OPEN FILE

AARDEAU MINING NL.

WANDIE PROJECT AREA

RELINQUISHMENT REPORT.

NOVEMBER, 1990.

(MOUNT EVELYN 1:250,000 SHEET SD53-5)

VOLUME I - DESCRIPTION, FIGURES AND PLATES.

A.M. NORTON.

DME LIBRARY
0 2 MAR 1995
SCANNED

CR91/042A

SUMMARY.

The area relinquished in the Wandie Project Area consists of 25 graticular blocks.

Numerous old workings occur within this ground and these have been grid-mapped and sampled.

Where applicable, regional mapping has been carried out together with a photogeological study and a -80 mesh stream sediment sampling programme.

The stream sediment sampling programme detected zones of known (previously worked) mineralisation but follow up work showed no worthwhile additional mineralisation.

Drilling programmes have also been completed on portions of the area relinquished but these found no evidence of concentrations of mineralised material that would constitute a viable commercial extractive venture.

CONTENTS - VOLUME 1.

PREAMBLE.

SUMM	ARY.		
		Page	e No
1.	INTR	ODUCTION.	1
2.	LAND	TENURE/GROUND RELINQUISHED.	2
3.	REG1	ONAL GEOLOGY.	3.
4.	PREV	TOUS WORK.	4.
5.	WORK	COMPLETED 1987/88/89.	
	5.0	Work Completed - General Comments.	5.
	5.1	Stream Sediment Sampling Programmes. (a) Bulk Cyanide Leach and Stream Sediment Pilot Study carried out in 1987. (b) -80# Stream Sediment and BLEG Follow-up Sampling Programmes Undertaken - 1989 Season.	7.
	5.2	Photogeological Study - 1989.	8.
	5.3	Un-named Prospect - 1987.	8.
	5.4	Kim Prospect - 1987 and 1989.	8.
	5.5	Crest of the Wave Prospect - 1987.	12.
	5.6	West Brilliant Prospect - 1987.	12.
	5.7	Aston Hill Prospect - 1988.	13.
	5.8	Double Anti Prospect - 1989.	23.
6.	REFE	RENCES.	24.
7.	EXPENDITURE		

PREAMBLE.

The work which is the subject of this relinquishment report was carried out by Renison Limited as the Operator under a joint venture agreement with Aardeau Mining NL. The agreement made on 31/3/87 was terminated by Renison on the 30/6/90 within the terms of the said agreement and hence this report has been prepared by Aardeau from information generated by Renison.

The work done by Renison occupied three field seasons during the dry periods of 1987, 1988 and 1989. Much of the work on the areas relinquished occupied more than one season and hence is fragmented in the annual report format. In this presentation, the seasonal format has been maintained but the information has been rearranged so that the descriptive data concerning a particular area is covered under the heading of that area. In most instances it was necessary to reformat the information but where practicable it is included as a direct copy of the previous work.

For ease of subsequent cross reference, figure and plate numbers have been maintained as far as possible.

The field logs and assay data which are included in the appendices are presented by season but in each case the relevant area is clearly identified.

An index which is included clarifies these presentation aspects.

LIST OF PLATES - VOLUME I.

WANDIE PROJECT AREA.

- 15. GEOLOGICAL FACT MAP UN-NAMED AG/PB PROSPECT.
- 16. GEOLOGICAL FACT MAP CREST OF THE WAVE PROSPECT.
- 17. GEOLOGICAL FACT MAP BRILLIANT WEST PROSPECT.
- 18. LOCATION OF BULK LEACH CYANIDE AND STREAM SEDIMENT SAMPLES ASTON HILL.
- 32. BORE HOLE SECTION 6400N ASTON HILL PROSPECT.
- 33. BORE HOLE SECTION 6453N ASTON HILL PROSPECT.
- 34. BORE HOLE SECTION 6506N ASTON HILL PROSPECT.
- 35. BORE HOLE SECTION 6542N ASTON HILL PROSPECT.
- 36. BORE HOLE SECTION 6594N ASTON HILL PROSPECT.
- 37. BORE HOLE SECTION 6646N ASTON HILL PROSPECT.
- 38. BORE HOLE SECTION 6830N ASTON HILL PROSPECT.
- 39. BORE HOLE SECTION 6924N ASTON HILL PROSPECT.
- 40. BORE HOLE SECTION 6971N ASTON HILL PROSPECT.
- 41. BORE HOLE SECTION 7104N ASTON HILL PROSPECT.
- 42. BORE HOLE SECTION 7129N ASTON HILL PROSPECT.
- 43. BORE HOLE SECTION 7152N ASTON HILL PROSPECT.
- 44. BORE HOLE SECTION 7162N ASTON HILL PROSPECT.
- 45. BORE HOLE SECTION 7196N ASTON HILL PROSPECT.
- 46. BORE HOLE SECTION 7245N ASTON HILL PROSPECT.
- 47. BORE HOLE SECTION 7305N ASTON HILL PROSPECT.

LIST OF FIGURES - VOLUME I.

WANDIE PROJECT AREA.

- 1. POST 1990 RELINQUISHMENT LOCATION AND ACCESS DIAGRAM.
- 2. GROUND RELINQUISHED 1990.
- 3. NOT USED.
- 4. PHOTOGEOLOGICAL MAP and -80 MESH STREAM SEDIMENT SAMPLING, AREA RELINQUISHED 1990.
- 5. FACT GEOLOGY AND SAMPLE LOCATIONS DOUBLE ANTI PROSPECT.
- 6. FACT GEOLOGY AND SAMPLE LOCATIONS RELINQUISHED AREA MT. DIAMOND AND MT. DAVIS AREA.
- 7. NOT USED.
- 8. FACT GEOLOGY, SAMPLE AND DRILL HOLE LOCATIONS KIM PROSPECT.
- 31. GEOLOGICAL FACT MAP AND DRILL HOLE LOCATIONS ASTON HILL.

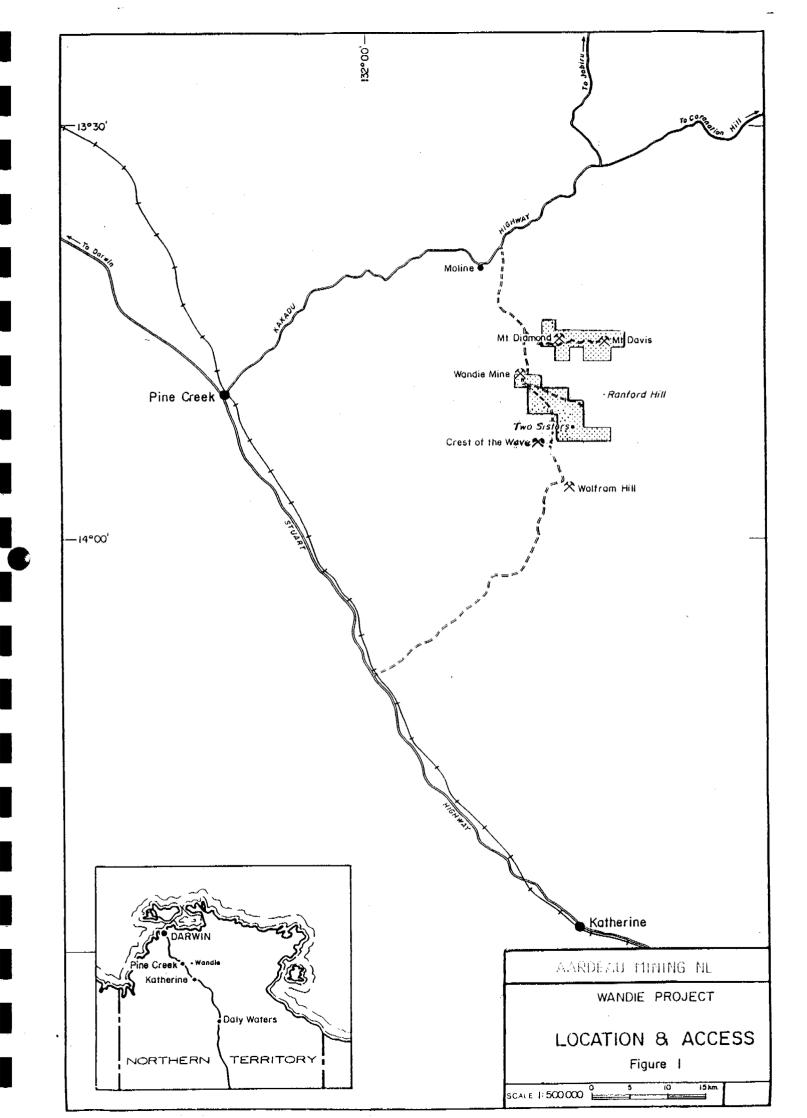
APPENDICES - VOLUME II.

APPENDIX 1. ASSAY RESULTS - WORK DONE 1987 SEASON.

- 1.1 Trench and Rock Chip Samples Analytical Method.
- 1.2 Trench and Rock Chip Samples Kim Prospect.
- 1.3 Trench and Rock Chip Samples Un-named Ag/Pb Prospect.
- 1.4 Trench and Rock Chip Samples Crest of the Wave Prospect
- 1.5 Trench and Rock Chip Samples West Brilliant Prospect.
- 1.6 Bulk Leach Samples.
- 1.7 80# Stream Sediment Sampling.

APPENDIX 2. ASSAY RESULTS - WORK DONE 1988 SEASON.

- 2.1. Assay Results Analytical Method.
- 2.2 Trench and Rock Chip Samples Aston Hill Prospect.
- 2.3 Drilling Logs and Assays Diamond Drilling Aston Hill.
- 2.4 Drilling Logs and Assays RC Drilling Aston Hill.


APPENDIX 3. ASSAY RESULTS - WORK DONE 1989 SEASON.

- 3.1 80# Stream Sediment Sampling Over General Area.
- 3.2 BLEG Results.
- 3.3 Rock Chip Samples Double Anti Prospect.
- 3.4 Drilling Logs and Assays RC Drilling Kim Prospect.
- 3.5 Trenching Kim Prospect.
- 3.6 Regional Work Mt Davis.

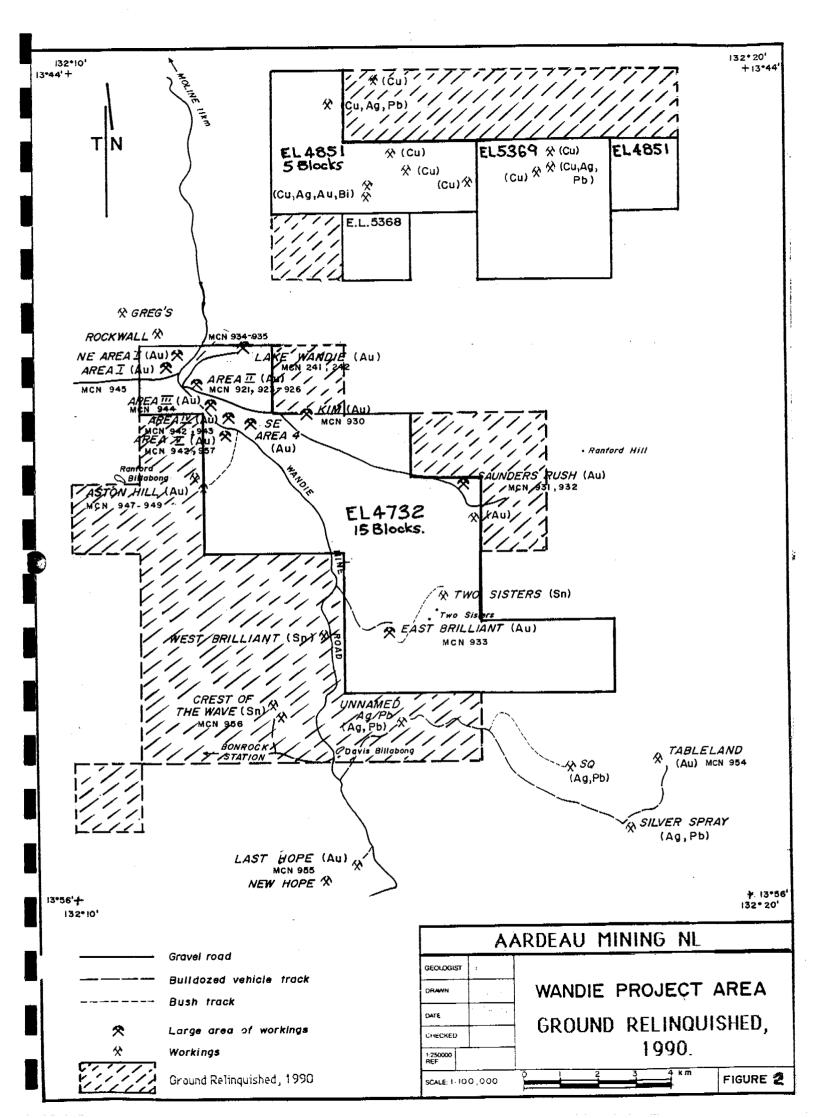
1. INTRODUCTION.

