BARROW CREEK PROJECT, NT

EL 23474

ANNUAL REPORT

FOR THE PERIOD

31st October 2006 TO 30th October 2007

Tenement : EL23474
Owner : Australian Tantalum Pty Ltd
Operator : Haddington Resources Ltd
Prepared by : N. Burn
Date : December 2006
Project Number : BC01
Distribution : Haddington Resources Ltd
Department of Primary Industry, Fisheries and Mines (DPIFM)
Vivter Pty. Ltd. (1)
TABLE OF CONTENTS

1. SUMMARY ... 4
2. INTRODUCTION .. 4
3. LOCATION AND ACCESS .. 4
4. TENEMENT STATUS .. 4
5. GEOLOGY ... 6
6. PREVIOUS EXPLORATION ... 8
 6.1. Millers ... 8
 6.2. Millers South ... 8
 6.3. Halfway ... 9
 6.4. Horizontal ... 9
 6.5. Tommys Show .. 9
 6.6. Southern Area ... 10
7. CURRENT EXPLORATION – HADDINGTON RESOURCES LTD
 7.1 Geological reconnaissance/rock chip sampling ...
 7.2 Mobile metal Ion (MMI) sampling program ..
8. CONCLUSIONS / RECOMMENDATIONS ... 18
9. PROPOSED WORK .. 18
10. REFERENCES .. 18
FIGURES

Figure 1. Barrow Creek Project - Tenement Location Plan.
Figure 2. Barrow Creek Project - Regional Geology.
Figure 3. Barrow Creek Project – Soil anomalies, rock chip results and mapping
Figure 4. MMI Response Ratio – U, Th
Figure 5. MMI Response Ratio – Au, As, Ag
Figure 6. MMI Response Ratio – Fe, Mn
Figure 7. MMI Response Ratio – Cu, Pb, Zn, Ni
Figure 8. MMI Response Ratio – Li, Nb, Rb, Sn, W

TABLES

Table 1. EL23474 - Tenement details.
Table 2. EL23474 – 2006 Significant rock chip results
Table 3. 2007 Rock chip sampling

APPENDICES

Appendix 1. EL23474 - 2007 Rock Chip results
Appendix 2. EL23474 - 2007 Soil Sampling results
Appendix 3. Laboratory Analysis and detection limits.

FILES ATTACHED

EL23474_2007_A_01_ReportBody.pdf
EL23474_2007_A_02_RockChipLocation.txt
EL23474_2007_A_03_RockChipGeochem.txt
EL23474_2007_A_04_SoilSampleLocation.txt
EL23474_2007_A_05_SoilSampleGeochem.txt
EL23474_2007_A_06_MMIResponseRatios.txt
EL23474_2007_A_07_MMIPercentiles.txt
1. SUMMARY

Exploration conducted on EL23474 during the reporting period included a regional surface exploration program. A total of 406 soil samples and 6 rock chip samples were taken.

2. INTRODUCTION

This report covers exploration work carried out by Australian Tantalum Pty Ltd, a wholly owned subsidiary of Haddington Resources Limited (HDN) during the reporting period (31st October 2006 to 30th October 2007).

3. LOCATION AND ACCESS

The Barrow Creek Project (EL23474) is located approximately 20km north of Barrow Creek (280 km north of Alice Springs) in the central Northern Territory. The tenement lies within the boundaries of Neutral Junction Station, and access is via the Stuart Highway and various Station tracks.

The Licence falls on the Barrow Creek 1:250,000 (SF 53-06) map sheets.

4. TENEMENT STATUS

EL23105 was granted to Vivter Pty Ltd on 31st October 2002 for a period of six (6) years. In February 2005, Vivter entered into an option agreement with ATL. Tenement details are exhibited below in Table 1.

<table>
<thead>
<tr>
<th>Tenement</th>
<th>Holder</th>
<th>Grant Date</th>
<th>Expiry</th>
<th>Area Km²</th>
<th>Rent$</th>
<th>Commitment $</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL23474</td>
<td>ATL</td>
<td>31.10.2002</td>
<td>30.10.2008</td>
<td>41.58</td>
<td>$2288</td>
<td>$25,000</td>
</tr>
</tbody>
</table>

Table 1. EL23474 – Tenement Details.

A waiver for the fifth year reduction requirement was granted by NT DPIFM on 24 October 2007.
Figure 1. Barrow Creek Project - Tenement Location Plan
5. GEOLOGY

The lease area is primarily covered by Quaternary sediments; an active channel cuts through the centre of the tenement in a north easterly direction, and is surrounded by aeolian plains and dunes, and transported red earth soils.

