EXPLORATION LICENCES 22244, 22245, 22246, 22247, 22251, 22252, 22351, 23116, 23117, 23118, 23119, 23121, 23510, 23511, 23512, 23513, 23514, 23515

CALVERT HILLS PROJECT

JOINT ANNUAL REPORT

FOR THE PERIOD

3 MARCH 2005 TO 2 MARCH 2006

BY

J. CEPELECHA & L. BOWYER
TENEMENT REPORT INDEX

OPERATOR: Astro Diamond Mines NL
PROJECT: Calvert Hills
TENEMENTS: Exploration Licences 22244, 22245, 22246, 22247, 22251, 22252, 23116, 23117, 23118, 23119, 23121, 23510, 23511, 23512, 23513, 23514, 23515

JOINT REPORT PERIOD: 3 March 2005 to 2 March 2006
DUE DATE: 2 April 2006
AUTHOR: J. Cepecha & L Bowyer
STATE: Northern Territory
LATITUDE: 16°05'S - 17°30'S
LONGITUDE: 135°45'E - 137°45'E
MGA (easting): 8 225 000mE - 8 060 000mE
MGA (northing): 575 000mN - 800 000mN
1:250,000 SHEET: SE53-03 Bauhinia Downs, SE53-04 Robinson River, SE53-08 Calvert Hills
1:100,000 SHEET: 6064 Mallapungah, 6163 Lancewood, 6164 Glyde, 6165 Borroloola, 6263 Surprise Creek, 6264 Foelsche, 6265 Wearyan, 6363 Calvert Hills, 6364 Pungalina, 6365 Robinson, 6463 Wologorang, 6464 Selby

MINERAL FIELD:
COMMODITY: Diamonds
KEYWORDS: Diamonds, data review, target areas
TABLE OF CONTENTS

1. SUMMARY OF EXPLORATION ACTIVITIES 4
2. TENEMENT STATUS 4
3. LOCATION AND ACCESS 5
4. GEOLOGY 5
 4.1 LOCAL GEOLOGY 5
5. EXPLORATION 6
 5.1 DATA REVIEW 6
 5.2 TARGET GENERATION 6
 5.2.1 FOELSCHÉ TARGET 6
 5.2.2 SELBY TARGET 7
 5.3 PROPOSED EXPLORATION 7
6. BIBLIOGRAPHY 7

LIST OF FIGURES

1. TENEMENT LOCATION PLAN
 1:1,100,000 A4 Landscape
2. SIMPLIFIED GEOLOGICAL PLAN
 1:1,100,000 A4 Landscape
3. 2005 EM SURVEYS
 A4 Landscape
4. FOELSCHÉ GRAVITY DRILL TARGETS FEMG-1, 2, 5, 9, 13
 1:1,000,000 A4 Landscape
5. SELBY 2005 EM TARGETS
 A4 Landscape
6. 2005 GRAVITY ANOMALIES: FEMG-1, 2, 5, 9 & 13
7. PROPOSED 2006 EM SURVEY LOCATIONS
 1:1,100,000 A4 Landscape
8. SAMPLE LOCATIONS
1 SUMMARY OF EXPLORATION ACTIVITIES

Exploration for diamonds carried out over the Calvert Hills Project during the reporting period and included selected airborne EM coverage and follow up ground gravity surveys, along with on ground geological investigations.

2 TENEMENT STATUS

Astro Diamond Mines NL is manager of the Calvert Hills Project, tenements are held either by Astro Diamond Mines NL or Axis Consultants Pty Ltd. The project consists of eighteen tenements covering an area of 8,347km².

<table>
<thead>
<tr>
<th>Tenement</th>
<th>Date of Grant</th>
<th>Area (km²)</th>
<th>Holder</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL 22244</td>
<td>7 March 2003</td>
<td>1,445.00</td>
<td>Astro Diamond Mines NL</td>
</tr>
<tr>
<td>EL 22245</td>
<td>7 March 2003</td>
<td>424.10</td>
<td>Astro Diamond Mines NL</td>
</tr>
<tr>
<td>EL 22246</td>
<td>5 February 2003</td>
<td>1,147.40</td>
<td>Astro Diamond Mines NL</td>
</tr>
<tr>
<td>EL 22247</td>
<td>5 February 2003</td>
<td>1,625.20</td>
<td>Astro Diamond Mines NL</td>
</tr>
<tr>
<td>EL 22251</td>
<td>24 April 2003</td>
<td>1,644.00</td>
<td>Astro Diamond Mines NL</td>
</tr>
<tr>
<td>EL 22252</td>
<td>22 August 2003</td>
<td>470.70</td>
<td>Astro Diamond Mines NL</td>
</tr>
<tr>
<td>EL 22351</td>
<td>8 August 2003</td>
<td>592.10</td>
<td>Astro Diamond Mines NL</td>
</tr>
<tr>
<td>EL 23116</td>
<td>3 March 2003</td>
<td>55.80</td>
<td>Astro Diamond Mines NL</td>
</tr>
<tr>
<td>EL 23117</td>
<td>3 March 2003</td>
<td>15.50</td>
<td>Astro Diamond Mines NL</td>
</tr>
<tr>
<td>EL 23118</td>
<td>3 March 2003</td>
<td>99.20</td>
<td>Astro Diamond Mines NL</td>
</tr>
<tr>
<td>EL 23119</td>
<td>3 March 2003</td>
<td>46.50</td>
<td>Astro Diamond Mines NL</td>
</tr>
<tr>
<td>EL 23121</td>
<td>3 March 2003</td>
<td>55.80</td>
<td>Astro Diamond Mines NL</td>
</tr>
<tr>
<td>EL 23510</td>
<td>3 March 2003</td>
<td>9.30</td>
<td>AXIS Consultants Pty Ltd</td>
</tr>
<tr>
<td>EL 23511</td>
<td>3 March 2003</td>
<td>176.70</td>
<td>AXIS Consultants Pty Ltd</td>
</tr>
<tr>
<td>EL 23512</td>
<td>3 March 2003</td>
<td>68.20</td>
<td>AXIS Consultants Pty Ltd</td>
</tr>
<tr>
<td>EL 23513</td>
<td>3 March 2003</td>
<td>213.90</td>
<td>AXIS Consultants Pty Ltd</td>
</tr>
<tr>
<td>EL 23514</td>
<td>3 March 2003</td>
<td>27.90</td>
<td>AXIS Consultants Pty Ltd</td>
</tr>
<tr>
<td>EL 23515</td>
<td>8 July 2003</td>
<td>229.40</td>
<td>AXIS Consultants Pty Ltd</td>
</tr>
</tbody>
</table>
3 LOCATION AND ACCESS

The Calvert Hills Project covers approximately 8,347 square kilometres surrounding and east of the Merlin diamond field. Tenements cover the Bauhinia Downs, Robinson River and Calvert Hills 1:250,000 map sheets. Access to the area is via the Carpentaria Highway, east from Daly Waters to Cape Crawford, Borroloola and from the south via Wollogorang.