The Wandie Project Area is situated approximately 35 km east of the Pine Creek township. Access is provided by the Kakadu Highway to Moline and thence by the Wandie Mine Road into the Project Area (see figure 1).

Much of the Project Area is flat, poorly vegetated flood plains, the exceptions being the north, southeast and southwest corners where steeper country is encountered. The Project Area is generally inaccessible during most of the wet season.

2. LAND TENURE/GROUND RELINQUISHMENT.

Prior to the August 27th ground relinquishment the Project Area consisted of four EL's having a total area of 50 graticular blocks. These included:


EL No	Area(blocks)	Title Holder	Date granted
EL 4732	34	Aardeau	27/8/87
EL 4851	11	Aardeau	27/8/87
EL 5368	1	Renison	27/8/87
EL 5369	4	Renison	27/8/87

Subsequent to the relinquishment of 25 blocks on the 27th August, 1990 the Project Area consists of 25 graticular blocks including:

EL	No	Area	(blocks)
EL	4732		15
ĒL	4851		5
EL	5368		1
ĒL	5369		4

The ground relinquishment is shown in Figure 2.

At the termination of the joint venture agreement, EL's 5368 and 5369 were transferred to Aardeau. Consequently, all the EL's in the Project area are now held by that Company.

3. REGIONAL GEOLOGY.

The prominent lithologies within the Project Area are greywackes. siltstones and mudstones of the early Proterozoic Burrell Creek Formation. The bedding within these units is generally steeply dipping and strikes NW-NNW. Syn-orogenic Middle Proterozoic Tollis Formation rocks occur over the southern part of the area overlying the Burrell Creek Formation. Outcrops of Mezoic sedimentary platform cover rocks occur along the south eastern οf the Project Area. The Proterozoic sedimentary formations have been intruded by the syn-post orogenic Cullen Batholith. The Wolfram Hill Granite, and Mt Davis granite, which form part of this intrusive phase, are exposed over the southern and northern parts respectively of the Project Area.

Further descriptions of the regional geology can be found in Needham and Stuart-Smith (1984) and Nicholson and Eupene (1984).

PREVIOUS WORK.

Prior to the commencement of the work by Renison for the joint venture, little hard rock exploration using modern geological techniques or concepts had been undertaken over the Project Area.

5. WORK COMPLETED 1987/88/89.

5.0 Work Completed - General Comments.

A summary of field work carried out over the Wandie Project area during the three previous years follows. Details as apply to the areas that are the subject of this relinquishment report are extracted from the previous Renison annual reports and represented under sections 5.1 to 5.8 below.

(a) 1987/88.

During this season all known workings within the confines of the Wandie Project Area were investigated by first pass geological mapping and sampling. The poor exposure in the vicinity of most prospects made interpretation difficult and meant that any further investigation would require trenching and/or drilling of target zones defined by geology and chip/soil geochemistry. All of the gold prospects examined required further evaluation at varying levels of priority.

Regional mapping/sampling of areas beyond the defined prospects was commenced with limited initial success. A pilot stream sediment study, using both conventional stream sediment and bulk cyanide leach techniques, was also undertaken.

(b) 1988/89.

The Aston Hill and Wandie Line Prospects in the Wandie Joint Venture Area were explored in detail in the 1988 field season. The work included detailed mapping and sampling of old workings, additional trenching and further channel sampling and a major drilling programme.

(c) 1989/90.

During 1989 a regional evaluation of the whole project area was undertaken using photogeological studies and stream sediment geochemistry. This programme identified several new prospect areas which were all investigated further by geological mapping, rock and soil geochemistry and Bulk Leach Extractable Gold stream sediment sampling.

Comprehensive investigations involving detailed geological mapping, rock chemistry, trenching and/or bulldozed rip-line bedrock sampling and percussion/RC drilling were also carried out over a number of prospects. All were centred on old eluvial/alluvial and minor hard rock workings, some of which had been recently strip-mined.

5.1 Stream Sediment Sampling Programmes.

(a) Bulk Cyanide Leach and Stream Sediment Pilot Study carried out in 1987.

A pilot study was made over four mineralised areas using conventional stream sediment geochemistry and the bulk cyanide leach technique. A total of 21 sites were sampled with four samples (two duplicates of each technique) collected from each site. The locations of those relevant to this relinquishment are shown in Plate 18.

The four samples per site consisted of:-

- (1) A 5kg sample for bulk cyanide leach testing.
- (2) A 0.5kg sample for stream sediment geochemical analysis.
- (3) A duplicate sample of (1) for bulk cyanide leach at a site nearby.
- (4) A duplicate sample of (2) for geochemical analysis at the same nearby site.

Samples 1 & 2 and samples 3 & 4 have the same sample numbers.

Where possible samples were obtained from the active stream channel and sieved to minus 20 mesh (bulk leach) and minus 80 mesh (stream sediments). In many places however, the stream channel is poorly defined and flow channels spread over widths of up to 100m; here integrated drainage (soil) samples were taken across the full width of the water-course and submitted for assay in the unsieved form.

Bulk cyanide leach and stream sediment assay results for the 1987 pilot programme are presented in Appendices 1.6 and 1.7 respectively. Stream sediments were assayed for a range of elements using ICP techniques.

The above procedures were adopted over four prospects in the Project area. One of these, the Aston Hill Prospect, is part of the area being relinquished.

Previous reports state that this latter area typifies the flat open terrain widespread in the northern part of EL 4732. All samples collected were of the integrated drainage type and represented reasonably large catchment areas (0.5 - 2 square km). Bulk leach gold values proved fairly reproducible, but did not assist in defining the known gold mineralisation at Aston Hill (cf Q57918/919 and 916/917) even though the catchment area sampled was relatively small (0.5 square km).

From the results of the above work it was concluded that the application of bulk leach cyanide techniques to the Wandie Area to define areas of presently unknown gold mineralisation was not viable. Its use was considered to be unrealistic in view of the high background values (2 - 4ppb Au), the limited dispersion of bulk - leachable gold down the drainage (small anomalous

catchment areas), and the drainage patterns themselves render its use unrealistic. The technique could only be applied in areas of rougher terrain using very closely spaced sample intervals.

It was also concluded that stream sediment geochemistry, particularly the use of As and Pb as pathfinder elements, proved disappointing. In some cases, these elements do reflect source mineralisation but only within impractically small catchment areas.

(b) -80# Stream Sediment and BLEG Follow-up Sampling Programmes Undertaken in the 1989 Season.

A re-appraisal of the bulk cyanide leach and stream sediment pilot study carried out in 1987 and described above indicated that As anomalies could be used for detection of gold mineralisation. Consequently, it was decided to carry out a programme focussing on the As content of the -80# fraction and a total of 590 stream sediment samples were taken over the Project Area at an average density of 1 per 0.5 square km. A total of 56 BLEG sediment samples were also collected over some of the areas with anomalous arsenic results.

Stream Sediment Samples.

Samples were sieved at site to -80# and a stream rating was given to the site to enable correlations. These ratings are as follows:-

- (A) Well defined incised stream with active sediment;
- (B) Well defined <u>non</u> incised stream with active sediment or non-continuous well defined incised stream with active sediment (washouts) separated by type C drainages.
- (C) Grassy floodplain with clearly defined drainage (up to 50m wide).
- (D) Grassy floodplain with trees and no clearly defined drainage.

Subsequent study of the assay data indicated that the geochemistry was not significantly related to the stream rating.

Assays are listed in Appendix 3.1 and the sample locations within relinquished ground are shown on Figure 4.

BLEG.

Limited follow up sampling using this technique was completed over some areas with anomalous arsenic results. These gave typically less than 500ppt Au. Only one anomaly was recognised within the ground being relinquished being Q87547 (1750 ppm) which drains the Double Anti Prospect.

5.2 Photogeological Study.

During 1989, a regional evaluation of the whole project area was undertaken involving the combination of photogeological studies carried out by geological consultant Martin I'ons and the stream sediment work described above. The photo interpretive data and stream sediment geochemistry information were combined and are presented in Figure 4 for the area being relinquished.

This programme identified several new project areas which were all investigated further.

5.3 Un-named Ag/Pb Prospect

This prospect is located at GR 024627. During 1987 a 400m \times 50m compass and tape grid was established (Plate 15) to facilitate mapping and sampling.

The two northernmost pits of the area occur on a steeply east dipping argentiferous, galena rich quartz vein (Q61925, Appendix 1.3) occurring within a non - auriferous thinly quartz veined, greywacke host (Q61926,Q61937).

To the south, a pit exploits a steeply west dipping, gossanous, jaspery quartz vein (possible faulted extension of galena-rich vein). Ferruginous, +/- brecciated, +/- gossanous, quartz veined alteration of the greywacke host is best developed south of the proposed fault and on the flank of the quartz vein. Samples of the vein and associated alteration (Q61927, Q61931, Q61932, Q61938-42) have a sporadic generally low gold content (range <0.008 to 4.330g/t) and average 0.69g/t.

5.4 Kim Prospect.

The Kim Prospect is situated at GR 997710 and is within one of the blocks relinquished from EL 4732. The prospect covers an area of 400m x 130m, elongate to the north — east. Previous workings here are essentially eluvial with two small hardrock pits exploiting a north-west trending quartz vein in the south-east corner.

During the 1987 season two samples were taken from these pits (Q61624-Q61625) and gave anomalous gold with Q61624 assaying 4.860g/t. Eluvial gold won from this prospect is stated to be mostly fine.

Further work carried out in 1989 was reported as follows:-

Geology.

The dominant lithologies at the Kim Prospect are silt - stones and greywackes of the Burrell Creek Formation

(Figure 8). The sediments strike N-S (grid) and are typically moderately east dipping (\$\simes 50^\circ\$). The sediments are intruded through the centre of the prospect by an aphanitic intrusive. In the south of the grid this intrusive is bedding conformable and north of 10350N has both sill and dyke characteristics. In the north the sediments are intruded by a deeply weathered felsite dyke. Numerous quartz veins, cropping out at surface are typically thin and widely spaced. The veins are discordant to bedding and strike NNE to NE.

Geochemistry

Four trenches were cut across the prospect, using the ripping blade of a bulldozer, to enable systematic geochemical sampling. A total of 630m of trenches were sampled at 5m intervals and assayed for Au, As, Cu, Pb, Zn. Sample location and assay results are listed in Appendix 1.7. Bedrock was exposed in most trenches with minor patches of alluvium.

Gold assays are patchy with only four intervals 0.1g/t. These include Trench 1: 9935-9940E 5m @ 1.90g/t, 9955-9960E 5m @ 0.1g/t, Trench 3 9985-9990E 5m @ 1.69g/t and Trench 4 9955-9960E 5m @ 0.1g/t. The +1 g assays are both located on the western edge of the workings and could be the source of alluvial gold which may have shed downslope from here as well as being able to account for all eluvial occurrences that have been worked. Arsenic ranges from 100-7950ppm, but excluding sample Q87300 the maximum value

is 602ppm As. All gold anomalous samples have anomalous As values but the converse does not apply. Arsenic is also typically elevated in samples of alluvium. Copper (2-44ppm) and Zn(24-352) are basically at background levels and where elevated have no relationship to gold. Lead (10-680ppm) has a minor association with gold in samples from Trench 4.

Drilling

Nine RC drill holes for a total of 270m were completed at the Kim Prospect by East-West drilling using a H13 Gemco rig. Samples were collected at 2m intervals and were assayed only when they contained quartz. A summary of drillholes is located in Table 4 and drill logs and assays are listed in Appendix 2.2.

Three drill fences were designed to

- a) test the auriferous zones recognised from geochemical sampling, namely on lines 10450N (5m @ 1.6g/t Δu) and 10150N (5m @ 1.69g/t Δu).
- b) test for continuity of the mineralization between these lines on line 10300N.

