>CR1979-0195</td>
<td>Uneconomic uranium and base metals concentration</td>
</tr>
</tbody>
</table>

Some rock chip and soil geochemical sampling had been done within the Elkedra Pound, with mostly negative results. There was, nevertheless a single high cobalt soil sample in excess of 4740 ppm. The locations of historic geochemical samples are highlighted in green on the geological map below, with the high cobalt assay circled.

Figure 5 Historic geochemical samples in the Elkedra Pound: circled assay is for 4740 ppm of cobalt
7 Geophysics

Radiometric image files were downloaded from the NT Mines database. As the tenement crosses the boundary of two airborne surveys, there were problems with compatibility of data files which remain unresolved. In particular, the line data format and magnitudes are quite different. For this reason, the image files are more helpful for getting an impression of the entire exploration license.

When this image is overlaid on the 250k geological map, it is plain that the central high corresponds with the Newlands Volcanics. Similarly, two parallel radiometric highs in the northwestern corner are formational, though one of them was thought to be Quaternary alluvium. Another band of Quaternary alluvium produces a weak high in the northeastern corner.

Point data arranged on flight lines has been overlaid on the geology for the Elkedra survey (the Barrow Survey is incompatible for some reason). This shows the exact locations of anomalous point data. There appears to be some disagreement with the gridded data in the
northwestern sector, which may be a projection problem. This conclusion is supported by the fact that geological maps for Barrow and Elkedra do not register correctly.

8 Exploration Completed

This project, located on Elkedra Station, was investigated on 7 and 8th of July, 2008. There were two areas of interest: one containing a sole geochemical assay of 4740ppm of cobalt at 501778E 7660925N; the other being a number of radiometric anomalies in the northwestern corner of the exploration tenement which were apparently at or near a creekbed.

8.1 Exploration Model

The 1:250,000 geological map showed felsic volcanics and a creek corresponding to a series of radiometric anomalies on the northwestern corner of the tenement. The possibility of calcrete uranium deposits was investigated. Otherwise, the felsic volcanics were similar in radiometric character to the Newlands Volcanics within the Elkedra Dome, which are of a formational nature.

Altogether five flight lines over a radiometrically-anomalous formation were explored. Due to positioning errors in the 250k geological maps, it was not clear whether this anomaly was in Quaternary creekbed deposits, or in felsic volcanics.

8.2 Navigation

The radiometric anomalies and the extraordinary cobalt occurrence were entered into GPS Trackmaker and ultimately loaded into a Garmin GPSmap60 instrument along with the tenement boundaries. This was of assistance in positioning the crew beneath the flight line anomalies. All coordinates were used the Geodetic Datum Australia (GDA94) and repeated checks were made to ensure that maps and the GPS receivers were always in this projection.

The Southern Access Track is only approximate and the eastern section is not marked on available NT road maps, but is on a GPS database.

Figure 6 EL 25691 GPS Trackmaker map
8.3 Field Work Undertaken

Five radiometric anomalies were noted and traverses undertaken on each to see if there was anything of interest. The five anomalies are shown below, with Anomaly 1 in the southwest and Anomaly 5 in the northeast.

![Figure 7 Radiometric anomalies in the northwest of EL25691](image)

Anomaly 5 flight line 499081E from 7672140N to 7672427N

We walked along flight line 499081E and back along a parallel traverse without finding any significant anomalism. The northern end of the anomaly (the north of the EL boundary in fact) was dominated by felsic volcanics. These were vuggy, with a light brown ground mass with some tiny black phenocrysts in very fine grained matrix. Further to the south were a quartz blow and some quartzite scree. Sample DR01 was taken at 499001E 7672596N of these vuggy felsic volcanics. The maximum reading was 350cpm over these rocks.

Niton XRF determination gave uranium below the limit of detection, but Th = 25, K=3.44% and Ba=1344ppm.

ICP-MS gave 3.69ppm U, 16.9ppm Th, 0.58%K and 370ppm Ba. There was also an unusual 170ppm of cerium.

