E.L. 6166

EXPLORATION OPPORTUNITY:

FINNIS RIVER - RUM JUNGLE AREA N.T.
E.L. 6166: GOLD EXPLORATION OPPORTUNITY, FINNIS RIVER
RUM JUNGLE AREA.

Exploration Licence 6166 was granted on the 22nd of March 1989, to Linc Enterprises Pty.Ltd. 50% and D.Langley 50%. The area comprises 31 blocks with an area of 100 square kilometres.

GEOLOGY
This E.L. is situated approximately 10 Km. west of the edge of the archean Rum Jungle granite complex, around which several uranium, gold and base metal deposits have been found.

The area is covered by the "BYNOE" sheet of the 1:100,000 Geological series (1986). This sheet shows the E.L.to be covered by rocks of the early Proterozoic Burrell Creek Formation, but has not mapped detail of the specific classifications of the lithology.

Please refer to the attached copies of the Geological and Topographical sheets.

HISTORY
Gold was first reported in the area (Finniss River) in 1865 by the explorer Fred Litchfield.

In 1869 the Surveyor G.W.Goyder reported alluvial gold on the Blackmore, Charlotte, and Finniss Rivers.

Numerous reports of alluvial gold in the area were reported by the diggers participating in the early rushes to Pine Creek etc. from 1872 onwards. The "Tumbling Waters Prospecting Co." was then floated to search for the source of this gold, but apparently expended little effort and met with no success.

In 1906 a prospector, Mr. C.J.Clarke reported finding a copper lode on the Peel Creek and alluvial gold in the Finnis River.

In more recent years several mining companies have prospected the general area for uranium minerals.

In 1987, Mr. Langley traced the alluvial gold in the Blackmore River, upstream into the Peel Creek as far as Spencer Road on Sec.787. This encouraged Mr.N.Manhire of Linc Enterprises Pty. Ltd. to apply for this exploration licence.
In 1990 a Darwin River resident remarked to Mr. Langley that he had seen "two mine shafts, somewhere in the Peel Creek area." These have not yet been located, despite a search by aircraft.

A large old stone kiln was found on the northern end of the E.L. Traces of tin (metal) were panned from the hearth.

RECENT EXPLORATION

Because of the coarse nature of the observed gold in the Peel Creek, it was decided that sampling would consist mainly of panning screened 5kg. samples of stream and alluvial gravel. Some 5kg BLEG samples were also taken as a check on the panning.

Rock chip samples were milled in a portable mill and the pulp panned. Some samples were also checked by fire and AAS assays.

During 1989 an anomalous area of gold mineralization was defined. See "Peel Reefs" on attached map. This area is approximately seven kilometres long and 200 metres wide.

The anomalous area contains the finer grained (Lutite) rocks of the Burrel Creek formation. These beds of siltstone, shale and phyllite vary in thickness from centimetres to metres and are typically reddish brown, grey, green or yellow in outcrop. Numerous quartz reefs up to a metre in width, strike North east through the area.

Visible gold was observed in most alluvial samples in the anomalous area. Because of the coarse nature of the gold, care should be taken when evaluating BLEG samples. Vis. BLEG sample No.28242 was taken on the main creek cutting through the strike. The sample was digested (Classic Labs.) for two days and gave a result of 3.66 ppb. A 5kg. panned sample of the gravel showed six visible specks of gold, with the largest speck approaching .1 gm in weight!

It appears from these results, that very little of the gold in the BLEG sample was digested.

Several rock chip samples showed visible although low grade gold when milled. The highest assay result obtained in this area was .18 ppm. None of the siltstones were sampled.

We have grid pegged approximately four kilometres of the strike.
During 1990 another anomalous area was discovered. This consisted of two parallel quartz reefs on the Peel Creek. See "Nevs Reef" on attached Topo. map. The larger reef outcrops for approximately 100 metres with a width of one metre. This reef shows some arsenopyrite and limonite. A milled sample showed low grade coarse gold. A fire assay gave a result of .24 ppm. (attached).

The smaller reef outcrops for approximately thirty metres with a width of one metre. This reef contains a significant amount of arsenopyrite and limonite and traces of copper, lead and gold. A milled sample showed low grade coarse gold. Two fire assays gave results of .95 ppm. and .3 ppm. (Attached).

No previous prospecting activity was evident on either anomalous area.

SUMMARY

Our exploration target, is a small rich deposit that we can mine on a small scale. We feel that this E.L. has good potential for a large low grade gold deposit. As this would be outside our financial resources, we are looking for an interested prospecting company to continue exploration.

Because there is still potential for small rich reefs, we would wish to retain some equity in the area.

We are active mineral explorers within the N.T. and have two other E.L. applications in progress. We are also "watching" numerous other areas of interest.

We also offer the following services to the mining industry:

Information searches, claim and grid pegging, E.L. and claim application, trenching and minor earthmoving, chip and sediment sampling, exploration reports and engineering surveying.

For further information, or to arrange a field inspection of E.L.6166, please contact us one one of the numbers below.