Drilling results at the Kim Prospect were disappointing (Table 4). The two +1g assays in holes K7 and K9 are isolated results and do not appear to be related to the same mineralized zone. No further work is justified at the Kim Prospect.

TABLE 4

Drill and assay statistics: Kim Prospect

Hole no.*	Interval	Λssay (g/t Λu)
K1		ИУ	
K 2		NA	
К3		ΝУ	
K4		NY	
K5	2-4m	0.32	
K6	10-12m	0.38	
K7	10-12m	3.10	
к8		NA	
K9	6-8m	1.20	

^{*} all holes 30m deep

NA No assay > 0.1g/t λu

5.5 Crest of the Wave Prospect.

Recorded production from the Crest of the Wave Mine (situated at GR 994628) is 154.9 T tin (conc) from 3027 T of ore (Bagas, 1983). The main workings occur over 170m, along the strike of two adjacent, 20cm wide lodes (Kleeman, 1938). Mineralisation consists of cassiterite, with partially ferruginous quartz gangue, and pyrite and arsenopyrite (Kleeman, 1938). Further small workings (unobserved) exploit a parallel lode 100m to the east (Kleeman, 1938).

During the 1987 field work, the lode was not observed within the workings due to mining disturbances. However, it is traceable south of the workings where it is represented by ferruginous quartz. (Plate 16). Much of the dump material is silicified greywacke and spotted ?andalusite (Bagas, 1983) shale, with occasional pegmatite veining.

Samples from the dumps (Q61825-37, Appendix 1.4) are essentially devoid of gold and have subtle basement anomalism. Similar results are obtained from the alluvial workings (Q61838-47) located up to 250m downstream. Samples were not assayed for tin.

5.6 West Brilliant Prospect.

The reported gold workings (Bagas, 1983, p7) at West Brilliant are situated at GR 004650. The workings, consisting of one main pit and several smaller pits (Plate 17), exploit a thin (0.1 to 0.2m), tin and bismuth bearing banded iron bed (Plate 17).

Samples taken during the 1987 programme from the banded iron bed (Q61848-51, Appendix 1.5) have high average tin (2.02%) and bismuth (0.39%) contents and anomalous average tungsten (380ppm), arsenic (6066ppm), copper (1545ppm), lead (683ppm), zinc (345ppm) and silver (8.8ppm). Local bedding discordant quartz veins have slightly anomalous basemetal values (Q61852-57). No anomalous gold values were obtained.

5.7 Aston Hill

The Aston Hill Prospect is situated on a hill approximately 3.5km south of Wandie. Three main areas of workings occur at this locality and for ease of presentation, they are identified as separate zones (see Table 8).

TABLE 8

ZONE LOCATIONS, ASTON HILL PROSPECT

Co-ordina	ates *	Title	
mN	mE		
6300 - 6700	7100 - 7300	Main Zone	
6800 - 7000	7100 - 7300	North Zone	
7100 - 7300	6900 - 7000	NW Zone	

* Grid Co-ordinates refer to 31.

Local lithologies are interbedded greywackes and siltstones which dip steeply to the SW and, locally, to the NE. Within the zones of prominent quartz veining and workings, arsenopyrite alteration is conspicuous. Hornfels spotting (cordierite) of the siltstones is common throughout the area.

Two distinct areas of mineralized quartz veins at Aston Hill appear to have been juxtaposed by a cross-fault (Plate 31). North of this cross-fault, mineralization is present in saddle -reef quartz veins, which are associated with a well defined anticlinal hinge in the NW zone and a possible hinge line in the north zone. The saddle-reef fold axis is subhorizontal. South of the cross-fault, mineralization is present in quartz veins which include both bedding conformable veins and ladder veins, which are non-orthogonal with

respect to the fold axis. Gary Arnold suggests that this pattern of veining is more likely to be related to a fault zone, rather than a fold hinge. The veins are typically irregular and deformed, suggesting that they predate the main folding event.

5.7.1 Eupene Exploration Sampling Results

The main and north zones at Aston Hill were tested by eight costeans, totalling 275m in length. Numerous zones of anomolous gold (between 0.1 and 0.5g/t Au) were intersected (see Plate 31). The two most significant zones were intersected in trench T3 with assays of 8m @ 3.5g/t Au and 3m @ 1.43g/t Au.

5.7.2 RGC Exploration Sampling Results.

RGC's work involved follow up sampling of the old workings, and trenching of the NW zone. A total of 214 samples (Q75152-Q75317) were collected and are listed in Appendix 1.5 with their accompanying assay results.

Resampling of the trenches generally confirmed the results reported by Eupene Exploration. However, some variations were noted and these are interpreted as being due to coarse gold giving a nugget effect. Best results from this program are discussed below.

Sampling in trench T2 returned 12m @ 2.1g/t Au (c.f. Eupene sampling 6m @ 0.36g/t Au). The zone of quartz stockworks just to the south of this trench, returned numerous assays of > 1g/t Au (Q75154 - Q75165). Sampling in trench T3 outlined an interval of 39m @ 0.3g/t Au (c.f. Eupene sampling which gave 8m @ 3.5g/t Au and 3m @ 1.43g/t Au). Samples from the workings in the vicinity of this trench (Q75184 - Q75193) also returned numerous assays of > 1g/tAu and include an assay of 87g/t Au (Q75189).

Several assays > 1g/t Au (Q75251 - Q75298) were recorded from the northern workings.

zone was not investigated by Eupene Exploration. Surface sampling by RGC (Q75259 - Q75266; and Q75292 -Q75303) located a large area of anomolous gold values, with gold assays up to 16.8g/t Au (Q75265). Six trenches were excav-386m, and were located to test for ated for a total of (Plate 31 , of mineralization continuous zones This program was successful over numbers Q75673-Q75726). the area of old workings (Plate 31) and included a best intersection of 5m @ 1.8g/t Au, in trench T12.

5.7.3 Drilling Results

Seventy five RC drill holes (AH1-AH75) were completed at Aston Hill for a total of 2567 metres. In addition, a 100.30m diamond drill hole (AH76) was also completed. Drilling and assay statistics are tabulated in Table 9, drill hole locations are shown on Plate 31, drill sections are presented in Plates 32-47, and RC and diamond drill logs are included in Appendices 2.9 and 2.10, respectively.

Main Zone

Drill holes in the main zone were located to test both anomalous auriferous zones identified from sampling of trenches and workings, as well as possible extensions of these zones. The majority of holes was drilled perpendicular to bedding, to test quartz stockworks and bedding conformable veins. Additional holes on sections 6458mN and 6600mN were orientated parallel to bedding to test for mineralized ladder veins.

Significant gold assays from the RC drilling within the main zone included the following: 7m @ 0.6 (AH38); 6m @ 0.5 and 4m @ 3.1 (AH9); 2m @ 3.2 (AH10); 5m @ 1.4 (AH14);

9m @ 0.5 (AH16) and 3m @ 0.83g/t Au (AH28). In general, these results cannot be correlated between holes or sections, except for holes AH9 and AH10, on section 6405mN, where the intercepts may be related to flat veins. The overall lack of correlation may be attributed to spotty mineralization. The significant gold mineralization detected in Trenches T1 and T2, and the surrounding workings was not intersected in drill holes on sections 6600N and 6458N.

Diamond drill hole AH76 (section 6458N) was located to test for mineralization at depth, particularly for an extension of the auriferous arsenopyritic quartz stockwork zone, which outcrops 25m to the east. The hole failed to locate any significant mineralization. A zone of chloritic quartz stockwork within greywacke, was intersected from 76-84m. This zone was weakly auriferous with the best intercept being lm @ 0.88g/t Au (81-82m).

North Zone

The majority of drill holes in this zone was orientated at azimuth 040 to test bedding conformable quartz veins. However, recognition of the cross fault and a possible anticline subsequent to the drilling, indicates that many of the holes between numbers AH38-AH47 were drilled parallel to bedding. Drill holes AH43 and AH48 were located to test the main vein system, which has been worked in this zone. Results from drilling within the north zone are most discouraging, with all assays <0.1g/t Au.

NW Zone

The majority of drill holes within the NW zone were orientated perpendicular to bedding, to test the auriferous bedding-parallel and saddle-type veins, identified from mapping and sampling, in the vicinity of the main anticlinal zone. Several additional holes (AH51, 52, 57, 58 and 66), which are located on the eastern limb of this fold, were orientated parallel to bedding to test the ladder veins.

Assay results from this zone are generally disappointing. Best assays are 3m @ 1.70g/t Au (AH53), 1m @ 3.1g/t Au (AH63) 2m @ 4.03g/t Au (AH67), 3m @ 1.46g/t Au (AH69) and 4m @ 1.6g/t Au (AH71).

Drill holes AH62, 63, 64, 67, and 68 test the main vein at the NW workings. Of these, only two holes returned gold assays of $\geq 1g/t$ Au (AH63 and AH67), and indicate there is no potential for a high grade-low tonnage ore body. The remaining spotty results cannot be correlated between holes.

TABLE 9

DRILL AND ASSAY STATISTICS,

ASTON HILL

	ĺ		Section of	Gold Inter	sections > 0.lg/t
Hole	No.	Depth	Hole Assayed	Interval	Assay (q/t Au)
АН	1	30m	complete		A11 < 0.1
АН	2В	30m	complete		A11<0.1
AH	3B	36m	complete	10-11m	lm @ 0.12
				18-21m	3m @ 0.4
				27-34m	7m @ 0.6
AH	4	30m	complete	12-14m	2m @ 0.2
				26-27m	lm @ 0.4
AH	5B	30m	complete	0-2m	2m @ 0.14
АН	6	27m	complete	15-16m	lm @ 0.44
		İ		18-19m	1m @ 0.20
:			·	21-23m	2m @ 0.16
AH	7	30m	complete	19-20m	lm @ 0.23
AH	8	37m	complete	9-10m	1m @ 0.20
АН	9	57m	complete	23-27m	4m @ 3.1
			. .		(incl.1m @9.8)
				36-42m	6m @ 0.5
AH	10	60m	complete	23-25m	2m @ 3.2
				30-31m	lm @ 0.54
				37-38m	lm @ 0.28
AH	11	36m	complete	24-25m	1m @ 0.48
АН	12	30m	complete	5-6m	lm @ 0.11
				12-13m	lm @ 0.45
				17-18m	lm @ 1.0
АН	13	3 0 m	complete	4-5m	lm @ 0.12
1				9-10m	lm @ 0.19
İ				18 -19m	lm @ 0.10
!			The second of th	<u>-</u>	

DRILL AND ASSAY STATISTICS,

ASTON HILL

				-	
Hole	No.	Depth	Section of Hole Assayed	Gold Inter	sections > 0.lg/t Assay (g/t Au)
АН	14	60m	complete	4-6m	2m @ 0.19
				8-9m	1m @ 0.11
				15-16m	lm @ 0.14
	į			36-41m	5m @ 1.4
				43-45m	2m @ 0.3
АН	15	30m	complete		A11<0.1
AH	16	30m	0-21m	3-12m	9m @ 0.5
AH	17	30m	3-7m		A11<0.1
AH	18	30m	not assayed		
AH	19	30m	0-5m, 8-9m,	0-2m	2m @ 0.55
			22-28m.	25-26m	1m @ 0.14
ΛН	20	30m	0-3m, 11-12m.	0-3m	3m @ 0.3
AH	21	36m	complete	22-28m	6m @ 0.3
АН	22	48m	0-37m, 41-45m.	4-8m	4m @ 0.13
				10-15m	5m @ 0.16
				17-20m	3m @ 0.43
				23-24m	lm @ 0.47
		,		27-28m	1m @ 0.13
		i		34-35m	1m @ 0.14
				42-43m	lm @ 0.11
AH	23	30m	15-18m		A11 < 0.1
АН	24	· 30m	not assayed		
АН	25	30m	0-20m, 24-30m	0-4m	4m @ 0.45
АН	26	36m	0-33m	0-15m	15m @ 0.18
Ì	•			21-23m	2m @ 0.17
<u> </u>				25-27m	2m @ 0.25