The Paleoproterozoic Bullion Schist outcrops over a small area (Figure 2), and consists of a biotite-muscovite schist of mid-greenschist to lower amphibolite facies. The unit hosts numerous tin-tantalum bearing pegmatites including Millers, Millers South, Horizontal, Halfway, Tommys Show, Jump Up and Ivy. These pegmatites make up the Barrow Creek Pegmatite Field.

The licence includes some small-scale abandoned tantalite workings (Millers, Millers South). The Millers workings occur on pegmatite/quartz veins discovered by AV Miller in 1978. The area is largely covered by soil, with quartz float present at the surface. Mineralisation occurs in quartz reef veins and in eluvium.

In 1978, a 2m-deep pit exposed a quartz vein from 20 cm depth at the Millers prospect, containing books of muscovite that indicated a pegmatite-associated origin. Freeman (1978), upon inspecting the prospect, noted little visible tantalite present in the pit, although a grade of 0.25% tantalite was estimated from eluvial material. 25 rock chip samples collected by RB Mining averaged 87ppm Ta, and 346ppm Sn.
Figure 2. Barrow Creek Geology
6. PREVIOUS EXPLORATION

Previous exploration has primarily been conducted on and around the Millers area, with workings occurring at Millers, Tommys Show and Horizontal.

Freeman (1979) excavated a 200m long, 0.5-1.5m deep costean which exposed bedrock, and a tractor mounted back hoe was used to excavate small pits on three potential tantalum bearing pegmatites (Tommys Show, Ansters and Horizontal). Freeman concluded that mineralisation was widespread but patchy, and that the grade was generally low.

In 2002, the costean was mapped by NTGS (Frater 2005), and 24 eluvial samples (40 kg) were collected for XRF analyses. Only 10 of the 24 samples reported levels of tantalum above the 10ppm detection limit, and only one (360ppm Ta from Millers South Pit) reported a level in excess of 25 ppm. Follow-up sampling (4 samples) at Millers South recorded elevated tantalum in only 1 of the 4 samples.

A partnership between Freeman and Miller in 1978 saw only a small amount of tin concentrate produced (0.1 t in 1980), before litigation between the partners closed the operation. Production came from an area of approximately 1000 m², to a depth of 1.2m.

RB Mining carried out reconnaissance mapping and preliminary sampling of prospect dumps at Millers in 1980. Backhoe trenching, auger drilling and an alluvial sampling program were undertaken in 1981, around the Millers prospect. The Millers pegmatite was traced for 300m, with the average true thickness of the pegmatite at 1.5m, swelling to 3.5 m in Millers pit.

Exploration by Haddington in the 2005-2006 anniversary year collected 197 soil samples and 71 rock chips with regional mapping.

Soil sampling proved extremely slow and difficult, due to a 40 – 60 cm wide quartz cobbled horizon that was encountered approximately 20 cm below the surface.

Figure 3 displays rock chip results, anomalies generated by soil sampling, and an outcrop map of the tenement.

Mapping revealed that the Bullion Schist displays a vertical foliation that usually strikes between 140° and 150°. The majority of pegmatites were concordant to the foliation, striking between 140° to 170°. Pegmatites outcrop as narrow (usually <1m wide) veins, and may be traced along strike for a maximum of 80m before disappearing under cover.

6.1. Millers

The Millers Workings have largely been refilled and revegetated. The pit has been fenced off (Figure 3), and only a shallow depression remains. Ta values were anomalous, and ranged between 62 to 122ppm Ta, and 21 to 411ppm Sn. The in-situ Millers pegmatite could not be located due to the large amount of ground disturbance in the immediate area.

6.2. Millers South
The Millers South scrape is located approximately 200m south west of Millers Pit. Pegmatite, quartz and Bullion Schist may be found on low-level heaps immediately surrounding the scrape. RB Mining followed the pegmatite for almost 150m (Forsythe 1982). The dyke was thin (though not connected to the main Millers pegmatite), with an east-northeast strike and 30-40° dip to the south. RB Mining took 7 samples from the pegmatite, which returned an average of 62ppm Ta and 214 ppm Sn.

During the October 2006 sampling program, one rock chip sample was taken from the Millers South Pegmatite, in addition to four samples from pegmatites outcropping within a 50m radius Results were anomalous, with the Millers South sample returning 188ppm Ta and 181ppm Sn. The remaining four samples returned levels ranging between 54ppm Ta to 172ppm Ta, and 95ppm Sn to 241ppm Sn.