4 GEOLOGY

All the economic diamond deposits and other significantly diamondiferous occurrences in Australia occur on the North Australian Craton ("NAC"). The NAC underlies the Kimberley region of northern WA, the northern two thirds of the NT and the north western part of Queensland. It is also host to many significant base metal, gold and uranium deposits. The NAC was formed at about 1850 million years (Ma) during the Barramundi Orogeny by the amalgamation of Archaean and early Proterozoic rocks which now form the basement rocks of the NAC. Proterozoic (1820-1600 Ma) platform sediments, Palaeozoic volcanics and sediments, and Mesozoic sediments cover these basement rocks. The Palaeozoic volcanics comprise the Lower Cambrian Antrim Plateau Volcanics (about 550 Ma in age) and its equivalents. The only volcanic activity that has occurred on the NAC for the past 500 Ma has been the intrusion of diamondiferous kimberlite at 367 Ma (the Devonian age Merlin kimberlite field), 179 Ma (Jurassic age Timber Creek kimberlite field), and the 20 Ma (Tertiary age) lamproite field in the Ellendale (West Kimberley) area.

4.1 LOCAL GEOLOGY

The Merlin region tenements are centred on the eastern side of the Batten Trough, which comprises Mesoproterozoic rocks of the McArthur Group. These are unconformably overlain in the south east by the Lower Cambrian age Bukalara Sandstone and small outliers of Cretaceous sediments.

The surface geology comprises mainly Mesoproterozoic sediments and volcanics forming an inlier surrounded by Bukalara Sandstone and local Cretaceous marine sediments. The Palaeozoic and Mesozoic sediments are essentially undeformed and flat-lying. The contacts of the inlier are considered to be faulted. Terrestrial conditions have prevailed since the Cretaceous and deep chemical weathering has produced extensive lateritic soils and some silcrete and calcrete deposits (Pietsch et al 1991).

5 EXPLORATION

5.1 DATA REVIEW

A further review of open file exploration data previously obtained from the Northern Territory Geological Survey (NTGS) was undertaken during the reporting period. This
included appraisal of geology and structure, and of the results of drainage sampling by previous diamond explorers.

Diamond and indicator targets were identified and followed up by field visits. Anomalies examined are listed in table 1. Results of heavy mineral sampling and geochemical sampling of these anomalies are listed in Table 2-4.

5.2 TARGET GENERATION

The data review highlighted several targets areas that were followed up by selective airborne EM surveys over the Foelsche, Selby and Abner Range projects during mid 2005. The two projects which produced high priority anomalies were Foelsche, located on EL 22245 and Selby, located on EL 22251.

During mid 2005 some 3,300 line kms were flown by Fugro Airborne Surveys Pty Ltd, with 1,251 line kms over EL22245, 417 line kms over EL23119, 120 line kms over EL23510, 1,392 line kms over EL22251 and 120 line kms flown over EL23118.

A total of 14 EM target anomalies, some with multiple signatures, were generated from the Foelsche (EL22245, EL23510 and EL23119) survey and 9 EM targets from the Selby survey (EL22251). The Abner Range EM survey (EL23118) was inconclusive.

The Foelsche EM targets were ground truthed before any follow up by ground gravity surveys. Six Foelsche EM anomalies were followed up by ground gravity surveys during October 2005. A number of EM and gravity anomalies (FEMG-1, FEMG-5, FEMG-9 and FEMG-13) reported coincident geophysical signatures, and form the basis for proposed drilling during the 2006 field season (Figures 6 a-e). The remaining 8 Foelsche EM targets will be followed up by ground gravity surveys during the 2006 field season.

5.2.1 FOELSCHE TARGET

The Foelsche Project area is located within the western tenement group of the Calvert Hills Project, and only 17 kilometres southeast of the Merlin kimberlite field. The Merlin and the Foelsche areas lie along the same regional structures, with the regionally significant Calvert Hills Fault passing across to the north of both areas. This fault extends 100km to the southeast, and abuts the north northwest Batten Trough Zone 100km to the northwest.

Previous diamond explorers have recovered a considerable number of chromites from numerous sample sites draining the northeast portion of a plateau. The chromites were recovered from the three main tributaries of the Foelsche River over a distance of 15 kilometres along the edge of the plateau. The majority of the anomalous sample sites reported chromites in the range of 1-14 per sample. However, as no chromite mineral chemistries are available it is not possible to determine if the chromites originate from adjacent Proterozoic volcanics and/ or buried kimberlites. The occasional presence of fragile kimberlite indicator grains such as pyrope garnets and chrome diopsides suggest that buried kimberlites are present. A number of reconnaissance heavy mineral stream and soil geochemical samples were collected, bit are inconclusive (Tables 2-3).

The focus on utilising high resolution airborne EM surveys has led to areas which are predominately sand covered with residual indicator dispersal trails coming off these areas.
Ground truthing and subsequent follow up ground gravity surveys of selected six EM targets has defined four high quality gravity anomalies indicative of pipe like structures (Figures 6:a-e). A limited grid of soil samples was collected over FEMG-1 and FEMG-9 for geochemical analyses. Results (Table 4) are inconclusive.

It is believed that continuation of a high resolution airborne EM program should be flown over selected northern portions of the Foelsche project area, particularly where diamonds and indicators appear to emanate from areas of sand cover.

5.2.2 SELBY TARGET

The Selby target area is located 120 kilometres east of the Foelsche target area. Two sample sites within the target area each returned a macro diamond, whilst another site contains a kimberlitic chromite. A number of reconnaissance heavy mineral stream and soil geochemical samples were collected but results are inconclusive (Table 3).

The 2005 high resolution airborne EM survey has delineated nine anomalies requiring ground truthing before the 2006 ground gravity survey commences. Local fracture patterns intersecting over a Landsat TM anomaly will also be investigated during the 2006 field season.

5.3 PROPOSED EXPLORATION

Drilling of five Foelsche gravity targets (FEMG-1, FEMG-2, FEMG-5, FEMG-9 and FEMG-13) generated during 2005 is expected about mid-2006 once the Mine Management Plan (MMP) has been approved by the NT government. Additional approvals for track building and drilling will be sought for the new gravity targets expected from the 2006 field activities.

Helicopter-supported ground gravity will follow up the outstanding 2005 EM anomalies over the Foelsche and Selby areas.

A second airborne electromagnetic survey over selected areas of the Foelsche and Selby target area will be contracted out to Fugro Airborne Surveys Pty Ltd and is planned to be completed in late 2006. Results from the survey should identify targets for additional ground gravity confirmation work, as a reasonable contrast between the Bukalara sandstone and weathered kimberlite pipes is expected.