DRILL AND ASSAY STATISTICS, ASTON HILL

+		1		
Hole No.	Depth	Section of Hole Assayed	Gold Inter	sections > 0.lg/t Assay (q/t Au)
АН 27	36m	0-10m, 16-19m 22-36m.	3-4m 22-23m	lm @ 0.14 lm @ 0.13
AH 28	45m	7-10m, 23-42m	24-27m 28-29m 31-33m	3m @ 0.83 1m @ 0.42 2m @ 0.43
AH 29	3 3 m	4-18m, 29-30m	·.	Al1< 0.1
AH 30	. 30m	0-11m, 19-22m		Al1<0.1
AH 31	30m	17-22m, 25-29m		A11<0.1
AH 32	3 0 m	4 – 7 m		A11<0.1
AH 33	3 Om	not assayed		
AH 34	3 0 m	not assayed		
AH 35	30m	0-5m, 8-22m.	2-4m	2m @ 0.83
AH 36	30m	0-25m	13-15m	2m @ 0.23
AH 37	39m	0-37m		All<0.1
AH 38	30m	20-27m		A11 < 0.1
AH 39	30m	0-6m, 9-10m		A11<0.1
AH 40	30m	2-9m, 13-17m, 21-27m.	·	All < 0.1
AH 41	42m	complete		All < 0.1
AH 42	30m	10-30m		All < 0.1
AH 43	54m	0-8m, 24-53m		All < 0.1
AH 44	30m	4-7m, 12-26m		All < 0.1
AH 45	36m	8-11m, 13-16m 18-21m, 26-30m.		A11 < 0.1

. 1

DRILL AND ASSAY STATISTICS, ASTON HILL

l 				 	
Hole	No.	Depth	Section of	Gold Inter	sections > 0.lg/t
			Hole Assayed	Interval	Assay (q/t Au)
АН	46	33m	0-9m	0-2m	2m @ 0.1
AH	47	36m	0-19m, 26-27m		A11<0.1
			29-33m.		
ΑН	48	33m	12-13m, 23-25m.	12-13m	lm @ 0.8
АН	49	30m	11-22m		A11 < 0.1
AH	50	36m	0-32m	0-2m	2m @ 0.12
1				8-12m	4m @ 0.24
				19-20m	lm @ 0.11
AH	51	30m	0-23m	6-7m	lm @ 0.12
АН	52	30m	7-9m		A11< 0.1
АН	53	36m	3-20m, 23-33m	4-7m	3m @ 1.70
		·	:	8-9m	lm @ 0.28
АН	54	36m	20-22m, 25-32m.	21-22m	1m @ 0.18
AH	55	48m	10-46m		Al1 < 0.1
АН	56	33m	10-17m	13-14m	lm @ 0.17
AH	57	30m	3-6m, 8-23m	17-18m	1m @ 0.11
AH	58	30m	0-12m	6-7m	lm @ 0.11
				9-11m	2m @ 0.20
АН	59	30m	0-2m, 8-16m		A11 < 0.1
AH	60	51m	5-48m	6-9m	3m @ 0.12
				21-2 2 m	1m @ 0.10
АН	61A	20m	5-20m	11-14m	3m @ 0.15
АН	62	. 30m	0-21m		A11<0.1
АН	63	30m	0-22m	14-15m	<u>lm @ 3.1</u>
АН	64	30m	0-3m, 8-15m.	12-14m	2m @ 0.25

DRILL AND ASSAY STATISTICS, ASTON HILL

Hole N	No.	Depth	Section of Hole Assayed		sections > 0.1g/t
				Interval	Assay (q/t Au)
AH 6	55	30m	0-2m, 16-20m.		A11 < 0.1
AH 6	56	30m	0-2m, 10-11m		All 0.1
ан е	57	30m	9-15m	9-11m	2m @ 4.03
AH 6	58	30m	0-2m, 5-8m		Al1 < 0.1
			15-19m		1
АН 6	59	33m	11-16m, 20-32m	14-15m	lm @ 0.32
				22-23m	lm @ 0.11
				24-27m	3m @ 1.4
				31-31m	lm @ 0.20
AH 7	70	30m	not assayed		
AH 7	71	3 Ö m	8-19m, 22-23m	6-10m	4m @ 1.6
				14-15m	lm @ 0.18
				22-23m	lm @ 0.10
AH 7	72	51m	0-44m	19-21m	2m @ 0.14
				24-26m	2m @ 0.16
AH 7	73	30m	0-19m	0-4m	4m @ 1.2
				16-17m	lm @ 0.24
AH 7	4	30m	0-18m, 25-26m.	4-5m	lm @ 0.10
				12-14m	2m @ 0.14
AH 7	'5	30m	0-4m, 9-10m.	12-13m	1m @ 0.13
			11-15m.		·
AH 7	6	100.3m	76-84m	81-82m	lm @ 0.88
(DDH	[)				

5.5 Double Anti Prospect

The area known as the Double Anti is located west of the Wandie mine road and south of Aston Hill within the previous confines of EL 4732 (Figure 2). The area was recognised as being prospective when several doubly plunging anticlinal structures were interpreted from aerial photographs by Martin I'Ons (Figure 4). This area has strong arsenic anomalies with associated elevated zinc in stream sediments (Section 5.1(b)).

The Double Anti was geologically mapped by contract geologist G.L.Steinert onto 1:10,000 airphoto enlargements. The area is dominated by variably hornfelsed greywackes and siltstones of the Burrell Creek Formation (figure 5). A thin N-S felsite dyke intrudes these sediments. The doubly plunging anticlines interpreted from air photos were not identified on the ground. However, a single SE plunging fold axis is inferred from bedding/cleavage relationships through the middle of the map sheet.

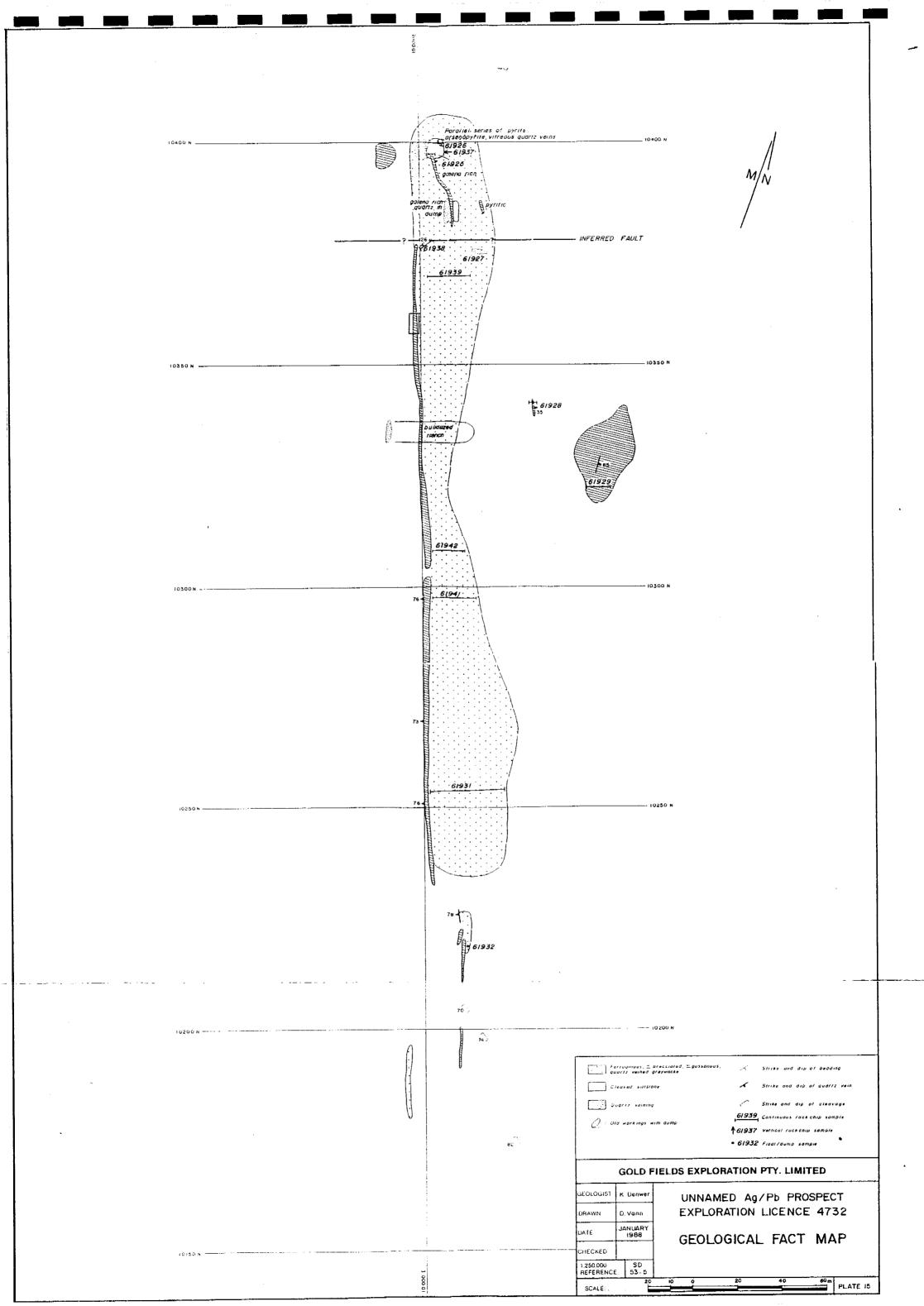
One hundred and eleven rock chip samples (Q91635 - 658 and Q87384 - 473) were collected during the mapping. They were predominately composed of quartz veins and quartz stockworks. Sample descriptions and assay results are included in Appendix 3.3. Assay results are disappointing with only two samples (Q87461 - 0.17gpt and Q87469 - 0.18gpt) assaying greater than 0.1gpt Au. BLEG samples were collected throughout the area and only one weakly anomalous drainage has been identified. Hence no further work can be justified.