6.3. Halfway

The Halfway pegmatite is located 420m south west of Millers workings, and was traced for 80m along strike (shallow trenches dug by RB Mining are still visible). The dyke is concordant to the regional foliation. 6 rock chips were taken from the pegmatite, and two samples displayed elevated Ta values over 104 ppm (including 10068031 which returned 525ppm Ta and 128 ppm Sn). A roughly coincident Li, Cs, Rb, Ta soil geochem anomaly occurs over the pegmatite, striking in a similar direction. Additional small-sized outcrops in the immediate vicinity indicate that there may be more than one pegmatite sub-cropping. 7 rock chips from these small outcrops did not return any significant results.

6.4. Horizontal

Four rock chips were taken from the Horizontal Prospect, where the poorly exposed pegmatite strikes at 060. RB Mining exposed a narrow, 1m thick, almost horizontal, coarse-grained pegmatite (although its small size discouraged further exploration). Three of the four rock chips displayed elevated Ta values over 300ppm. The prospect is located within a larger Cs, Li and Sn anomaly defined by the soil sampling program.

Approximatley 300m north of the Horizontal prospect, a largely coincident Li, Cs, Rb soil geochem anomaly occurs. Pegmatitic outcrop in the area is minimal, although there are a number of quartz veins and quartz blows that crop out. Given the anomalous soil geochemistry, these may show a pegmatitic associated origin at depth (similar to the Millers pegmatite).

One pegmatitic outcrop was located within the anomalous soil geochemistry – an outcrop roughly 2m in length and 30 cm wide. One rock chip (215ppm Ta, 394 ppm Sn) was taken. The pegmatite strikes 157 and dips 75° to the south west.

6.5. Tommys Show

Two rock chips were taken from this prospect which consists of a 10m by 10m shallow scrape that wraps around a quartz blow. Rock chip sampling returned a maximum of 345ppm Ta, 438ppm Sn.
RB mining traced the pegmatite for 110m in a west-northwest direction, and found the pegmatite to dip 45° towards the south with an average true thickness of 2.5m (including pods of quartz and blocks of country rock). A second pegmatite approximately 35m to the north was thought to be a faulted eastern extension of the first, and was followed for 100m before swinging into the regional strike and tapering out.

6.6. Southern Area

In the southern portion of the tenement in particular, a number of new pegmatites were discovered and sampled. Of 16 rock chip samples that were taken south of 7636300mN, 15 returned with levels between 1 to 54ppm Ta. The best result exhibited disappointing levels of 85ppm Ta and 87ppm Sn.

The soil geochemistry reflected the low rock chip results, with no significant geochemical anomalies over any of the outcropping pegmatites.

Less than 1km southeast of Tommys Show however, three small, discrete Li, Cs, Rb anomalies were outlined by the soil sampling program. The most south easterly of these lies 880m southeast of Tommys Show, and occurs over an area where at least 3 quartz rich pegmatites crop out (strike 150°).

Two rock chips taken from similar quartz rich pegmatites approximately 120m to the north returned only .07 and 0.05ppm Ta. 80m to the southeast, one rock chip returned 0.8ppm Ta.

The two most northern Li, Cs, Rb anomalies occur where no pegmatite outcrop was located, and it is interpreted that the anomalous soil geochemistry indicates a blind pegmatite at depth.

![Table 2. EL23474. 2006 Significant Rock Chip Results.](image-url)
7. CURRENT EXPLORATION - HADDINGTON

Exploration by Haddington in the 2006-2007 anniversary year included geological reconnaissance and rock chip sampling investigating areas outside of the previous sampling programs. Mobile Metal Ion soil sampling was undertaken in areas of colluvium to assist in defining gold, uranium and base metal anomalies as well as the potential for ‘blind’ pegmatite tantalum mineralisation in areas of Quaternary cover around the tantalum occurrences.

7.1 Geological reconnaissance/rock chip sampling

Field reconnaissance was undertaken over (i) areas of previous exploration (ii) areas of thin and limited transported cover and (iii) historical workings to define exploration techniques for locating outside of the workings and beneath cover.

A total of 9 rock chip samples were collected from this reconnaissance, predominantly from quartz veining in sandstone horizons within the overlying Gwynne Sandstone. Samples were sent to ALS and assayed for Au, As, Cu, Pb, Zn, Fe, U and Th.

Results for this sampling are detailed in the following Table 3.