Anomaly 4 Flight line 497550E from 7670395N to 7670572N

We walked south 30-50m east of this flight line, encountering maximum readings of 250cpm over felsic volcanics in the northern end. In the south, we went into the “Valley of Death” (it had been scorched by wildfire) where we came upon minor sandstone and extensive quartzite. These gave low spectrometer readings, in the order of 130 – 150 cpm.

Photo 8154 was taken at 497615E and 7670485N, showing the valley.
While walking on to Anomaly 3, a chlorite schist was encountered at 497307E 7670178N. This was about ten metres long and a metre wide, with a strike of 220 degrees and dip of 48 deg to the southeast.

Anomaly 3 Flight line 497042E from 7670196N to 7670298N

This anomaly was walked from south to north, with felsic volcanics noted the whole way and radiometric activity at 250 – 300 cpm. A sample (DR02) was taken at 497021E 7670251N and comprised a light brown, vuggy felsic volcanic rock.

Niton XRF determination gave uranium below the limit of detection, but Th = 30, K=2.92% and Ba=1733ppm.

ICP-MS analysis of DR02 returned 1.62ppm U, 10.3ppm Th, 0.82% K, and 450ppm Ba.

Anomaly 2 Flight line 496650E from 7669936N to 7670066N

Overall, this anomaly was comprised of felsic volcanics with radiometric counts of 250 – 300cpm. Some of the rock showed green epidote alteration, particularly at DR03, taken at 496665E 7669935N. A spectrometer test determined concentrations at K = 4.6%, U = 12.0ppm and Th = 12.4ppm.
A later Niton XRF determination on the chip tray sample gave K=3.91%, U<19 and Th=31ppm.

ICP-MS analysis returned 3.11ppm U, 14.6ppm Th, 0.86% K, 240ppm Ba.

Anomaly 1 Flight line 496100E from 7669384N to 7669509N

The whole of this anomaly had counts in the range of 250 – 300cpm and comprised light brown felsic volcanics with weak epidote staining.

Photo 8156 was taken at the location of sample DR04, below.

![Anomaly 1: photo 8156 over felsic volcanics K = 3.4% U = 9.6ppm Th = 12.2ppm 496085E 76699434N](image)

Figure 9 Photo 8156

Sample DR04 was taken at 496084E 7669432N, had the gamma ray spectrometer gave K = 3.4% U = 9.6ppm and Th = 12.2ppm. The lithology was felsic volcanics.

Niton XRF determination was performed on a small chip of the sample in September. This gave an outcome of U < 22ppm, Th=24 and K = 1.69%. A barium result of 5181ppm was also noted.

ICP-MS results for this sample wee 2.29ppm U, 10.9ppm Th, 0.86%K and 270ppm Ba.
9 ASTER

Aster imagery was obtained from Geoimage Pty Ltd of Brisbane and processed by Terra Search Pty Ltd at their Perth office. The following image mixes were obtained:

<table>
<thead>
<tr>
<th>Mix</th>
<th>Algorithm</th>
<th>Geological environment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonate</td>
<td>13/14</td>
<td>Exoskarn</td>
<td>Bierwith, Nimojima, CSIRO</td>
</tr>
<tr>
<td>Quartz rich</td>
<td>14/12</td>
<td></td>
<td>Rowan</td>
</tr>
<tr>
<td>Carb/Chl/Epi</td>
<td>(7+9)/8</td>
<td></td>
<td>Rowan, CSIRO</td>
</tr>
<tr>
<td>Clay/Amp/Lat</td>
<td>R:(5x7)/6^2 G:6/8 B:4/5</td>
<td></td>
<td>Bierwith</td>
</tr>
</tbody>
</table>

- for mapping R:4/1 G:3/1 B:12/14 Abdelsalam
- Sultan R:4/7 G:4/1 B: (2/3)x(4/3) Sultan
- Abrams R:4/7 G:4/3 B: 2/1 Abrams
- Goss/Alt/Host R:4/2 G:4/5 B:5/6 Volesky

A comprehensive set of ASTER images was generated over the tenement, many of which are reproduced in this section. These are set up in the following pages at the same scale and position on the page throughout to allow systematic comparison of the images in a paper document.