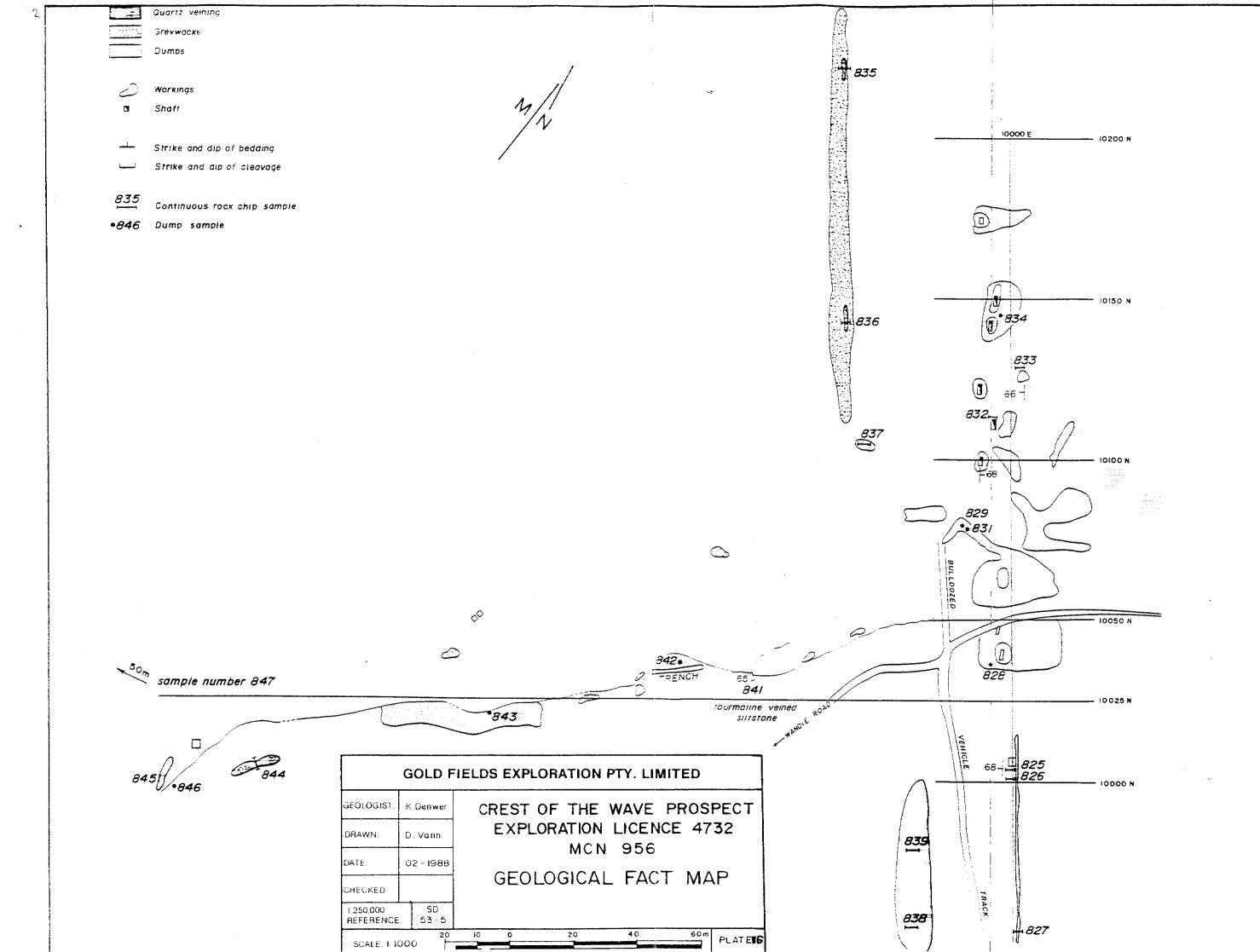
. REFERENCES

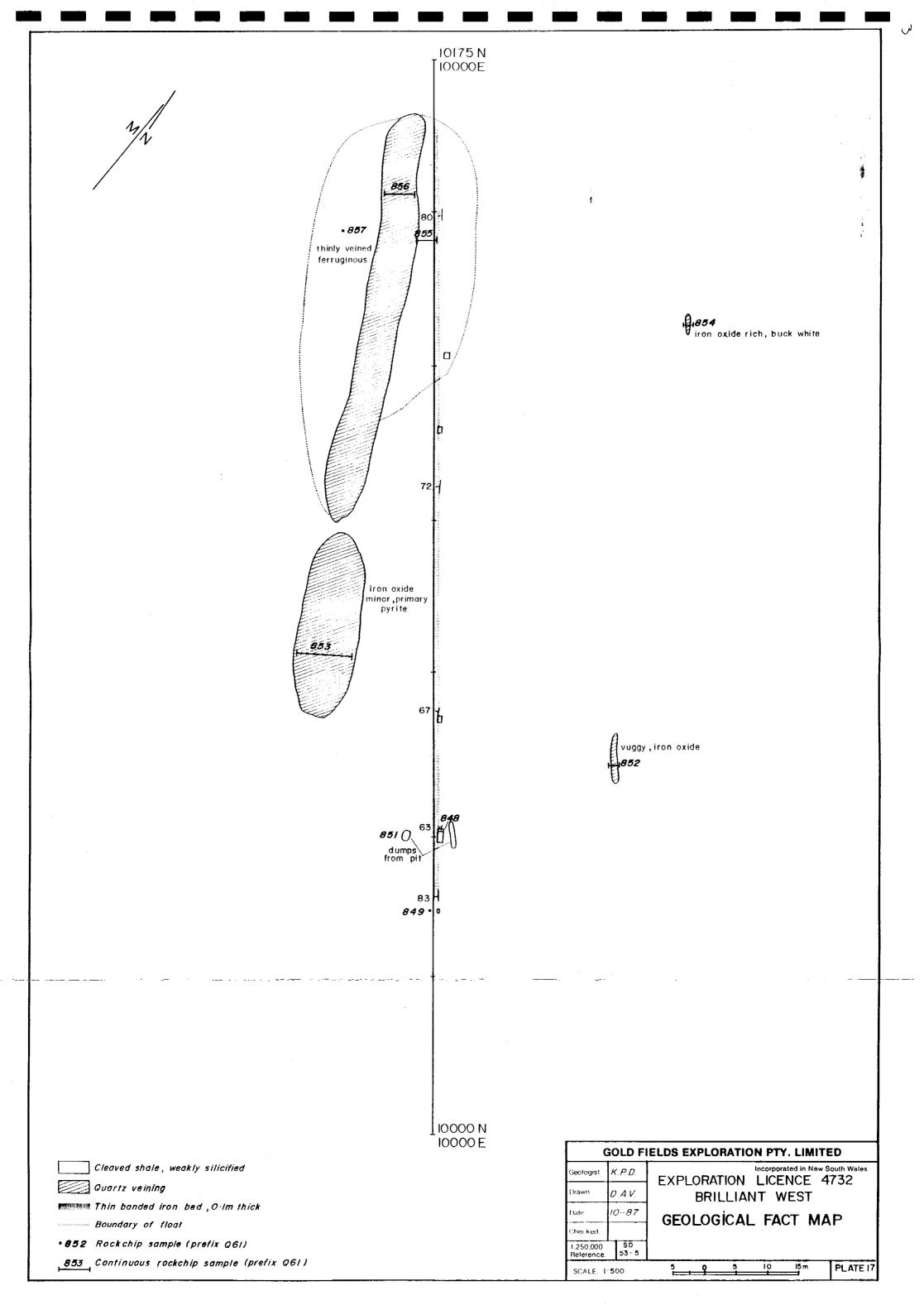
- Bagus, L., 1983. The Economic Geology and Mining History of the Ranford Hill 1:100,000 Sheet Area,
 Northern Territory. Northern Territory
 Geological Survey, Technical Report GS 82/9.
- Denwer, K.P., and Ford, J.H., 1988. Annual Report for the Wandie Project Area. Unpublished G.F.E.L. Report.
- Denwer, K.P., 1989a. Final Report for the Last Hope (MCN 955) and Tableland (MCN 954) Prospects.

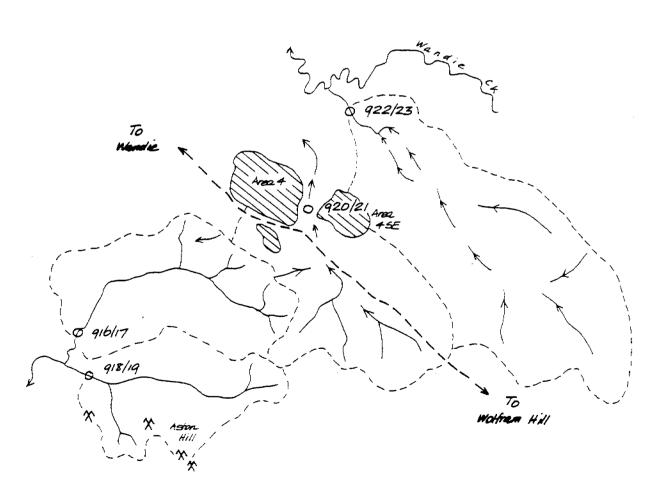
 Unpublished RGC Exploration Report.
- Denwer, K.P., 1989b. Final Report for Exploration Licences 3618 and 3619. Unpublished RGC Exploration Report.
- Needham, R.S., and Stuart-Smith, P.G., 1984. The Relationship between Mineralised and Deposited Environments in Early Proterozoic Metasediments of the Pine Creek Geosyncline. Proc. A.I.M.M. Conference, Darwin, N.T., August, 1984, pp. 201-212.
- Nicholson, P.M., and Eupene, G.S., 1984. Controls on Gold

 Mineralization in the Pine Creek Geosyn
 cline. Proc. A.I.M.M. Conference, Darwin,


 N.T., August 1984, pp. 377-396.
- Nicholson, P.M., and Nihill, D., 1987. Exploration at the
 Wandie Gold Prospect, Northern Territory.
 Unpublished Lachlan Resources N.L. Report
 prepared by Eupene Exploration Enterprises.


7. EXPENDITURE.


Within the Renison accounting system, the EL's of the Wandie Project Area have been treated as a single entity for exploration and budget purposes. Consequently, it is not possible to extract figures for individual claims or prospect areas nor to appropriate expenditure against blocks relinquished. However, as a guide the total expenditure by Renison for each year of the joint venture is stated to be -


1st July to 31st December,1987	\$110,085
1st January to 31st December, 1988	\$647,452
1st January to 31st December, 1989	\$224,717
TOTAL EXPENDITURE DURING PERIOD OF JV	\$982,254

It is estimated that approximately 20% of the above expenditure would apply to the areas relinquished as covered by this report.

ASTON HILL - AREA 4

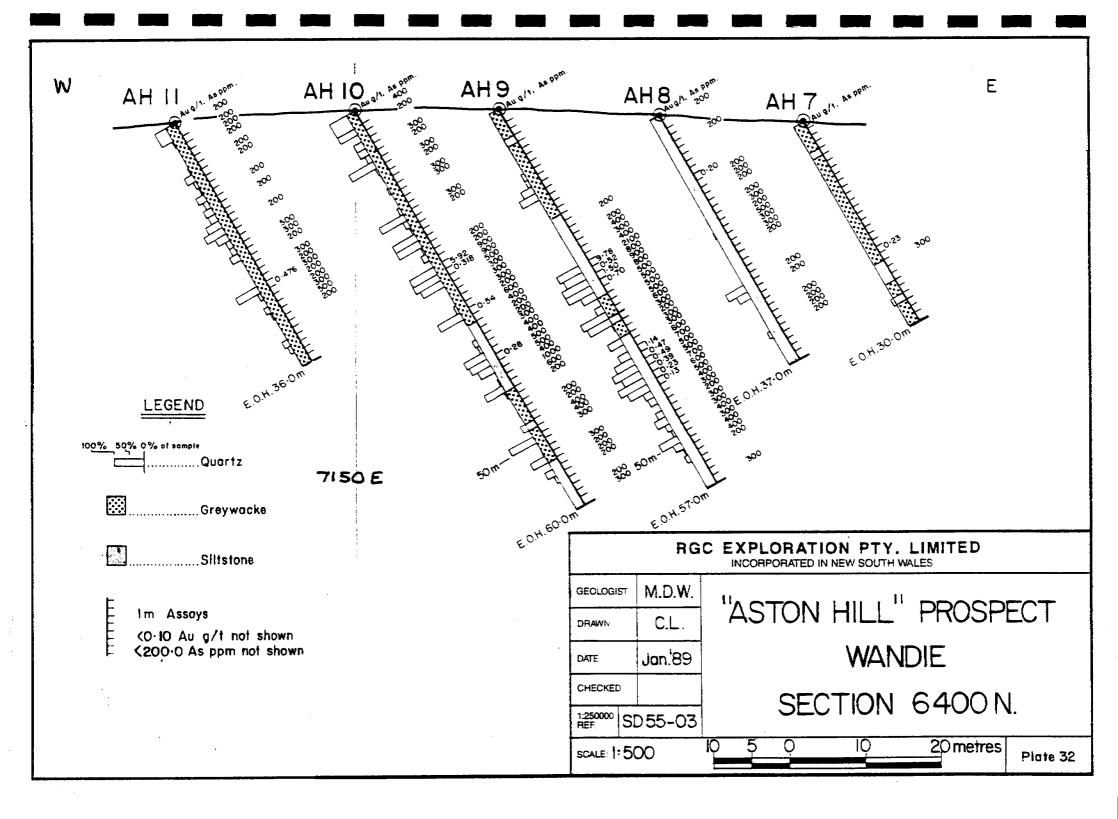
Run 9/0118

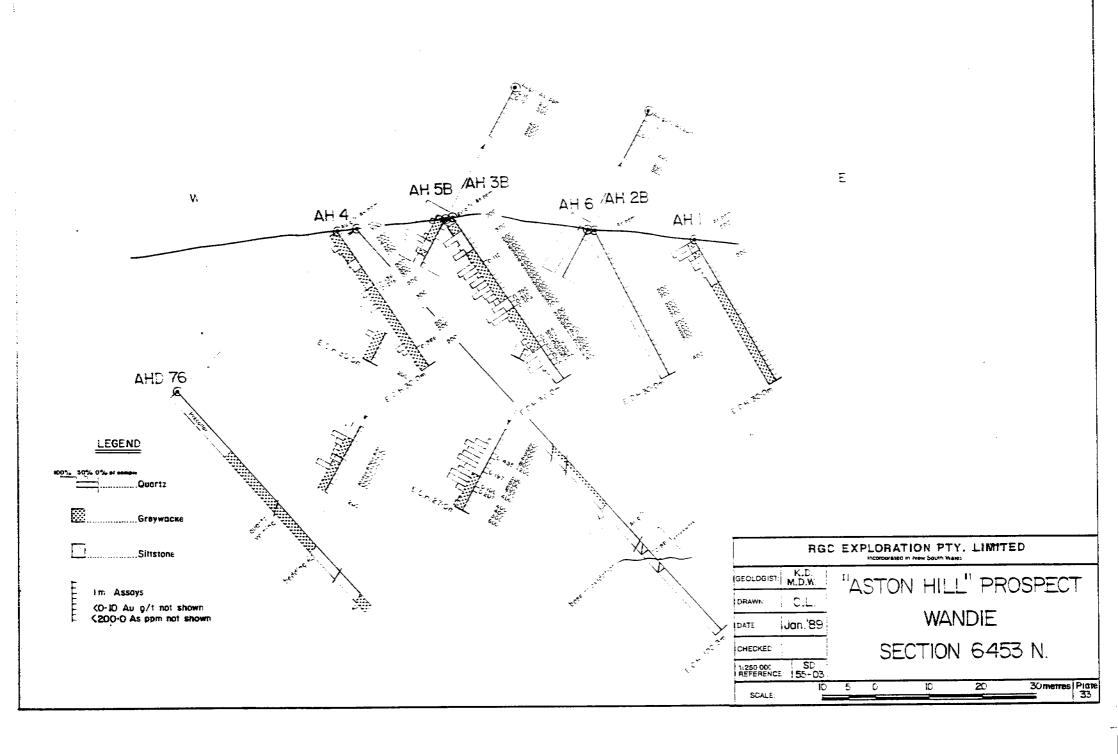
LEGEND :