<table>
<thead>
<tr>
<th>SampleID</th>
<th>Au (ppm)</th>
<th>Cu (ppm)</th>
<th>Fe (%)</th>
<th>Pb (ppm)</th>
<th>Zn (ppm)</th>
<th>As (ppm)</th>
<th>Th (ppm)</th>
<th>U (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCR001</td>
<td><0.01</td>
<td>3</td>
<td>1.7</td>
<td>4</td>
<td>10</td>
<td>2.9</td>
<td>4.5</td>
<td>0.35</td>
</tr>
<tr>
<td>BCR002</td>
<td><0.01</td>
<td>0.7</td>
<td>5</td>
<td>2</td>
<td>2.7</td>
<td>0.5</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>BCR003</td>
<td><0.01</td>
<td>0.85</td>
<td>4</td>
<td><2</td>
<td>1.1</td>
<td>0.6</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>BCR004</td>
<td><0.01</td>
<td>4</td>
<td>4.4</td>
<td>3</td>
<td>8</td>
<td>4.1</td>
<td>15.2</td>
<td>0.73</td>
</tr>
<tr>
<td>BCR005</td>
<td><0.01</td>
<td>25</td>
<td>9.35</td>
<td>4</td>
<td>4</td>
<td>105</td>
<td>10</td>
<td>0.59</td>
</tr>
<tr>
<td>BCR006</td>
<td><0.01</td>
<td>12</td>
<td>1.17</td>
<td><2</td>
<td>2</td>
<td>3.7</td>
<td>1.6</td>
<td>0.15</td>
</tr>
<tr>
<td>BCR007</td>
<td><0.01</td>
<td>2</td>
<td>1.9</td>
<td>4</td>
<td>2</td>
<td>18.3</td>
<td>1.7</td>
<td>0.23</td>
</tr>
<tr>
<td>BCR008</td>
<td><0.01</td>
<td>2</td>
<td>1.9</td>
<td>6</td>
<td>4</td>
<td>10</td>
<td>1.8</td>
<td>0.12</td>
</tr>
<tr>
<td>BCR009</td>
<td><0.01</td>
<td>35</td>
<td>1.55</td>
<td>33</td>
<td>15.1</td>
<td>11.5</td>
<td>2.39</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. 2007 Rock chip sampling

The sampling results are poor with no further work recommended for the Gwynne sandstone locality.

7.2 Mobile Metal Ion (MMI) sampling

Mobile metal Ion sampling is an optimal method to define specific mineralization targets (buried) for detailed drilling, lessening the need for broad scale reconnaissance drilling.

Key attributes of this MMI approach include
- Constrained precise anomalies, vertically above oxidizing mineralisation
- Reduced need for pathfinder geochemistry
- Precisely target mineralization at significant depths
- Better signal to noise ratio related to mineralization when compared to conventional geochemistry
Case studies have shown that the MMI technique extends the range of effective soil geochemistry further into more complex transported regolith units.

A broad MMI sampling program was undertaken over areas of EL23474 where conventional soil geochemistry was not applicable. Areas of thick aeolian sand cover and major drainage channels were not sampled.

A total of 406 samples were collected by the MMI sample collection techniques. Samples were sent ALS Perth and assayed for Ag, As, Au, Cu, Fe, Li, Mn, Ni, Pb, Rb, Sn, Th, U, W and Zn.

Sample location and analytical results are listed in Appendix 2.

Interpretation of the MMI analytical data is undertaken utilising a peak to background ratio (response ratio) for each element. Background for the MMI data is generally calculated using the lowest quartile of the data for each element.

Calculation of response ratios for each element are included in Appendix 3 and results are displayed in Figures 4 to 8.

Preliminary interpretation of the data has been undertaken for each multi-element grouping

(i) U/Th
(ii) Au/As/Ag
(iii) Fe/Mn
(iv) Cu/Pb/Zn/Ni
(v) Li/Nb/Rb/Sn/W

U/Th (Figure 4)

The northern line of MMI sampling has a general higher level of uranium response than other areas.

Au/As/Ag (Figure 5)

Anomalous responses associated with the outcropping and surficial pegmatite mineralisation of the historical workings.

Fe/Mn (Figure 6)

Elevated Fe response associated with Quaternary ‘red soil’ regolith horizon.

Cu/Pb/Zn/Ni (Figure 7)

Strong Zn response with the Bullion Schist horizon and Pb anomaly to the east of historical workings to be investigated.

Li/Nb/Rb/Sn/W (Figure 8)

Pegmatophile elements indicate a number of anomalies beneath the ‘red soil regolith’, to the west and east of the workings.