6 BIBLIOGRAPHY

High Priority Targets for detailed follow-up

Proterozoic Block Boundary
Dolomite
Basalt
Cainozoic (soil, sand & lateritic sediments)

Chrome Diopside
Picro ilminite
Pyrope
Chromite
Micro Diamond
MacroDiamond

Tenement Boundary

Merlin Kimberlite Field

16°45'S
17°00'S
136°30'E

EL 22245
EL 23121
EL 23119
EL 23510
EL 23119
EL 23511

FEM-1
FEM-9
FEM-13
FEM-2
FEM-12

Foelsche Gravity
Drill Targets for 2006

Astro Diamond Mines NL
Calvert Hills Project

Annual Report 2006

Comp.: L.Bowyer
Date: 05/04/06
Loc.: Melbourne
Scale:
Plot:
Figure: 4
Borroloola Gravity Survey
AREA 1
Image of Bouguer Gravity 2.67 gm/cc
Contour Interval 0.01 mGals

Annual Report 2006
Calvert Hills Project

Borroloola Gravity Survey
AREA 2
Image of Bouguer Gravity 2.67 gm/cc
Contour Interval 0.01 mGals

Annual Report 2006
Image of Bouguer Gravity 2.67 gm/cc
Contour Interval 0.01 mGals

LEGEND

Comp.: L.Bowyer
Date: 050406
Loc.: Melbourne
Scale: 6c
Plot:
Figure: 6c

Calvert Hills Project
Borroolooa Gravity Survey
AREA 5

Astro Diamond Mines NL
Annual Report 2006
Image of Bouguer Gravity 2.67 gm/cc
Contour Interval 0.01 mGals

LEGEND

BG287
mGals

0 50 100 150
metres

CALLERT HILLS PROJECT
Borrolola Gravity Survey
AREA 13
Image of Bouguer Gravity 2.67 gm/cc
Contour Interval 0.01 mGals
Annual Report 2006
Table 1

Heavy Mineral observations from selected Foelsche and Selby diamond and indicator sites
DIAMOND INDICATOR DATA

Sample No: F3CD55
Job No: 557
Date Started: 28-6-05

Processing Weights

<table>
<thead>
<tr>
<th></th>
<th>Initial: 17.3 kg</th>
<th>+2mm: kg</th>
<th>After Tabling: 2.29 kg</th>
<th>After TBE: 270 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Positive (Other)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ø/mm</th>
<th>>2</th>
<th>>1</th>
<th>>0.8</th>
<th>>0.5</th>
<th>>0.4</th>
<th>>0.3</th>
<th><0.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HL</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>M4</td>
<td>M3</td>
</tr>
<tr>
<td>Mag</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>M4</td>
<td>M3</td>
</tr>
</tbody>
</table>

Kimberlite, Lamproite Indicators

<table>
<thead>
<tr>
<th>Sieve Size/mm</th>
<th>>2</th>
<th>>1</th>
<th>>0.8</th>
<th>>0.5</th>
<th>>0.4</th>
<th>>0.3</th>
<th>>0.2</th>
<th>>0.1</th>
<th>Wear/km</th>
<th>Appearanc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diamond</td>
<td></td>
</tr>
<tr>
<td>Chrome Diopside</td>
<td></td>
</tr>
<tr>
<td>Chromite</td>
<td></td>
</tr>
<tr>
<td>Phlogopite</td>
<td></td>
</tr>
<tr>
<td>Picroilmenite</td>
<td></td>
</tr>
<tr>
<td>Pyrope</td>
<td></td>
</tr>
</tbody>
</table>

Detailed Descriptions

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Size/mm</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DIAMOND INDICATOR DATA

Sample No: FEM-2L

Job No: 557

Date Started: 28-6-05

Processing Weights

Initial:	20.8 kg
+2mm:	kg
After Tabling:	0.202 kg
After TBE:	13 g

Positive

Positive (Other)

Negative

<table>
<thead>
<tr>
<th>Ø/mm</th>
<th>>2</th>
<th>>1</th>
<th>>0.8</th>
<th>>0.5</th>
<th>>0.4</th>
<th>>0.3</th>
<th><0.3</th>
<th>Fractions Analysed(×)</th>
<th>Observed only(o)</th>
<th>Scanned (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digest</td>
<td>NM</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Table</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>HL</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>M4</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Mag</td>
<td>M3</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

Kimberlite, Lamproite Indicators

<table>
<thead>
<tr>
<th>Sieve Size/mm</th>
<th>>2</th>
<th>>1</th>
<th>>0.8</th>
<th>>0.5</th>
<th>>0.4</th>
<th>>0.3</th>
<th>>0.2</th>
<th>>0.1</th>
<th>Wear/km</th>
<th>Appearanc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diamond</td>
<td></td>
</tr>
<tr>
<td>Chrome Diopside</td>
<td></td>
</tr>
<tr>
<td>Chromite</td>
<td></td>
</tr>
<tr>
<td>Phlogopite</td>
<td></td>
</tr>
<tr>
<td>Picroilmenite</td>
<td></td>
</tr>
<tr>
<td>Pyrope</td>
<td></td>
</tr>
</tbody>
</table>

Detailed Descriptions

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Size/mm</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DIAMOND INDICATOR DATA

Sample No: F9-55

Job No: 557

Date Started: 28-6-05

Processing Weights
- Initial: 6.5 kg
- +2mm: kg
- After Tabling: 0.815 kg
- After TBE: 1 g

<table>
<thead>
<tr>
<th>Ø/mm</th>
<th>>2</th>
<th>>1</th>
<th>>0.8</th>
<th>>0.6</th>
<th>>0.5</th>
<th>>0.4</th>
<th>>0.3</th>
<th>>0.2</th>
<th>>0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diamond</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>NM</td>
<td>x</td>
</tr>
<tr>
<td>Chrome Diopside</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Chromite</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Phlogopite</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Picroilmenite</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Pyrope</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Kimberlite, Lamproite Indicators

<table>
<thead>
<tr>
<th>Sieve Size/mm</th>
<th>>2</th>
<th>>1</th>
<th>>0.8</th>
<th>>0.6</th>
<th>>0.5</th>
<th>>0.4</th>
<th>>0.3</th>
<th>>0.2</th>
<th>>0.1</th>
<th>Wear/km</th>
<th>Appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diamond</td>
<td>x</td>
</tr>
<tr>
<td>Chrome Diopside</td>
<td>x</td>
</tr>
<tr>
<td>Chromite</td>
<td>x</td>
</tr>
<tr>
<td>Phlogopite</td>
<td>x</td>
</tr>
<tr>
<td>Picroilmenite</td>
<td>x</td>
</tr>
<tr>
<td>Pyrope</td>
<td>x</td>
</tr>
</tbody>
</table>

Detailed Descriptions

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Size/mm</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diamond</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Chrome Diopside</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Chromite</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Phlogopite</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Picroilmenite</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Pyrope</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
DIAMOND INDICATOR DATA

Sample No: F8-55

Job No: 557

Date Started: 28-6-05

Positive

Processing Weights

Initial: 10.8 kg

+2mm: kg

After Tabling: 0.168 kg

Positive (Other)

After TBE: 1 g

Negative

Fractions Analysed (x) Observed only (o) Scanned

<table>
<thead>
<tr>
<th>Sieve Size/mm</th>
<th>>2</th>
<th>>1</th>
<th>>0.8</th>
<th>>0.5</th>
<th>>0.4</th>
<th>>0.3</th>
<th><0.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chrome Diopside</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>Chromite</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>Phlogopite</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>Picroilmenite</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>Pyrope</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
</tbody>
</table>

Kimberlite, Lamproite Indicators

<table>
<thead>
<tr>
<th>Sieve Size/mm</th>
<th>>2</th>
<th>>1</th>
<th>>0.8</th>
<th>>0.5</th>
<th>>0.4</th>
<th>>0.3</th>
<th><0.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kimberlite</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Lamproite</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Detailed Descriptions

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Size/mm</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diamond</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chrome Diopside</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phlogopite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Picroilmenite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrope</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DIAMOND INDICATOR DATA