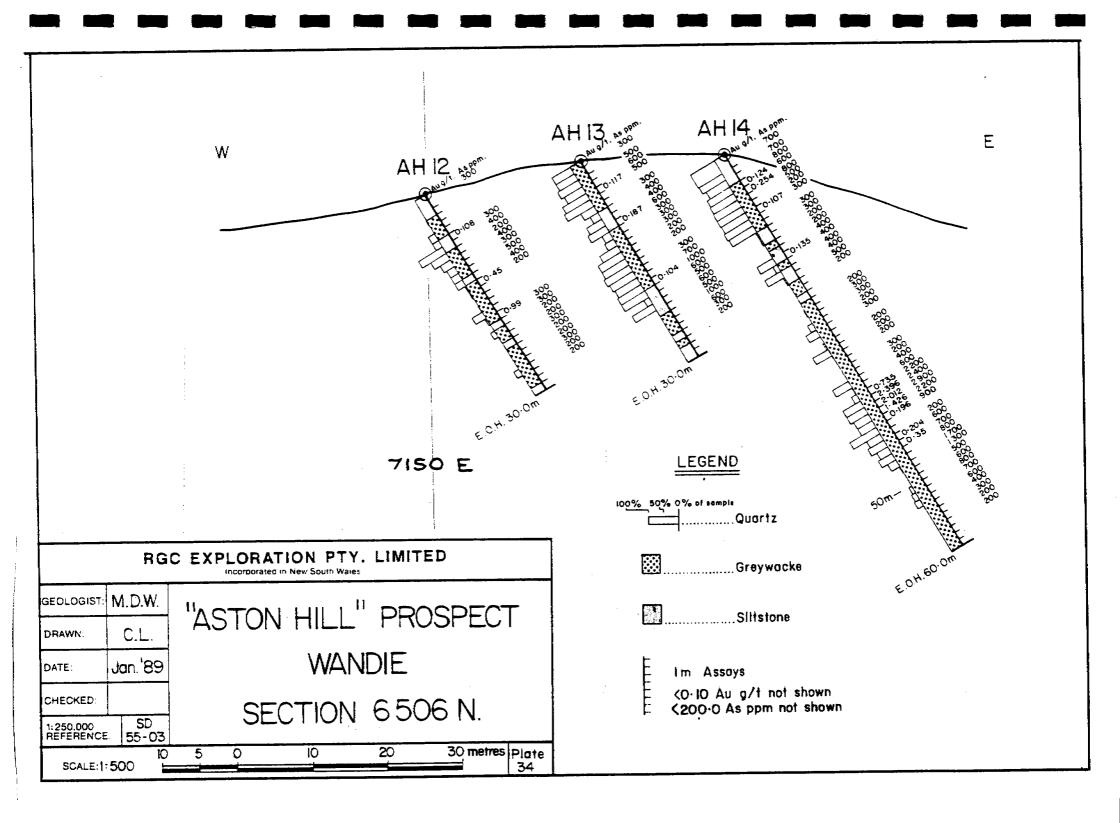
Hard rock gold prospect

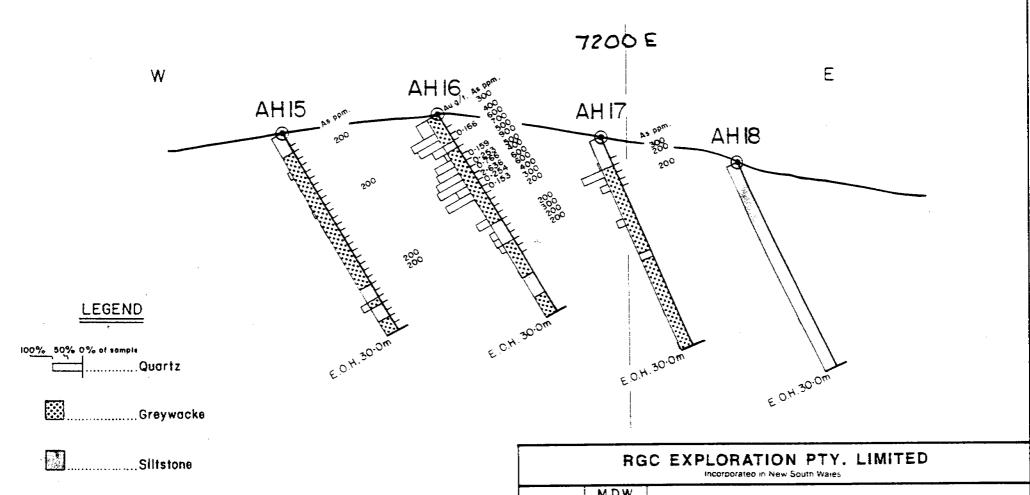
Eluvial gold prospect (minor hardrock workings)

Stream sumples :

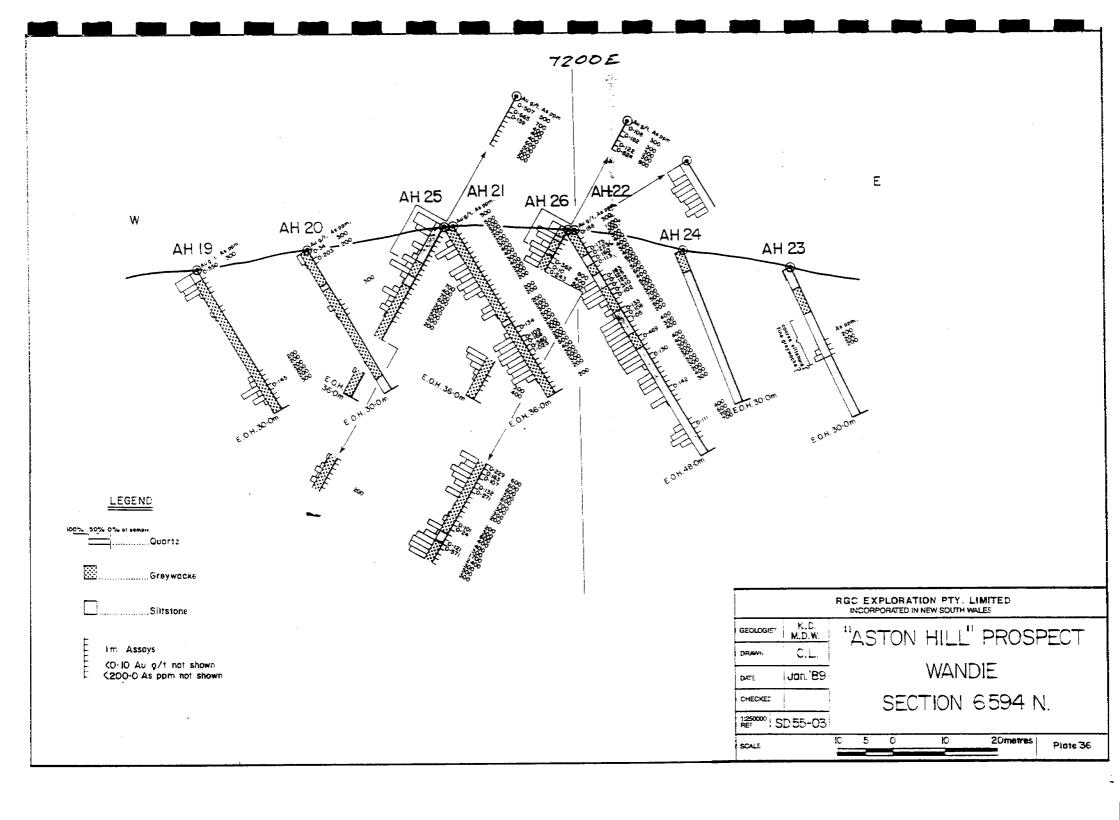

857 prefix

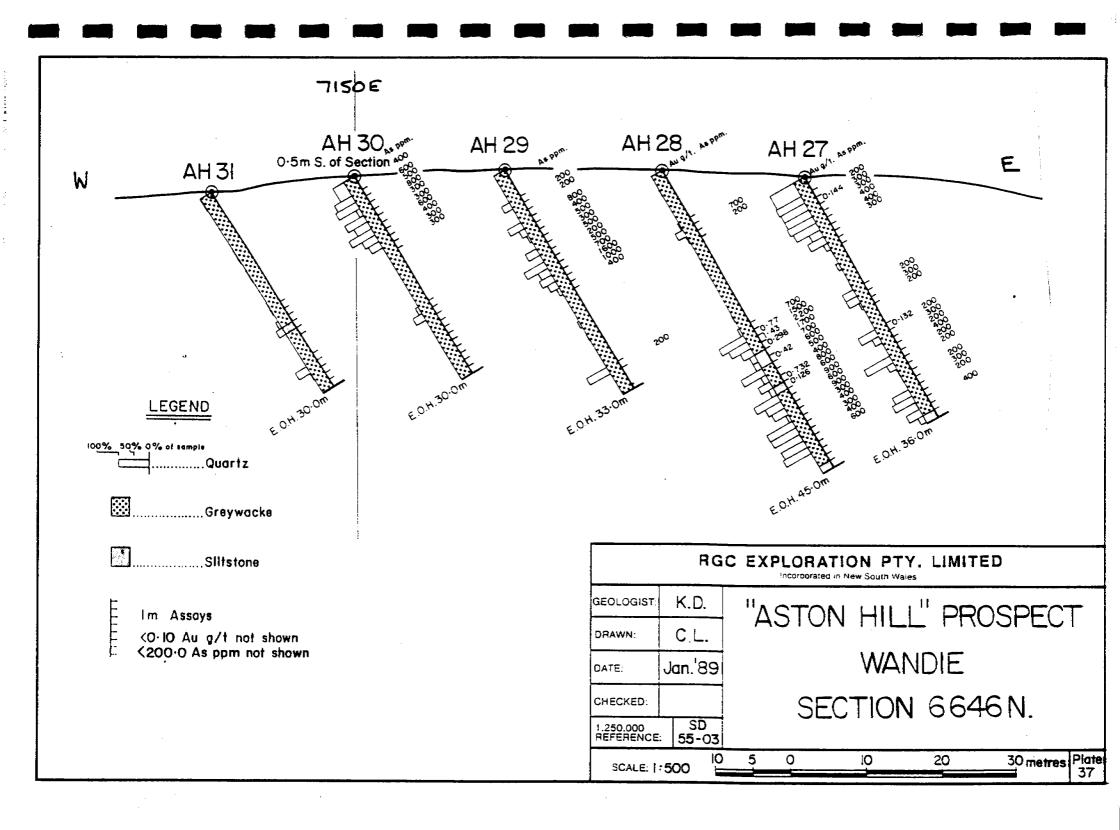

conventional sieved type (defined stream channel)