Evaluation and assessment of these anomalies will be undertaken in conjunction with previous tantalum targeted sampling.
Figure 4. MMI Response Ratio – U,Th
Figure 5. MMI Response Ratio – Au, As, Ag

Annual Report Barrow Creek Project EL23474 2007
Figure 6. MMI Response Ratio – Fe, Mn
Figure 7. MMI Response Ratio – Cu, Pb, Zn, Ni
Figure 8. MMI Response Ratio – Li, Nb, Rb, Sn, W
8. RECOMMENDATIONS

Exploration under MMI techniques has defined a number of tantalum, base metal and uranium responses that require increased investigation. In conjunction with the previously defined 2005-6 soil anomalies exploration will focus on the potential of these anomalies to host economic mineralization.

The elevated uranium MMI response to the north suggests the potential for paleochannel/surficial mineralization needs to be reviewed.

7. PROPOSED WORK

The budget for next year is based on an extensive rock chip, soil and mapping program (and a small drilling program if warranted) over various prospects defined by work during 2007.

2007-8 BUDGET

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Staff</td>
<td>$4,000</td>
</tr>
<tr>
<td>Geological Contractors</td>
<td>$6,000</td>
</tr>
<tr>
<td>Consultants</td>
<td>$1,500</td>
</tr>
<tr>
<td>Exploration Supplies</td>
<td>$1,500</td>
</tr>
<tr>
<td>Assays</td>
<td>$3,000</td>
</tr>
<tr>
<td>Tenement Administration</td>
<td>$1,000</td>
</tr>
<tr>
<td>Fuel</td>
<td>$2,000</td>
</tr>
<tr>
<td>Maps and Plans</td>
<td>$100</td>
</tr>
<tr>
<td>Travel</td>
<td>$3,000</td>
</tr>
<tr>
<td>Accommodation</td>
<td>$2,500</td>
</tr>
<tr>
<td>Vehicle, Equipment, etc</td>
<td>$2,000</td>
</tr>
</tbody>
</table>

TOTAL $25,650

8. REFERENCES

APPENDIX 1

Rock Chip Results

EL23474_2006_A_02_RockChipGeochem.txt
EL23474_2006_A_03_RockChipLocation.txt
APPENDIX 2

Soil Sampling Results

EL23474_2006_A_04_SoilSampleLocation.txt
EL23474_2006_A_05_SoilSampleGeochem.txt
EL23474_2007_A_06_MMIResponseRatios.txt
EL23474_2007_A_07_MMIPercentiles.txt
APPENDIX 3.
LABORATORY AND ANALYSIS DETAILS

<table>
<thead>
<tr>
<th>Tenement</th>
<th>No. of Samples</th>
<th>Sample Type</th>
<th>Element (Analysis Technique)</th>
<th>Det Lmt</th>
<th>Unit</th>
<th>Lab</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL23474</td>
<td>9</td>
<td>Rock Chips</td>
<td>Au (OG43)</td>
<td>0.01 ppm</td>
<td></td>
<td>ALS</td>
<td>Adelaide</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cu (ICP41)</td>
<td>1 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fe (ICP41)</td>
<td>0.01%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pb (ICP41)</td>
<td>2 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Zn (ICP41)</td>
<td>2 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>As (MS42)</td>
<td>0.1 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Th (MS42)</td>
<td>0.2 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>U (MS42)</td>
<td>0.05 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EL23474</td>
<td>406</td>
<td>MMI Soil</td>
<td>Ag (ME-MS17)</td>
<td>0.01 ppb</td>
<td></td>
<td>ALS</td>
<td>Perth</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>As (ME-MS17)</td>
<td>1 ppb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Au (ME-MS17)</td>
<td>0.1 ppb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cu (ME-MS17)</td>
<td>10 ppb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fe (ME-MS17)</td>
<td>0.1 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Li (ME-MS17)</td>
<td>0.2 ppb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mn (ME-MS17)</td>
<td>0.01 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nb (ME-MS17)</td>
<td>0.1 ppb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ni (ME-MS17)</td>
<td>3 ppb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pb (ME-MS17)</td>
<td>10 ppb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rb (ME-MS17)</td>
<td>5 ppb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sn (ME-MS17)</td>
<td>0.2 ppb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Th (ME-MS17)</td>
<td>1 ppb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>U (ME-MS17)</td>
<td>1 ppb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>W (ME-MS17)</td>
<td>0.2 ppb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Zn (ME-MS17)</td>
<td>20 ppb</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>