Sample No: SMA-155
Job No: 557

Date Started: 28-6-05
Positive
Processing Weights
Initial: 20.0 kg
+2mm: 1.3 kg
After Tabling: kg
After TBE: 15 g

<table>
<thead>
<tr>
<th>Ø/mm</th>
<th>>2</th>
<th>>1</th>
<th>>0.8</th>
<th>>0.5</th>
<th>>0.4</th>
<th>>0.3</th>
<th>>0.2</th>
<th>>0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diamond</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Chrome Diopside</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Chromite</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Phlogopite</td>
<td>M4</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Picroilmenite</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Pyrope</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Kimberlite, Lamproite Indicators

<table>
<thead>
<tr>
<th>Sieve Size/mm</th>
<th>>2</th>
<th>>1</th>
<th>>0.8</th>
<th>>0.5</th>
<th>>0.4</th>
<th>>0.3</th>
<th>>0.2</th>
<th>>0.1</th>
<th>Wear/km</th>
<th>Appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kimberlite</td>
<td>x</td>
</tr>
<tr>
<td>Lamproite</td>
<td>x</td>
</tr>
</tbody>
</table>

Detailed Descriptions

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Size/mm</th>
<th>Description</th>
</tr>
</thead>
</table>
Table 2 - Foelsche-Selby Project Samples

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FOELSCHE</td>
<td>EL22245</td>
<td>FEM-2L</td>
<td>658877</td>
<td>8124526</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>16/06/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F3CD</td>
<td>655921</td>
<td>8130181</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F3RKFT</td>
<td>655958</td>
<td>8129148</td>
<td>1</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F4R</td>
<td>657927</td>
<td>8131316</td>
<td>1</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F8SS</td>
<td>668155</td>
<td>8128161</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F8G</td>
<td>668155</td>
<td>8128161</td>
<td>1</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F9SS</td>
<td>666664</td>
<td>8123877</td>
<td>1</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F11-G1</td>
<td>669042</td>
<td>8136043</td>
<td>1</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F11-G2</td>
<td>668963</td>
<td>8136169</td>
<td>1</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F13G</td>
<td>665518</td>
<td>8138602</td>
<td>1</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FEMG-9S</td>
<td>659280</td>
<td>8134540</td>
<td>1</td>
<td></td>
<td></td>
<td>15</td>
<td>20/10/2005</td>
</tr>
<tr>
<td>SELBY</td>
<td>EL23510</td>
<td>FEMG-1</td>
<td>675255</td>
<td>8118475</td>
<td>34</td>
<td></td>
<td></td>
<td>20/10/2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EL23119</td>
<td>F9G</td>
<td>666501</td>
<td>8122852</td>
<td>1</td>
<td></td>
<td></td>
<td>16/06/2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SIM-3G</td>
<td>790155</td>
<td>8135211</td>
<td>1</td>
<td></td>
<td></td>
<td>18/06/2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SMA-1</td>
<td>790241</td>
<td>8133431</td>
<td>1</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SMA-1G</td>
<td>790241</td>
<td>8133431</td>
<td>1</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SIM-4R</td>
<td>789454</td>
<td>8130177</td>
<td>1</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 2.
Table 3

Results of soil and rock geochemistry over diamond sites.
CERTIFICATE BR05053596

Project:
P.O. No.:
This report is for 3 Soil samples submitted to our lab in Brisbane, QLD, Australia on 6-JUL-2005.
The following have access to data associated with this certificate:

To: ASTRO DIAMOND MINES NL
ATTN: JOHN CEPELECHA
PO BOX 6315
ST KILDA ROAD CENTRAL
MELBOURNE VIC 8008

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: ________________________
<table>
<thead>
<tr>
<th>Sample Description</th>
<th>Method</th>
<th>Analyte</th>
<th>Units</th>
<th>LOQ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WBB-2</td>
<td>XRF-Mg2</td>
<td>p.p.m.</td>
<td></td>
</tr>
<tr>
<td>F11-01</td>
<td>0.85</td>
<td>1</td>
<td>144.6</td>
<td>24.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.1</td>
<td>1</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>F11-01</td>
<td>0.30</td>
<td><1</td>
<td>38.3</td>
<td>21.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>30.2</td>
<td>36.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>1.0</td>
<td>20.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.98</td>
<td>0.2</td>
<td>20.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>1.2</td>
<td>21.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>1.4</td>
<td>22.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>0.6</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>F11-01</td>
<td>0.30</td>
<td><1</td>
<td>23.0</td>
<td>24.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>2.1</td>
<td>20.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.8</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>1.4</td>
<td>22.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>0.6</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>F11-01</td>
<td>0.35</td>
<td><1</td>
<td>26.5</td>
<td>26.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>2.1</td>
<td>20.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>1.4</td>
<td>22.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>0.6</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>EXTRA F11-62</td>
<td>0.62</td>
<td>0</td>
<td>284</td>
<td>38.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>6.4</td>
<td>20.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>2.1</td>
<td>21.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>4</td>
<td>27.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>F11-G1</td>
<td></td>
<td>11.9</td>
<td>0.2</td>
<td><2</td>
</tr>
<tr>
<td>F9-G</td>
<td></td>
<td>10.7</td>
<td>0.2</td>
<td>4</td>
</tr>
<tr>
<td>SIM-A/G</td>
<td></td>
<td>14.0</td>
<td>0.2</td>
<td>2</td>
</tr>
<tr>
<td>F3-G</td>
<td></td>
<td>16.4</td>
<td>0.2</td>
<td>2</td>
</tr>
<tr>
<td>EXTRA F11-G2</td>
<td></td>
<td>14.0</td>
<td>0.2</td>
<td>3</td>
</tr>
<tr>
<td>Sample Description</td>
<td>Method</td>
<td>Analyte</td>
<td>Units</td>
<td>LOR</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------</td>
<td>---------</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>ME-MSI1</td>
<td>JI-MSB</td>
<td>ppm</td>
<td>ppm</td>
</tr>
<tr>
<td>F11-01</td>
<td><0.5</td>
<td>0.1</td>
<td>1.0</td>
<td><1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F9-G</td>
<td><0.5</td>
<td>0.1</td>
<td>1.6</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMA-0G</td>
<td><0.5</td>
<td>0.2</td>
<td>1.2</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FB-G</td>
<td><0.5</td>
<td>0.2</td>
<td>1.4</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM-XG</td>
<td><0.5</td>
<td>0.2</td>
<td>1.5</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXTRA F11-02</td>
<td><0.5</td>
<td>0.2</td>
<td>1.4</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample Description</td>
<td>Method</td>
<td>Analyte</td>
<td>Units</td>
<td>LOQ</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------</td>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>NE-ICPES</td>
<td>U/E-ICPES</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F11-G1</td>
<td><0.0</td>
<td>0.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS-G</td>
<td>0.04</td>
<td>3.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMA-1G</td>
<td><0.0</td>
<td>1.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS-3</td>
<td>0.01</td>
<td>4.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM-3G</td>
<td>0.06</td>
<td>2.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXTRA F11-G2</td>
<td><0.0</td>
<td>10.06</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CERTIFICATE BR05053595