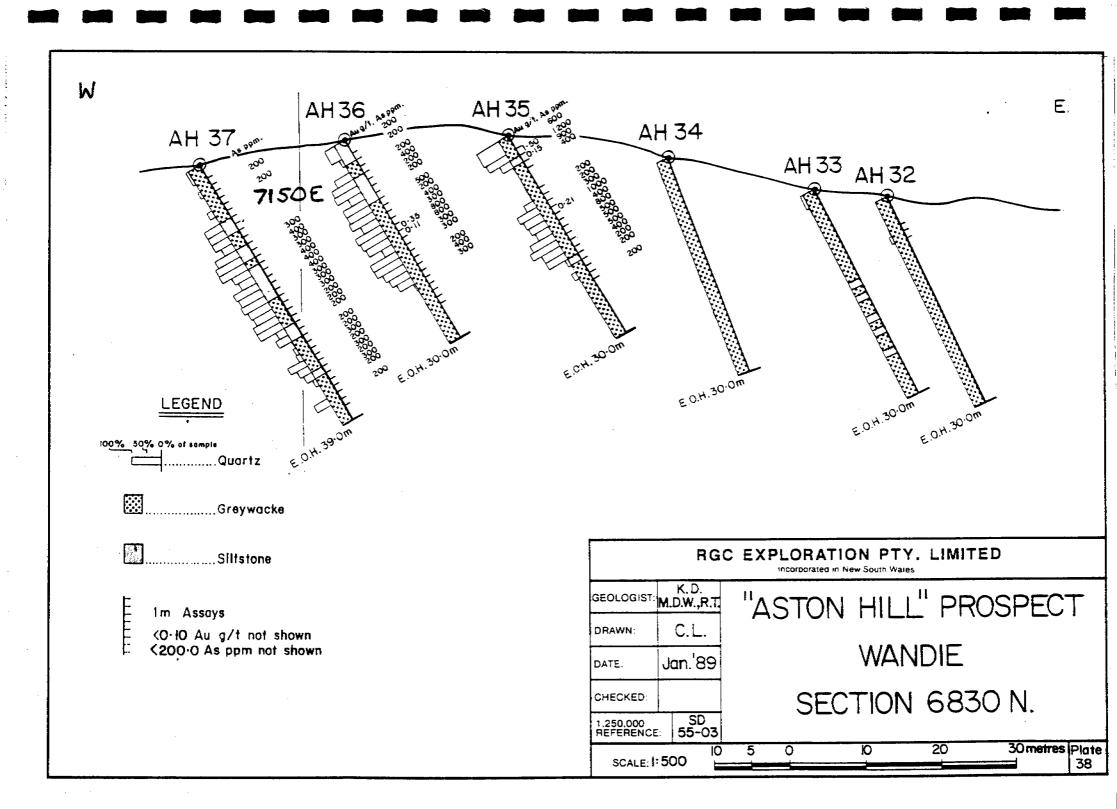

s integrated drainage type
(over 20-100 m, no
defined channel)

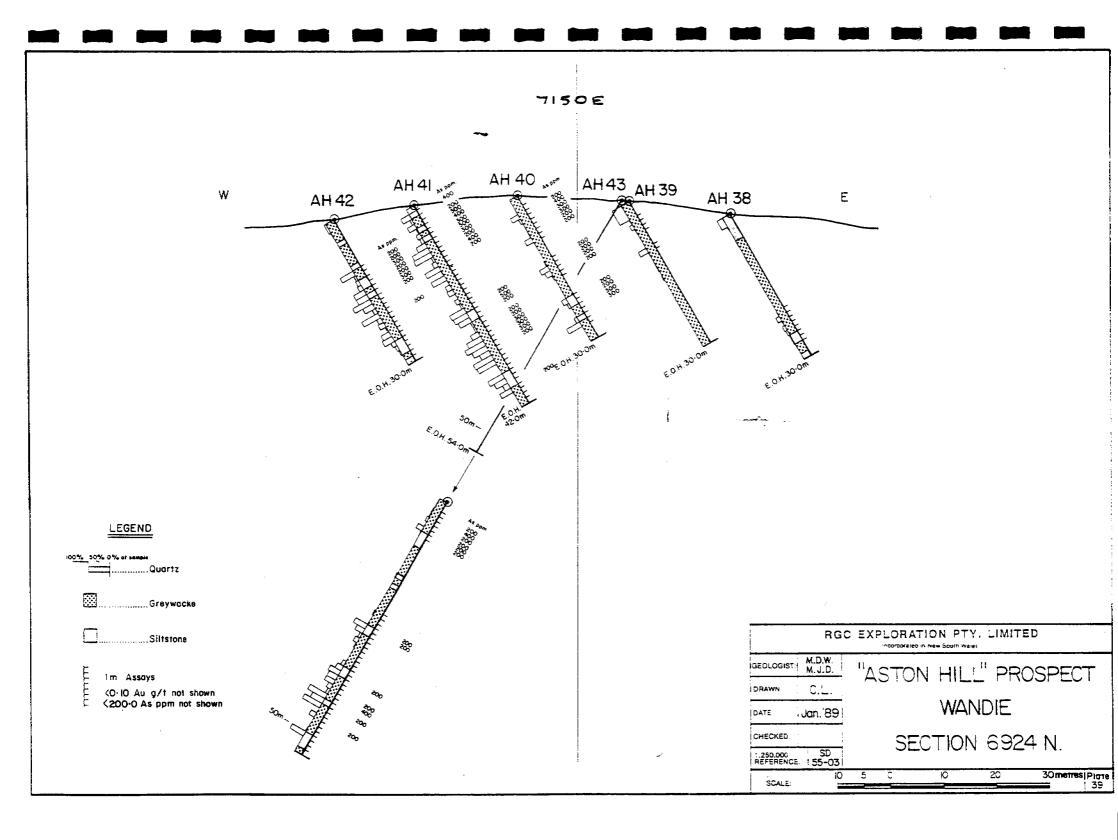

sample catchment area

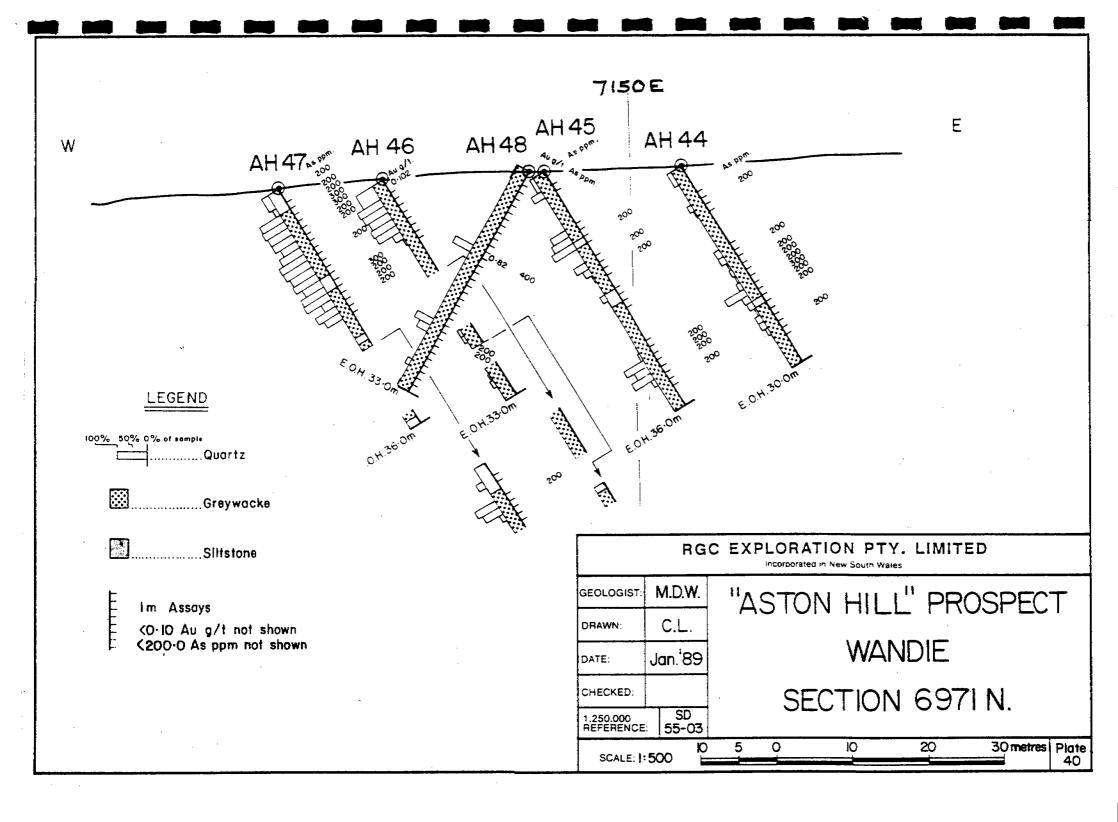
GOLD FIELDS EXPLORATION PTY. LIMITED JHF GEOLOGIST: LOCATION OF BULK CYANIDE THE DRAWN: LEACH AND STREAM SEDIMENT Jan'88 SAMPLES (1987) DATE: JAJ CHECKED: E.L. 4732 1,250,000 REFERENCE: PLATE SCALE: 1 : 25 000 18






Im Assays


CO-10 Au g/t not shown C200-0 As ppm not shown

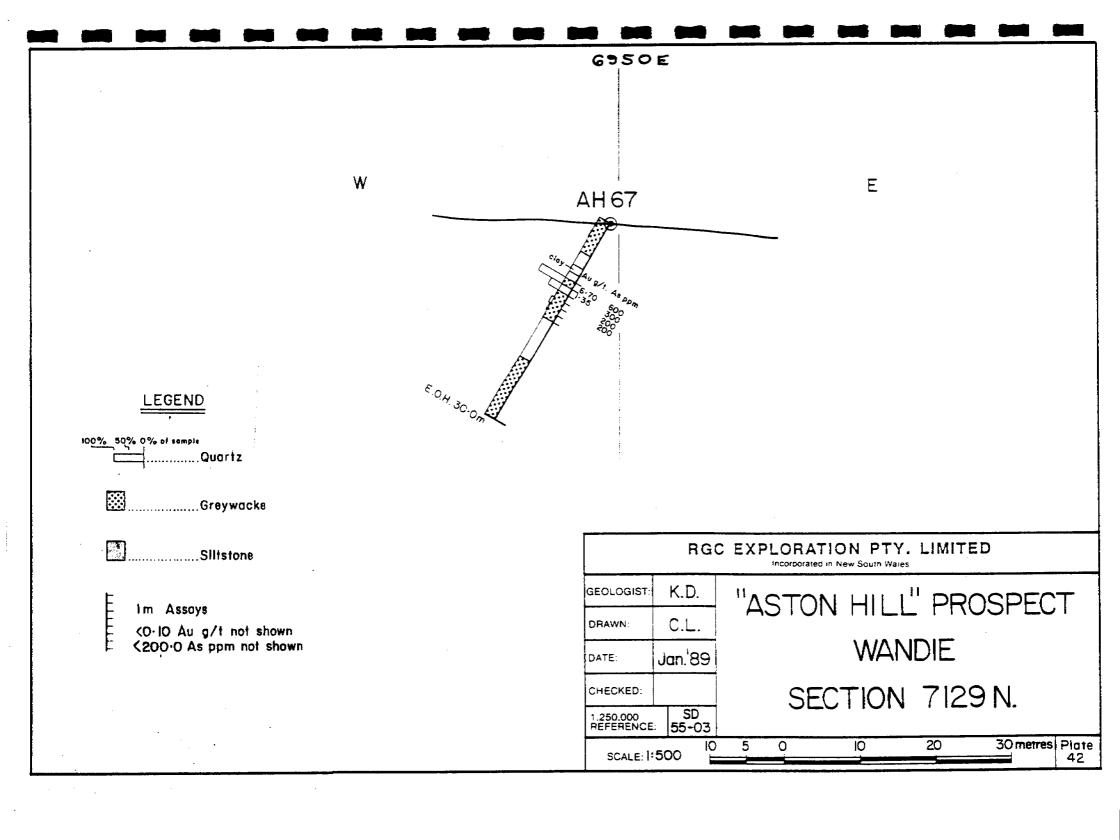

	RG	C EXPLORATION PTY. LIMITED Incorporated in New South Wates	
GEOLOGIST:	M.D.W. K.D.	"ASTON HILL" PROSPECT	
DRAWN:	C.L.	ASTUN MILL PROSPECT	
IDATE:	Jan. 189	WANDIE	
CHECKED:		SECTION 6542 N.	
1:250,000 REFERENCE	SD 55-03	SECTION OUTLIN.	
SCALE:	:500	5 0 10 20 30 metres Pi	ate 55