In this document, the true and false colour images, carbonate/chlorite/epidote, alunite/kaolinite/pyrophyllite, clay/amphibolite/laterite and gossan/alteration/host images were utilised, together with detailed insets.
9.1 250k Geology

The detailed map confirms that the samples were taken of the mapped Arabulja Volcanics, and that the Cainozoic stream sediments lie to the northeast.
9.2 True colour

Figure 12 EL25693 ASTER “true” colour with U channel point data and ICP-MS assays (in yellow box)

The “true colour” image in the top figure is overlaid with radiometric point data from the airborne survey, on the eastern (Elkedra) survey, but not in the west (Barrow Creek). The only vehicle access to the central Elkedra Pound area is through a gap near the eastern boundary of the exploration license.

Figure 13 EL25693 ASTER “true” colour NW corner detail view with ICP-MS assays –detail from inset
9.3 False Colour

Figure 14 EL25693 ASTER false colour with U channel point data and ICP-MS assays (yellow box)

The upper figure shows the uranium airborne point data overlain on the false colour image, together with the rock chip sampling and its ICP-MS assays on the detail below. The next image (alunite/kaolinite/pyrophyllite) shows an alteration zone in the southeast of the tenement coincident with a low in the uranium channel data.

Figure 15 EL25693 ASTER false colour NW corner detail view with ICP-MS assays
9.4 Alunite, Kaolinite, Pyrophyllite pseudocolour

The pseudocolour image of alunite/kaolinite/pyrophyllite alteration is of little interest in the northwestern part of the tenement. There is, however, an alteration system in the southeastern area, as circled in the top figure. When overlaid on the 250k geology, this appears to be adjacent to a Proterozoic “feldspar porphyritic, dacite granophyre” (figure 3). This area may be worthy of further investigation.
9.5 *Clay Amphibole Laterite RGB image*

![Figure 18 EL25693 Davenport Range Clay Amphibole Laterite RGB](image)

Figure 18 EL25693 Davenport Range Clay Amphibole Laterite RGB

![Figure 19 EL25693 Davenport Range Clay Amphibole Laterite RGB southeastern detail](image)

Figure 19 EL25693 Davenport Range Clay Amphibole Laterite RGB southeastern detail

The clay/amphibole/laterite RGB image confirms the existence of the anomaly in the southeastern corner of the tenement. Green dots are historic sample locations.
9.6 Gossan/Alteration/Host RGB image

Figure 20 EL25693 Davenport Range Gossan Alteration Host RGB

Figure 21 EL25693 Davenport Range Gossan Alteration Host RGB southeastern detail

The four samples taken in the northwest of the tenement show as being on host rock in this image. The circled southeastern anomaly is again shown by image processing to be an alteration zone. The nearest historic geochemical data (green dots) are over a kilometre away.
10 Conclusions

The radiometric anomalies on EL25691 were all over unprospective felsic volcanics. The two locations were spectrometer determinations were made of potassium, uranium and thorium abundance showed the heavy nucleides to be of elevated levels, but not by any means enough to excite further interest.

The ICP-MS analyses were consistently lower than the spectrometer and Niton determinations. It is possible that the latter instruments were in error, but a possible explanation is that only a 3-acid digest was used with the ICP assays. Quite dramatic concentrations of barium were indicated by the Niton, but far less with the ICP-MS. It should also be remembered that the Niton examination was on the basis of a few millimetres of a single rock, the spectrometer was used face-down on a piece of outcrop, and the ICP-MS was performed on an acid digest from a bagful of crushed an pulverised rock samples. It would be surprising if the methods agreed.

The uranium concentrations reported by ALS Chemex from ICP-MS assay were in the range of 1.62ppm to 3.69ppm, far too low to be of any promise for an economic mineralisation.

Nevertheless, the ASTER imagery has revealed an alteration system about two kilometres long in the southeast of the tenement, as seen on the alunite/kaolinite/pyrophyllite pseudocolour image and also the clay/amphibole/laterite and gossan/alteration/host images. This system has not been sampled in historic work done in the tenement.