SAMPLE PREPARATION

<table>
<thead>
<tr>
<th>ALS CODE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1ME21</td>
<td>Received Sample Weight</td>
</tr>
<tr>
<td>FUL23</td>
<td>Pulv Sample - Split2/3rbins</td>
</tr>
<tr>
<td>CRU21</td>
<td>Crush entire sample >70% <6 mm</td>
</tr>
<tr>
<td>LEV01</td>
<td>Waste Disposal Levy</td>
</tr>
<tr>
<td>LOG22</td>
<td>Sample login - Read w/ BarCode</td>
</tr>
</tbody>
</table>

ANALYTICAL PROCEDURES

<table>
<thead>
<tr>
<th>ALS CODE</th>
<th>DESCRIPTION</th>
<th>INSTRUMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME-MS41</td>
<td>38 element fusion ICP-MS</td>
<td>ICP-MS</td>
</tr>
<tr>
<td>ME-ICP08</td>
<td>Whole Rock Package - ICP-AES</td>
<td>ICP-AES</td>
</tr>
<tr>
<td>ME-OGA05</td>
<td>H2O/LiO by TGA furnace</td>
<td>TGA</td>
</tr>
<tr>
<td>ME-XRF05</td>
<td>Whole Rock Package - XRF</td>
<td>XRF</td>
</tr>
</tbody>
</table>

To: ASTRO DIAMOND MINES NL
ATTN: JOHN CEPLECHA
PO BOX 6315
ST KILDA ROAD CENTRAL
MEELBOURNE VIC 3008

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: _______________________________
CERTIFICATE OF ANALYSIS

BR05053595

<table>
<thead>
<tr>
<th>Sample Description</th>
<th>Method</th>
<th>Nature of Inorganic Analysis</th>
<th>Units</th>
<th>LOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUM-7</td>
<td>WS-21</td>
<td>SiO2</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Al2O3</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fe2O3</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K2O</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MgO</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Na2O</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td><K2O</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td><SiO2</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td><Fe2O3</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td><MgO</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td><Na2O</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LOE</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td>P4R</td>
<td></td>
<td>CaCO3</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MgCO3</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fe2O3</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K2O</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MgO</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Na2O</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td><K2O</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td><SiO2</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td><Fe2O3</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td><MgO</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td><Na2O</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LOE</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td>SIM-3R</td>
<td></td>
<td>CaCO3</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MgCO3</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fe2O3</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K2O</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MgO</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Na2O</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td><K2O</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td><SiO2</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td><Fe2O3</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td><MgO</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td><Na2O</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LOE</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td>P11-20R</td>
<td></td>
<td>CaCO3</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MgCO3</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fe2O3</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K2O</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MgO</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Na2O</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td><K2O</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td><SiO2</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td><Fe2O3</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td><MgO</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td><Na2O</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LOE</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td>P39-RRF</td>
<td></td>
<td>CaCO3</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MgCO3</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fe2O3</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K2O</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MgO</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Na2O</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td><K2O</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td><SiO2</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td><Fe2O3</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td><MgO</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td><Na2O</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LOE</td>
<td>%</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Method Details

- **WS-21**: General Method for the Determination of Inorganic Constituents in Soils and Sediments
- **SiO2**, **Al2O3**, **Fe2O3**, **K2O**, **MgO**, **Na2O**, **<K2O**, **<SiO2**, **<Fe2O3**, **<MgO**, **<Na2O**, **LOE**: Units and LOE (Limit of Detection) values provided.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ME-MS1</td>
<td>ME-MS2</td>
<td>ME-MS3</td>
<td>ME-MS4</td>
<td>ME-MS5</td>
<td>ME-MS6</td>
<td>ME-MS7</td>
<td>ME-MS8</td>
<td>ME-MS9</td>
<td>ME-MS10</td>
<td>ME-MS11</td>
<td>ME-MS12</td>
<td>ME-MS13</td>
<td>ME-MS14</td>
<td>ME-MS15</td>
</tr>
<tr>
<td></td>
<td>ppm</td>
</tr>
<tr>
<td>HUM1</td>
<td>95.05</td>
<td><1</td>
<td>37.2</td>
<td>62</td>
<td>2.7</td>
<td><10</td>
<td>0.8</td>
<td>47</td>
<td>2.6</td>
<td>1.7</td>
<td>0.3</td>
<td>2</td>
<td>1.7</td>
<td><1</td>
<td>0.1</td>
</tr>
<tr>
<td>F4R1</td>
<td>100.0</td>
<td><1</td>
<td>42.2</td>
<td>20.2</td>
<td>8.0</td>
<td>10</td>
<td>2.1</td>
<td>28</td>
<td>1.1</td>
<td>0.6</td>
<td>0.3</td>
<td>6</td>
<td>1.6</td>
<td>2</td>
<td>0.3</td>
</tr>
<tr>
<td>5IN-4R</td>
<td>98.01</td>
<td><1</td>
<td>87.5</td>
<td>12.0</td>
<td>0.3</td>
<td>10</td>
<td>0.7</td>
<td>17</td>
<td>1.6</td>
<td>10.6</td>
<td>2.1</td>
<td>24</td>
<td>13.4</td>
<td>14</td>
<td>3.4</td>
</tr>
<tr>
<td>FH-02R</td>
<td>99.25</td>
<td><1</td>
<td>63.2</td>
<td>91.1</td>
<td>11.2</td>
<td>10</td>
<td>3.2</td>
<td>7</td>
<td>2.3</td>
<td>1.4</td>
<td>0.8</td>
<td>7</td>
<td>3.0</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>FH-04F</td>
<td>100.03</td>
<td><1</td>
<td>57.9</td>
<td>71.5</td>
<td>4.6</td>
<td>60</td>
<td>0.8</td>
<td>76</td>
<td>2.0</td>
<td>1.1</td>
<td>0.4</td>
<td>4</td>
<td>1.6</td>
<td>2</td>
<td>0.4</td>
</tr>
<tr>
<td>F12-0</td>
<td>95.86</td>
<td><1</td>
<td>31.1</td>
<td>36.2</td>
<td>1.8</td>
<td>10</td>
<td>2.0</td>
<td>6</td>
<td>3.0</td>
<td>1.2</td>
<td>0.5</td>
<td>7</td>
<td>2.9</td>
<td>2</td>
<td>0.2</td>
</tr>
<tr>
<td>F14-R</td>
<td>100.4</td>
<td><1</td>
<td>17.0</td>
<td>30.4</td>
<td>4.6</td>
<td>40</td>
<td>1.5</td>
<td>9</td>
<td>1.7</td>
<td>1.1</td>
<td>0.4</td>
<td>6</td>
<td>1.9</td>
<td>2</td>
<td>0.4</td>
</tr>
<tr>
<td>MCY1</td>
<td>98.52</td>
<td><1</td>
<td>2000.0</td>
<td>51.1</td>
<td>61.3</td>
<td>1840</td>
<td>5.4</td>
<td>75</td>
<td>3.3</td>
<td>1.5</td>
<td>0.1</td>
<td>9</td>
<td>11.8</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>MCY2</td>
<td>98.46</td>
<td><1</td>
<td>341.9</td>
<td>142.0</td>
<td>33.3</td>
<td>60</td>
<td>3.0</td>
<td>32</td>
<td>3.2</td>
<td>1.8</td>
<td>1.1</td>
<td>7</td>
<td>3.2</td>
<td>6</td>
<td>0.6</td>
</tr>
<tr>
<td>MCY3</td>
<td>97.07</td>
<td><1</td>
<td>988.2</td>
<td>231.1</td>
<td>74.1</td>
<td>1440</td>
<td>2.1</td>
<td>72</td>
<td>2.7</td>
<td>1.3</td>
<td>1.5</td>
<td>7</td>
<td>1.5</td>
<td>2</td>
<td>0.5</td>
</tr>
</tbody>
</table>
CERTIFICATE OF ANALYSIS