Yours Faithfully,

D.O. Langley
Prospecting Services
Ph. (089) 881520

N.J. Manhire
Linc Enterprises Pty. Ltd.
Ph. (089) 274956
Mr. David Langley is the proprietor of Prospecting Services and has been a Darwin resident for thirty-five years.

Prior to entering self employment ten years ago, Mr Langley spent sixteen years with the Department of Lands and Housing (N.T.). As a Senior Technical Officer, his duties included carrying out the more difficult engineering surveys and supervising other technical staff.

Current business interests include providing services to Mining Companies, Government Departments, and Civil Engineering Contractors.

Mr. Langley has been prospecting for over thirty years, mostly in the N.T. and has located several economic deposits.

In 1988 he sold Mineral Lease N 866 (Golden Dyke Sth.) to Zapopan N.L. This claim had proven reserves of 175,000 tonnes of 3 g/t. Au. and was open pit mined in 1988/89.
Mr. Neville Manhire is the managing director of Linc Enterprises and has been a Darwin resident for twenty-three years.

Mr. Manhire has had almost a decade of Public Service experience as an Administrative officer. He performed a variety of tasks, up to and including middle management positions. He resigned in 1985 to establish Linc Enterprises Pty. Ltd. which is a successful local company.

In 1988 Mr. Manhire first met Mr. David Langley who was at the time conducting a prospecting course through the N.T. Open College. Since then they have formed an enthusiastic prospecting partnership.

The business interests of Linc Enterprises Pty. Ltd. include a contract professional and technical personel agency, landscaping and minor earthmoving as well as mineral exploration.

The Company owns excavation equipment suitable for prospecting purposes.

With Mr. Manhire's business and administrative background and Mr. Langley's many years of prospecting and surveying experience, the partnership offers mineral exploration companies with a well equipped, efficient and cost effective prospecting service.
<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>Ag</th>
<th>Au</th>
<th>Au</th>
</tr>
</thead>
<tbody>
<tr>
<td>27946</td>
<td>2</td>
<td><0.01</td>
<td>0.95</td>
</tr>
<tr>
<td>27948</td>
<td>2</td>
<td><0.01</td>
<td>0.24</td>
</tr>
<tr>
<td>27950</td>
<td>2</td>
<td>0.01</td>
<td>0.30</td>
</tr>
<tr>
<td>27951</td>
<td>2</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>27955</td>
<td>2</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>27959</td>
<td>2</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>27960</td>
<td>2</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>27964</td>
<td>2</td>
<td>0.16</td>
<td>0.95</td>
</tr>
<tr>
<td>27965</td>
<td>2</td>
<td>0.16</td>
<td>0.24</td>
</tr>
<tr>
<td>27966</td>
<td>2</td>
<td>0.16</td>
<td>0.30</td>
</tr>
</tbody>
</table>

UNITS
- ppm
- ppm
- ppm

DET.LIM
- 1
- 0.01
- 0.01

SCHEME
- AAS2
- AAS8
- FA1
Zamu Dolerite

FINNIS RIVER GROUP

Unidentified unit

WELL TREE METAMORPHICS

SOUTH ALLIGATOR GROUP

MOUNT PARTRIDGE GROUP

RUM JUNGLE COMPLEX

Amphibole (metadolerite)

Quartz – feldspar – biotite gneiss, common garnet and sillimanite; quartzitic gneiss; quartzite; minor quartz – feldspar – muscovite gneiss

Marble, in places graphitic; para-amphibolite; calcilcite gneiss; quartz – feldspar – biotite gneiss; minor ultrabasic rocks

Biotite gneiss; amphibolite; minor quartzite

Shale, siltstone and phyllite in places colourbanded, fine to very coarse sandstone (quartz arenite, sublitharenite, arkose); quartzite; quartz pebble conglomerate; minor graphitic phyllite, quartz-mica schist and gneiss

Sechellial quartzite (after carbonate); siltstone, shale and phyllite, commonly carbonaceous and pyritic, in places chert – banded and silicified

Shale and siltstone, commonly carbonaceous and pyritic

Gächitc ironstone containing angular clasts of saukaria quartzite and minor clasts of black shale; quartzite breccia consisting of tabular and spherical quartzite fragments in a limonitic silty matrix

Shale and siltstone, commonly colour-banded and carbonaceous at depth; phyllite, in places carbonaceous; minor quartzite and quartz sandstone

Quartzite, commonly pyritic; sandstone, interbedded shale and phyllite, commonly carbonaceous

Slate and sericitic schist, commonly graphitic, pyritic and silicious, in places dolomitic; minor quartzite

Dolomite, marble and magnesite in places chloritic; nod remolic, commonly calcified or talcified at the surface; chloritic slate and sericitic schist, commonly graphitic (non-outcopping)

Haematite boulder conglomerate; cross-bedded pebbly arkose; pebble conglomerate; quartzite; sandstone; minor slate (non-outcopping)

Undivided granite, gneiss, schist

Leucocratic granite

Large – feldspar granite

Coarse granite

Metadolerite

Granite gneiss

Slate and gneiss

Banded iron formation

Unconformity