11 Further work

Only the northwestern corner of the exploration license was visited in this excursion. If any further work is to be done in the tenement, it could focus on the Elkedra Dome itself and surrounding Davenport Ranges. In particular, the alteration halo seen on the ASTER imagery would justify investigation for base metals and gold.
Appendix 1

The rock chip and soil samples in the following files were assayed by ALS Chemex in Queensland, using ICP-MS in a three-acid digest (ME-MS41). This assay was for the following elements with the detection limit in parentheses. All values are in parts per million.

<table>
<thead>
<tr>
<th>Sample</th>
<th>State</th>
<th>MGA_N</th>
<th>MGA_E</th>
<th>ZONE</th>
<th>Ag (ppm)</th>
<th>Al (ppm)</th>
<th>As (ppm)</th>
<th>Au (ppm)</th>
<th>Be (ppm)</th>
<th>Bi (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DR 01</td>
<td>NT</td>
<td>7672596</td>
<td>499001</td>
<td>53K</td>
<td>0.01</td>
<td>10800</td>
<td><0.2</td>
<td><10</td>
<td>370</td>
<td>1.7</td>
</tr>
<tr>
<td>DR 02</td>
<td>NT</td>
<td>7670251</td>
<td>497022</td>
<td>53K</td>
<td>0.01</td>
<td>14300</td>
<td><0.2</td>
<td><10</td>
<td>450</td>
<td>0.83</td>
</tr>
<tr>
<td>DR 03</td>
<td>NT</td>
<td>7669935</td>
<td>496666</td>
<td>53K</td>
<td>0.01</td>
<td>17300</td>
<td><0.2</td>
<td><10</td>
<td>240</td>
<td>1.4</td>
</tr>
<tr>
<td>DR 04</td>
<td>NT</td>
<td>7669432</td>
<td>496085</td>
<td>53K</td>
<td>0.01</td>
<td>12900</td>
<td><0.2</td>
<td><10</td>
<td>270</td>
<td>2.02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Ca (ppm)</th>
<th>Cd (ppm)</th>
<th>Ce (ppm)</th>
<th>Co (ppm)</th>
<th>Cr (ppm)</th>
<th>Cs (ppm)</th>
<th>Cu (ppm)</th>
<th>Fe (ppm)</th>
<th>Ga (ppm)</th>
<th>Ge (ppm)</th>
<th>Hf (ppm)</th>
<th>Hg (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DR 01</td>
<td>10000</td>
<td>0.01</td>
<td>170.5</td>
<td>5.4</td>
<td>5</td>
<td>2.03</td>
<td>21</td>
<td>23900</td>
<td>5.69</td>
<td>0.16</td>
<td>3.18</td>
<td>0.01</td>
</tr>
<tr>
<td>DR 02</td>
<td>200</td>
<td><0.01</td>
<td>53.5</td>
<td>6</td>
<td>9</td>
<td>3.65</td>
<td>14.5</td>
<td>24900</td>
<td>7.14</td>
<td>0.08</td>
<td>1.18</td>
<td>0.01</td>
</tr>
<tr>
<td>DR 03</td>
<td>1000</td>
<td><0.01</td>
<td>52.9</td>
<td>4.1</td>
<td>6</td>
<td>2.23</td>
<td>2.8</td>
<td>31800</td>
<td>8.37</td>
<td>0.11</td>
<td>1.26</td>
<td><0.01</td>
</tr>
<tr>
<td>DR 04</td>
<td>200</td>
<td><0.01</td>
<td>76.5</td>
<td>7.1</td>
<td>6</td>
<td>2.96</td>
<td>44.8</td>
<td>27900</td>
<td>7.11</td>
<td>0.14</td>
<td>1.09</td>
<td><0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>In (ppm)</th>
<th>K (ppm)</th>
<th>La (ppm)</th>
<th>Li (ppm)</th>