BR05053595

<table>
<thead>
<tr>
<th>Sample Description</th>
<th>Mg-MS81</th>
<th>Mg-MS83</th>
<th>Mg-MS84</th>
<th>Mg-MS85</th>
<th>Mg-MS86</th>
<th>Mg-MS87</th>
<th>Mg-MS88</th>
<th>Mg-MS89</th>
<th>Mg-MS90</th>
<th>Mg-MS91</th>
<th>Mg-MS92</th>
<th>Mg-MS93</th>
<th>Mg-MS94</th>
<th>Mg-MS95</th>
<th>Mg-MS96</th>
<th>Mg-MS97</th>
<th>Mg-MS98</th>
<th>Mg-MS99</th>
<th>Mg-MS100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ppm</td>
<td></td>
</tr>
<tr>
<td>HUM-1</td>
<td><0.5</td>
<td>0.2</td>
<td><0.5</td>
<td>19</td>
<td>1.8</td>
<td>13.3</td>
<td>0.84</td>
<td>0.24</td>
<td>0.49</td>
<td>0.64</td>
<td>0.37</td>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F4R</td>
<td><0.5</td>
<td>0.1</td>
<td>11.1</td>
<td>28</td>
<td>2.1</td>
<td>8.8</td>
<td>0.24</td>
<td><0.5</td>
<td>0.37</td>
<td>0.27</td>
<td>0.65</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E11-62R</td>
<td><0.5</td>
<td>0.2</td>
<td>1.1</td>
<td>1.1</td>
<td>13.3</td>
<td>1.2</td>
<td>10</td>
<td>95.8</td>
<td>4.64</td>
<td>2.24</td>
<td>7.08</td>
<td>5.03</td>
<td>0.39</td>
<td>1.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E11-63R</td>
<td><0.5</td>
<td>0.2</td>
<td>4.2</td>
<td>43</td>
<td>1.1</td>
<td>7.3</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F13-6</td>
<td><0.5</td>
<td>0.2</td>
<td>1.7</td>
<td>42</td>
<td>2</td>
<td>19.6</td>
<td>1.8</td>
<td>6.8</td>
<td>281</td>
<td>4.87</td>
<td>2.36</td>
<td>9.46</td>
<td>0.46</td>
<td>9.54</td>
<td>2.36</td>
<td>9.46</td>
<td>0.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E24-RR</td>
<td><0.5</td>
<td>0.2</td>
<td>3.0</td>
<td>51</td>
<td>1.1</td>
<td>8.8</td>
<td>1.1</td>
<td>60</td>
<td>95.8</td>
<td>2.77</td>
<td>35.4</td>
<td>0.42</td>
<td>0.10</td>
<td>0.33</td>
<td>0.27</td>
<td>0.10</td>
<td>0.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCV-1</td>
<td><0.5</td>
<td>0.2</td>
<td>0.06</td>
<td>0.07</td>
<td>12.4</td>
<td>0.3</td>
<td>64</td>
<td>95.2</td>
<td>3.85</td>
<td>12.78</td>
<td>1.39</td>
<td>12.99</td>
<td>0.10</td>
<td>1.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCV-2</td>
<td><0.5</td>
<td>0.2</td>
<td>4.0</td>
<td>36</td>
<td>3</td>
<td>16.8</td>
<td>1.8</td>
<td>32</td>
<td>293</td>
<td>4.31</td>
<td>6.00</td>
<td>2.41</td>
<td>8.00</td>
<td>0.11</td>
<td>1.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCV-3</td>
<td><0.5</td>
<td>0.2</td>
<td>6.0</td>
<td>43</td>
<td>2</td>
<td>11.6</td>
<td>1.0</td>
<td>46</td>
<td>97.7</td>
<td>3.33</td>
<td>6.56</td>
<td>10.90</td>
<td>33.8</td>
<td>0.54</td>
<td>1.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample Description</td>
<td>Method</td>
<td>Analyte Units</td>
<td>LOQ</td>
<td>LOQ %</td>
<td>QC %</td>
<td>QC %</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>--------</td>
<td>----------------</td>
<td>-----</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>HUM7</td>
<td></td>
<td></td>
<td></td>
<td>0.01</td>
<td>50.92</td>
<td></td>
</tr>
<tr>
<td>F-R</td>
<td></td>
<td></td>
<td>0.01</td>
<td>2.99</td>
<td></td>
</tr>
<tr>
<td>B1M-4R</td>
<td></td>
<td></td>
<td>0.01</td>
<td>13.21</td>
<td></td>
</tr>
<tr>
<td>F11-DSR</td>
<td></td>
<td></td>
<td>0.16</td>
<td>1.85</td>
<td></td>
</tr>
<tr>
<td>F3-RKT</td>
<td></td>
<td></td>
<td>0.10</td>
<td>1.88</td>
<td></td>
</tr>
<tr>
<td>F13-G</td>
<td></td>
<td></td>
<td>1.04</td>
<td>4.00</td>
<td></td>
</tr>
<tr>
<td>F4-PF</td>
<td></td>
<td></td>
<td>0.84</td>
<td>5.55</td>
<td></td>
</tr>
<tr>
<td>MCY1</td>
<td></td>
<td></td>
<td>0.37</td>
<td>5.45</td>
<td></td>
</tr>
<tr>
<td>MCY2</td>
<td></td>
<td></td>
<td>0.58</td>
<td>14.71</td>
<td></td>
</tr>
<tr>
<td>MCY3</td>
<td></td>
</tr>
</tbody>
</table>
Table 4

Soil geochemistry results over FEMG-1 and FEMG-9: Results of soil and rock geochemistry over diamond sites.
CERTIFICATE BR05091523

Project:
P.O. No.:
This report is for 49 Soil samples submitted to our lab in Brisbane, QLD, Australia on 26-OCT-2005.
The following have access to data associated with this certificate:

JOHN CEPELECHA

SAMPLE PREPARATION

<table>
<thead>
<tr>
<th>ALS CODE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>WE1-21</td>
<td>Received Sample Weight</td>
</tr>
<tr>
<td>LOG-22</td>
<td>Sample login - Rd w/ BarCode</td>
</tr>
<tr>
<td>LEV-01</td>
<td>Waste Disposal Levy</td>
</tr>
<tr>
<td>FUL-21</td>
<td>Pulverize entire sample</td>
</tr>
</tbody>
</table>

ANALYTICAL PROCEDURES

<table>
<thead>
<tr>
<th>ALS CODE</th>
<th>DESCRIPTION</th>
<th>INSTRUMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE-MS62e</td>
<td>Up to 54 elements by ICP-MS</td>
<td>ICP-MS</td>
</tr>
<tr>
<td>NE-ICP81s</td>
<td>Up to 27 Elements 4 Acid ICPAES</td>
<td>ICP-AES</td>
</tr>
</tbody>
</table>