<th>Mg (ppm)</th>
<th>Mn (ppm)</th>
<th>Mo (ppm)</th>
<th>Na (ppm)</th>
<th>Nb (ppm)</th>
<th>Ni (ppm)</th>
<th>P (ppm)</th>
<th>Pb (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DR 01</td>
<td>0.028</td>
<td>5800</td>
<td>84.7</td>
<td>8.3</td>
<td>3900</td>
<td>76</td>
<td>0.65</td>
<td>500</td>
<td>0.24</td>
<td>43</td>
<td>360</td>
<td>3.9</td>
</tr>
<tr>
<td>DR 02</td>
<td>0.02</td>
<td>8200</td>
<td>21.4</td>
<td>11.2</td>
<td>4000</td>
<td>82</td>
<td>0.39</td>
<td>100</td>
<td>0.46</td>
<td>5.4</td>
<td>180</td>
<td>2.8</td>
</tr>
<tr>
<td>DR 03</td>
<td>0.022</td>
<td>8600</td>
<td>24.9</td>
<td>17.4</td>
<td>7200</td>
<td>123</td>
<td>0.21</td>
<td>100</td>
<td>0.17</td>
<td>5.2</td>
<td>390</td>
<td>2.6</td>
</tr>
<tr>
<td>DR 04</td>
<td>0.019</td>
<td>8600</td>
<td>47.8</td>
<td>17.6</td>
<td>6200</td>
<td>196</td>
<td>0.36</td>
<td>100</td>
<td>0.24</td>
<td>5.1</td>
<td>220</td>
<td>2.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Rb (ppm)</th>
<th>Re (ppm)</th>
<th>S (ppm)</th>
<th>Sb (ppm)</th>
<th>Sc (ppm)</th>
<th>Se (ppm)</th>
<th>Sn (ppm)</th>
<th>Sr (ppm)</th>
<th>Ta (ppm)</th>
<th>Te (ppm)</th>
<th>Th (ppm)</th>
<th>Ti (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DR 01</td>
<td>76.7</td>
<td><0.001</td>
<td><100</td>
<td>0.4</td>
<td>2.9</td>
<td>0.6</td>
<td>2</td>
<td>33.6</td>
<td><0.01</td>
<td>0.01</td>
<td>16.9</td>
<td>330</td>
</tr>
<tr>
<td>DR 02</td>
<td>96.9</td>
<td><0.001</td>
<td><100</td>
<td>0.35</td>
<td>3.7</td>
<td>0.3</td>
<td>1.6</td>
<td>13.7</td>
<td><0.01</td>
<td>0.01</td>
<td>10.3</td>
<td>800</td>
</tr>
<tr>
<td>DR 03</td>
<td>91.1</td>
<td><0.001</td>
<td><100</td>
<td>0.27</td>
<td>3.5</td>
<td>0.5</td>
<td>1.5</td>
<td>26.5</td>
<td><0.01</td>
<td>0.01</td>
<td>14.6</td>
<td>570</td>
</tr>
<tr>
<td>DR 04</td>
<td>108.5</td>
<td><0.001</td>
<td><100</td>
<td>0.22</td>
<td>2.9</td>
<td>0.5</td>
<td>1</td>
<td>20.4</td>
<td><0.01</td>
<td>0.01</td>
<td>10.9</td>
<td>930</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Ti (ppm)</th>
<th>U (ppm)</th>
<th>V (ppm)</th>
<th>W (ppm)</th>
<th>Y (ppm)</th>
<th>Zn (ppm)</th>
<th>Zr (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DR 01</td>
<td>0.27</td>
<td>3.69</td>
<td>6</td>
<td>0.32</td>
<td>33.2</td>
<td>9</td>
<td>132</td>
</tr>
<tr>
<td>DR 02</td>
<td>0.44</td>
<td>1.62</td>
<td>12</td>
<td>0.26</td>
<td>14.05</td>
<td>21</td>
<td>45.2</td>
</tr>
<tr>
<td>DR 03</td>
<td>0.42</td>
<td>3.11</td>
<td>7</td>
<td>0.2</td>
<td>30.9</td>
<td>30</td>
<td>52.1</td>
</tr>
<tr>
<td>DR 04</td>
<td>0.62</td>
<td>2.29</td>
<td>9</td>
<td>0.08</td>
<td>20.5</td>
<td>22</td>
<td>41.8</td>
</tr>
</tbody>
</table>