To: ASTRO DIAMOND MINES NL
ATTN: JOHN CEPELECHA
PO BOX 5315
ST KILDA ROAD CENTRAL
MELBOURNE VIC 8008

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: ___________________________
<table>
<thead>
<tr>
<th>Sample Description</th>
<th>Method</th>
<th>Analyte</th>
<th>Units</th>
<th>LTD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Co</td>
<td>ppm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cr</td>
<td>ppm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mg</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zn</td>
<td>ppm</td>
<td>ppm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pb</td>
<td>ppm</td>
<td>ppm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cu</td>
<td>ppm</td>
<td>ppm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cr</td>
<td>ppm</td>
<td>ppm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mg</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zn</td>
<td>ppm</td>
<td>ppm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pb</td>
<td>ppm</td>
<td>ppm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cu</td>
<td>ppm</td>
<td>ppm</td>
</tr>
</tbody>
</table>

PEM-150 W	1	1.02	0.01	3	50	2	1.2
PEM-150 W	1	1.29	0.02	4	50	2	1.7
PEM-250 W	<1	0.34	0.01	4	50	<2	1.5
PEM-300 W	1	0.58	0.02	3	70	2	1.7
PEM-50 N	2	0.64	0.02	3	50	2	1.8
PEM-100 N	1	0.65	0.01	3	50	2	1.8
PEM-150 N	1	0.74	0.01	3	40	2	1.4
PEM-200 N	2	1.13	0.02	4	50	<2	1.3
PEM-250 N	1	0.78	0.01	3	50	2	1.8
PEM-300 N	1	0.80	0.01	3	50	2	1.8
PEM-50 E	2	0.56	0.02	3	80	2	1.9
PEM-100 E	1	0.85	0.01	3	50	2	1.8
PEM-150 E	1	0.52	0.02	2	50	2	1.0
PEM-200 E	2	0.50	0.02	<2	70	2	1.0
PEM-300 E	1	0.43	0.02	2	70	2	1.0
PEM-50 S	1	0.76	0.01	3	40	2	1.3
PEM-100 S	1	0.48	0.01	3	50	<2	1.4
PEM-150 S	1	0.60	0.01	3	50	<2	1.4
PEM-200 S	1	0.66	0.01	3	40	2	1.4
PEM-300 S	1	0.67	0.01	4	70	3	1.8
PEM-50 NNE	2	0.76	0.01	3	70	2	1.2
PEM-100 NNE	1	0.59	0.01	2	50	<2	1.0
PEM-200 NNE	2	0.62	0.02	3	90	2	1.7
PEM-300 NNE	4	0.57	0.06	6	110	4	3.0
PEM-100 NSW	3	0.63	0.04	3	70	3	2.4
PEM-150 NSW	3	0.50	0.06	4	90	3	3.0
PEM-200 NSW	1	0.39	0.03	9	80	8	4.4
PEM-300 NSW	1	0.57	0.02	3	60	2	1.6
PEM-50 S	1	0.53	0.02	2	40	<2	1.2
PEM-100 S	2	0.69	0.01	4	40	<2	1.4
PEM-150 S	1	0.78	0.01	3	30	<2	1.5
PEM-200 S	1	0.60	0.01	4	30	2	1.5
PEM-300 S	1	0.70	0.01	3	30	2	1.4
PEM-50 S	<1	0.06	0.02	3	30	2	1.5
CERTIFICATE OF ANALYSIS BR05091523

Sample Description	Method Analyte Units LOE	%	ppm								
FEM 36-150 S			1	57	0.02	3	30	3	1.6		
FEM 36-200 S		<1	72	0.02	3	60	2	1.6			
FEM 36-60 E			70	0.01	2	30	<2	1.1			
FEM 36-100 E			46	0.02	4	60	2	2.0			
FEM 36-150 E			62	0.02	4	30	2	1.8			
FEM 36-50 W			59	0.01	3	30	<2	0.3			
FEM 36-100 W		<1	66	0.02	3	40	2	1.4			
FEM 36-160 W			60	0.02	3	30	2	1.5			
FEM 36-CENTRE			79	0.02	4	70	2	1.7			
CERTIFICATE BR05103176

Project: EX BR05091523
P.O. No.:
This report is for 49 Pulp samples submitted to our lab in Brisbane, QLD, Australia on 28-NOV-2003.
The following have access to data associated with this certificate:

JOHN CEPLECHA

SAMPLE PREPARATION

<table>
<thead>
<tr>
<th>ALS CODE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEI-21</td>
<td>Received Sample Weight</td>
</tr>
<tr>
<td>LDG-22</td>
<td>Sample log - Red w/ BarCode</td>
</tr>
<tr>
<td>LEV-01</td>
<td>Waste Disposal Levy</td>
</tr>
</tbody>
</table>

ANALYTICAL PROCEDURES

<table>
<thead>
<tr>
<th>ALS CODE</th>
<th>DESCRIPTION</th>
<th>INSTRUMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME-MG82</td>
<td>Complete rare earth package</td>
<td>ICP-MS</td>
</tr>
</tbody>
</table>

To: ASTRO DIAMOND MINES NL
ATN: JOHN CEPLECHA
PO BOX 6315
ST KILDA ROAD CENTRAL
MELBOURNE VIC 3008

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: __________________________

Page dimensions: 595.2x841.4
This copy reported on: 22-DEC-2005
Account: ASTDIA
<table>
<thead>
<tr>
<th>Sample Description</th>
<th>Method</th>
<th>Analyte Units</th>
<th>LOD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>M/10^6</td>
<td>M/10^6</td>
</tr>
<tr>
<td>FEM-100 W</td>
<td></td>
<td>9.9</td>
<td>0.8</td>
</tr>
<tr>
<td>FEM-1-100 W</td>
<td></td>
<td>16.6</td>
<td>1.5</td>
</tr>
<tr>
<td>FEM-1-150 W</td>
<td></td>
<td>17.4</td>
<td>1.4</td>
</tr>
<tr>
<td>FEM-1-200 W</td>
<td></td>
<td>14.6</td>
<td>1.3</td>
</tr>
<tr>
<td>FEM-1-250 W</td>
<td></td>
<td>14.3</td>
<td>1.2</td>
</tr>
<tr>
<td>FEM-1-300 W</td>
<td></td>
<td>17.2</td>
<td>1.4</td>
</tr>
<tr>
<td>FEM-1-50 N</td>
<td></td>
<td>13.1</td>
<td>1.4</td>
</tr>
<tr>
<td>FEM-1-100 K</td>
<td></td>
<td>11.7</td>
<td>1.2</td>
</tr>
<tr>
<td>FEM-1-150 K</td>
<td></td>
<td>8.9</td>
<td>1.0</td>
</tr>
<tr>
<td>FEM-1-200 K</td>
<td></td>
<td>10.0</td>
<td>0.3</td>
</tr>
<tr>
<td>FEM-1-250 K</td>
<td></td>
<td>11.5</td>
<td>1.1</td>
</tr>
<tr>
<td>FEM-1-300 K</td>
<td></td>
<td>15.1</td>
<td>1.2</td>
</tr>
<tr>
<td>FEM-1-100 E</td>
<td></td>
<td>12.4</td>
<td>1.7</td>
</tr>
<tr>
<td>FEM-1-150 E</td>
<td></td>
<td>15.5</td>
<td>1.3</td>
</tr>
<tr>
<td>FEM-1-200 E</td>
<td></td>
<td>11.2</td>
<td>1.1</td>
</tr>
<tr>
<td>FEM-1-250 E</td>
<td></td>
<td>13.8</td>
<td>1.1</td>
</tr>
<tr>
<td>FEM-1-300 E</td>
<td></td>
<td>11.2</td>
<td>1.0</td>
</tr>
<tr>
<td>FEM-1-100 S</td>
<td></td>
<td>45.0</td>
<td>1.2</td>
</tr>
<tr>
<td>FEM-1-150 S</td>
<td></td>
<td>14.5</td>
<td>1.1</td>
</tr>
<tr>
<td>FEM-1-200 S</td>
<td></td>
<td>14.4</td>
<td>1.3</td>
</tr>
<tr>
<td>FEM-1-250 S</td>
<td></td>
<td>8.3</td>
<td>0.8</td>
</tr>
<tr>
<td>FEM-1-300 S</td>
<td></td>
<td>10.3</td>
<td>0.9</td>
</tr>
<tr>
<td>FEM-1-100 N</td>
<td></td>
<td>11.4</td>
<td>1.1</td>
</tr>
<tr>
<td>FEM-1-150 N</td>
<td></td>
<td>10.3</td>
<td>1.1</td>
</tr>
<tr>
<td>FEM-1-200 N</td>
<td></td>
<td>12.7</td>
<td>1.2</td>
</tr>
<tr>
<td>FEM-1-250 N</td>
<td></td>
<td>11.0</td>
<td>1.0</td>
</tr>
<tr>
<td>FEM-1-300 N</td>
<td></td>
<td>8.0</td>
<td>0.9</td>
</tr>
<tr>
<td>FEM-1-100 NNE</td>
<td></td>
<td>6.1</td>
<td>0.9</td>
</tr>
<tr>
<td>FEM-1-150 NNE</td>
<td></td>
<td>12.9</td>
<td>1.1</td>
</tr>
<tr>
<td>FEM-1-200 NNE</td>
<td></td>
<td>24.5</td>
<td>2.1</td>
</tr>
<tr>
<td>FEM-1-250 NNE</td>
<td></td>
<td>15.9</td>
<td>1.7</td>
</tr>
<tr>
<td>FEM-1-300 NNE</td>
<td></td>
<td>22.0</td>
<td>2.2</td>
</tr>
<tr>
<td>FEM-1-100 NE</td>
<td></td>
<td>33.2</td>
<td>2.8</td>
</tr>
<tr>
<td>FEM-1-150 NE</td>
<td></td>
<td>11.0</td>
<td>1.1</td>
</tr>
<tr>
<td>Sample Description</td>
<td>Method</td>
<td>Analyte</td>
<td>Units</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Y</td>
<td>ppm</td>
</tr>
<tr>
<td>PEM 1-50 W</td>
<td></td>
<td>5.4</td>
<td>0.6</td>
</tr>
<tr>
<td>PEM 1-100 W</td>
<td></td>
<td>9.2</td>
<td>0.9</td>
</tr>
<tr>
<td>PEM 1-200 W</td>
<td></td>
<td>8.4</td>
<td>0.9</td>
</tr>
<tr>
<td>PEM 1-250 W</td>
<td></td>
<td>8.5</td>
<td>0.9</td>
</tr>
<tr>
<td>PEM 1-300 W</td>
<td></td>
<td>7.9</td>
<td>0.6</td>
</tr>
<tr>
<td>PEM 1-50 N</td>
<td></td>
<td>8.9</td>
<td>0.9</td>
</tr>
<tr>
<td>PEM 1-100 N</td>
<td></td>
<td>10.2</td>
<td>1.1</td>
</tr>
<tr>
<td>PEM 1-200 N</td>
<td></td>
<td>7.5</td>
<td>0.7</td>
</tr>
<tr>
<td>PEM 1-300 N</td>
<td></td>
<td>5.9</td>
<td>0.7</td>
</tr>
<tr>
<td>PEM 1-50 E</td>
<td></td>
<td>7.4</td>
<td>0.8</td>
</tr>
<tr>
<td>PEM 1-100 E</td>
<td></td>
<td>6.4</td>
<td>0.9</td>
</tr>
<tr>
<td>PEM 1-200 E</td>
<td></td>
<td>7.6</td>
<td>0.8</td>
</tr>
<tr>
<td>PEM 1-50 S</td>
<td></td>
<td>9.7</td>
<td>1.0</td>
</tr>
<tr>
<td>PEM 1-100 S</td>
<td></td>
<td>7.1</td>
<td>0.8</td>
</tr>
<tr>
<td>PEM 1-200 S</td>
<td></td>
<td>7.0</td>
<td>0.8</td>
</tr>
<tr>
<td>PEM 1-50 N/E</td>
<td></td>
<td>7.6</td>
<td>0.8</td>
</tr>
<tr>
<td>PEM 1-100 N/E</td>
<td></td>
<td>5.7</td>
<td>0.6</td>
</tr>
<tr>
<td>PEM 1-200 N/E</td>
<td></td>
<td>6.0</td>
<td>0.6</td>
</tr>
<tr>
<td>PEM 1-50 N/E</td>
<td></td>
<td>7.5</td>
<td>0.8</td>
</tr>
<tr>
<td>PEM 1-100 N/E</td>
<td></td>
<td>7.4</td>
<td>0.8</td>
</tr>
<tr>
<td>PEM 1-200 N/E</td>
<td></td>
<td>7.0</td>
<td>0.8</td>
</tr>
<tr>
<td>PEM 1-50 N/E</td>
<td></td>
<td>7.4</td>
<td>0.8</td>
</tr>
<tr>
<td>PEM 1-100 N/E</td>
<td></td>
<td>5.0</td>
<td>0.6</td>
</tr>
<tr>
<td>PEM 1-200 N/E</td>
<td></td>
<td>6.3</td>
<td>0.7</td>
</tr>
<tr>
<td>PEM 1-50 NNW</td>
<td></td>
<td>7.9</td>
<td>0.8</td>
</tr>
<tr>
<td>PEM 1-100 NNW</td>
<td></td>
<td>7.0</td>
<td>0.8</td>
</tr>
<tr>
<td>PEM 1-200 NNW</td>
<td></td>
<td>13.8</td>
<td>1.4</td>
</tr>
<tr>
<td>PEM 1-50 NNW</td>
<td></td>
<td>12.2</td>
<td>1.3</td>
</tr>
<tr>
<td>PEM 1-100 NNW</td>
<td></td>
<td>13.7</td>
<td>1.6</td>
</tr>
<tr>
<td>PEM 1-200 NNW</td>
<td></td>
<td>16.8</td>
<td>1.6</td>
</tr>
<tr>
<td>PEM 1-50 NNW</td>
<td></td>
<td>7.3</td>
<td>0.8</td>
</tr>
</tbody>
</table>