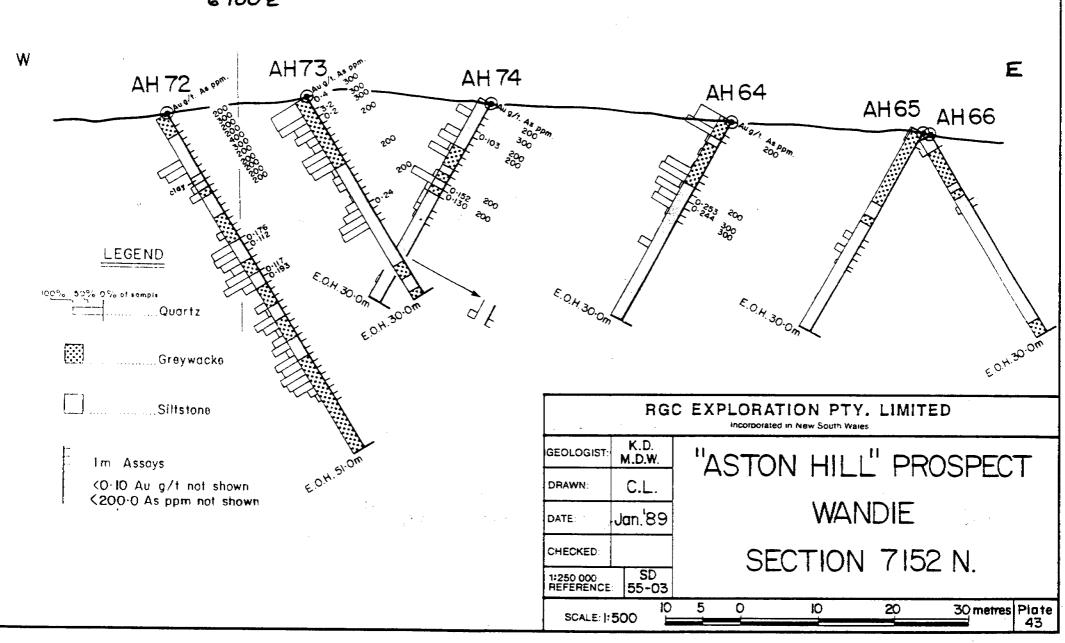
W AH 71 AH 69 AH 70 AH 68

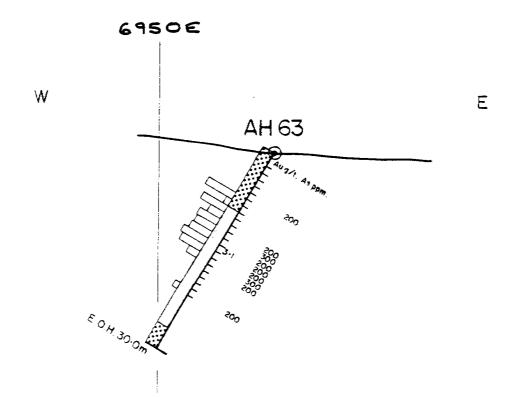
LEGEND

100% 50% 0% of sample Quartz

Greywacke


Siltstone

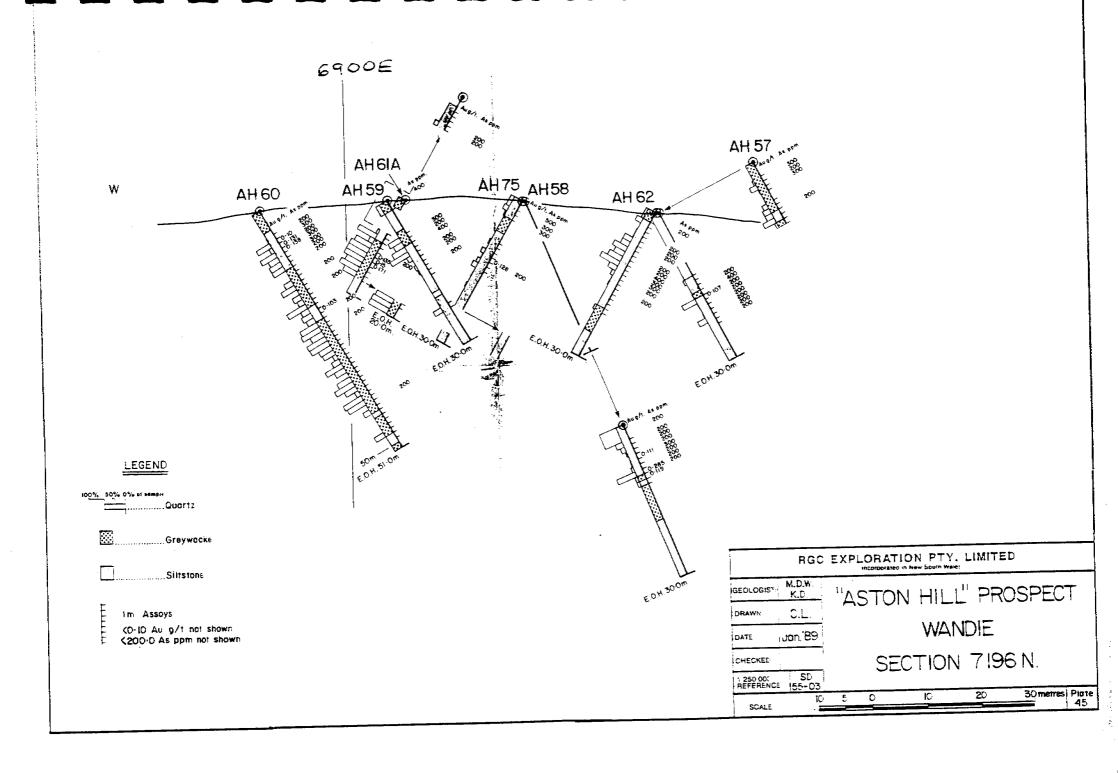

Im Assays

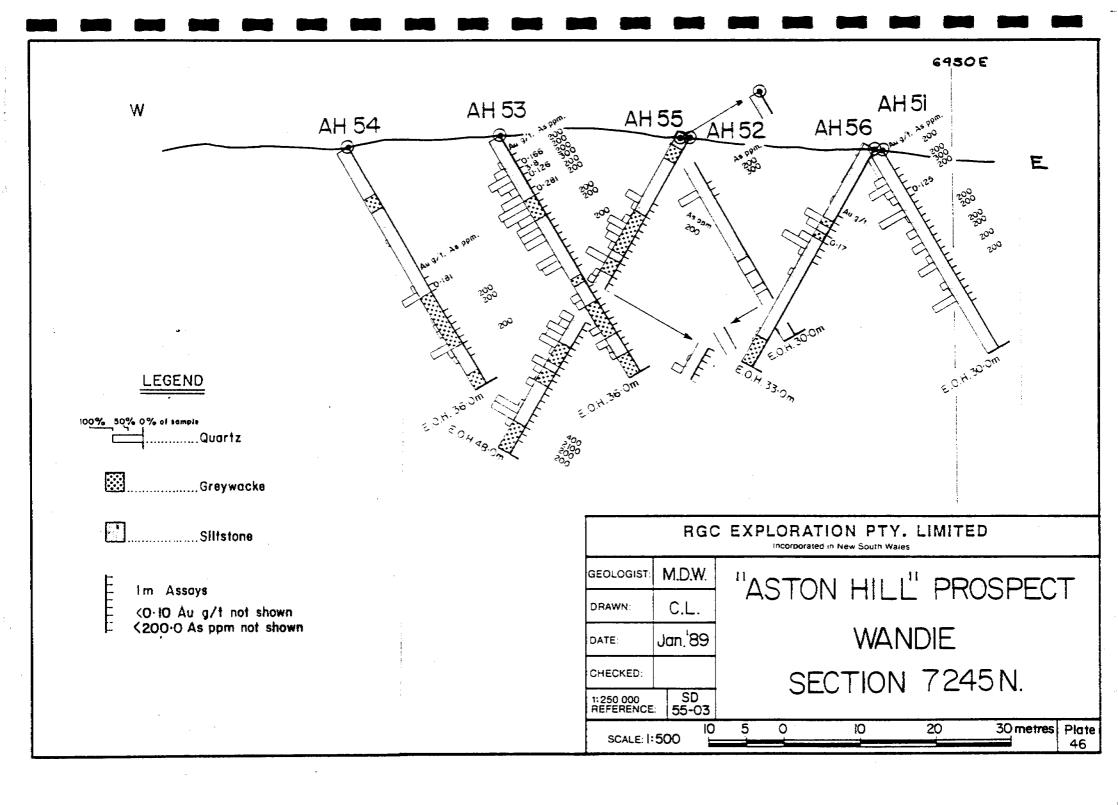

<0·10 Au g/t not shown

<200·0 As ppm not shown

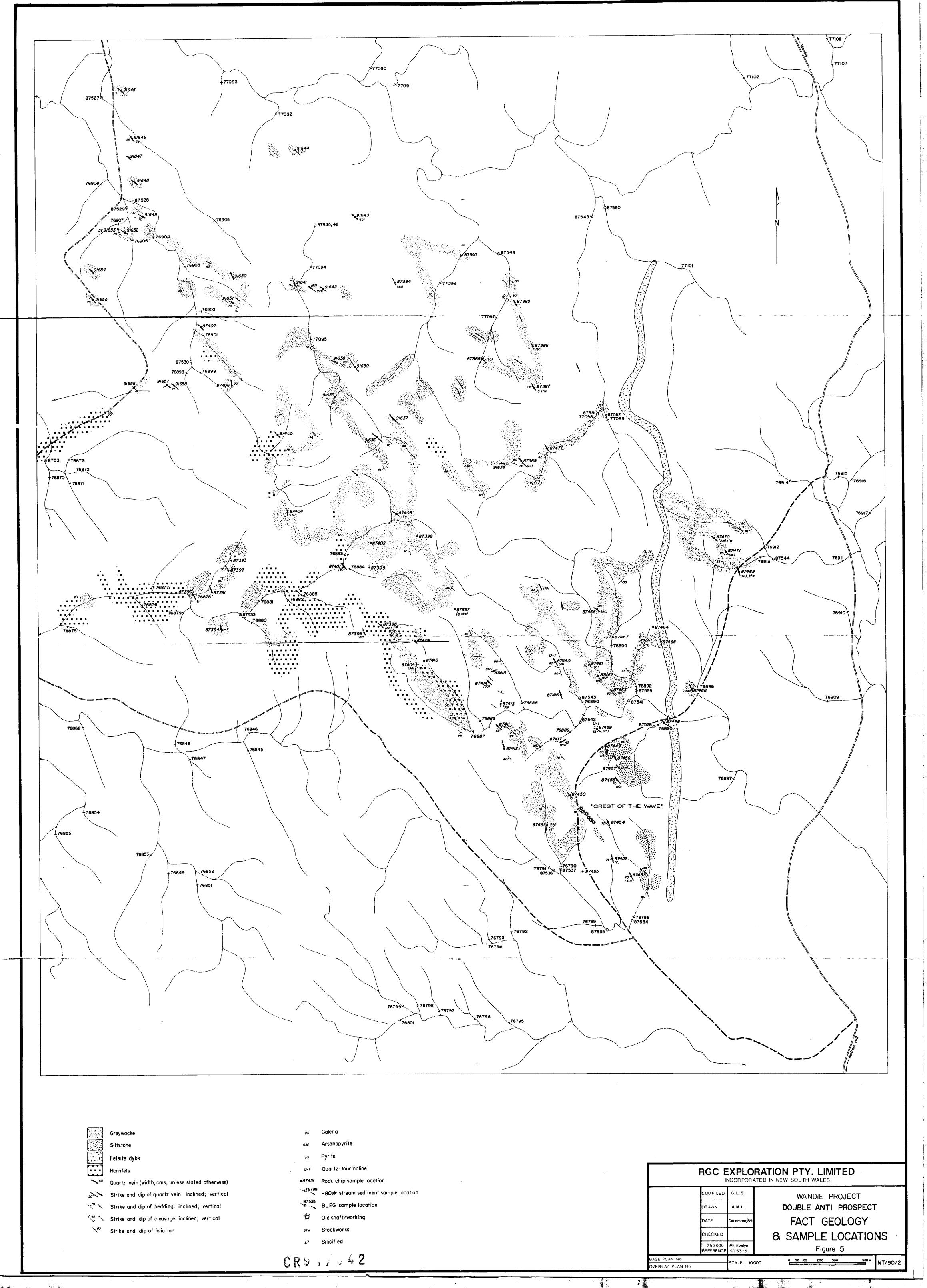
	RGC EXPLORATION PTY. LIMITED noorporated in New South Wales									
GEOLOGIST:	K.D.	"AST	TON HILL	PRO:	SPECT					
DRAWN:	C.L.			_	0, 20,					
DATE:	Jan. 89		WANDIE							
CHECKED:		(SECTION	7104	N.					
1.250.000 REFERENCE	SD 55-03									
SCALE:	:500 E	5 0	Ю	20	30 metres Plate					

LEGEND

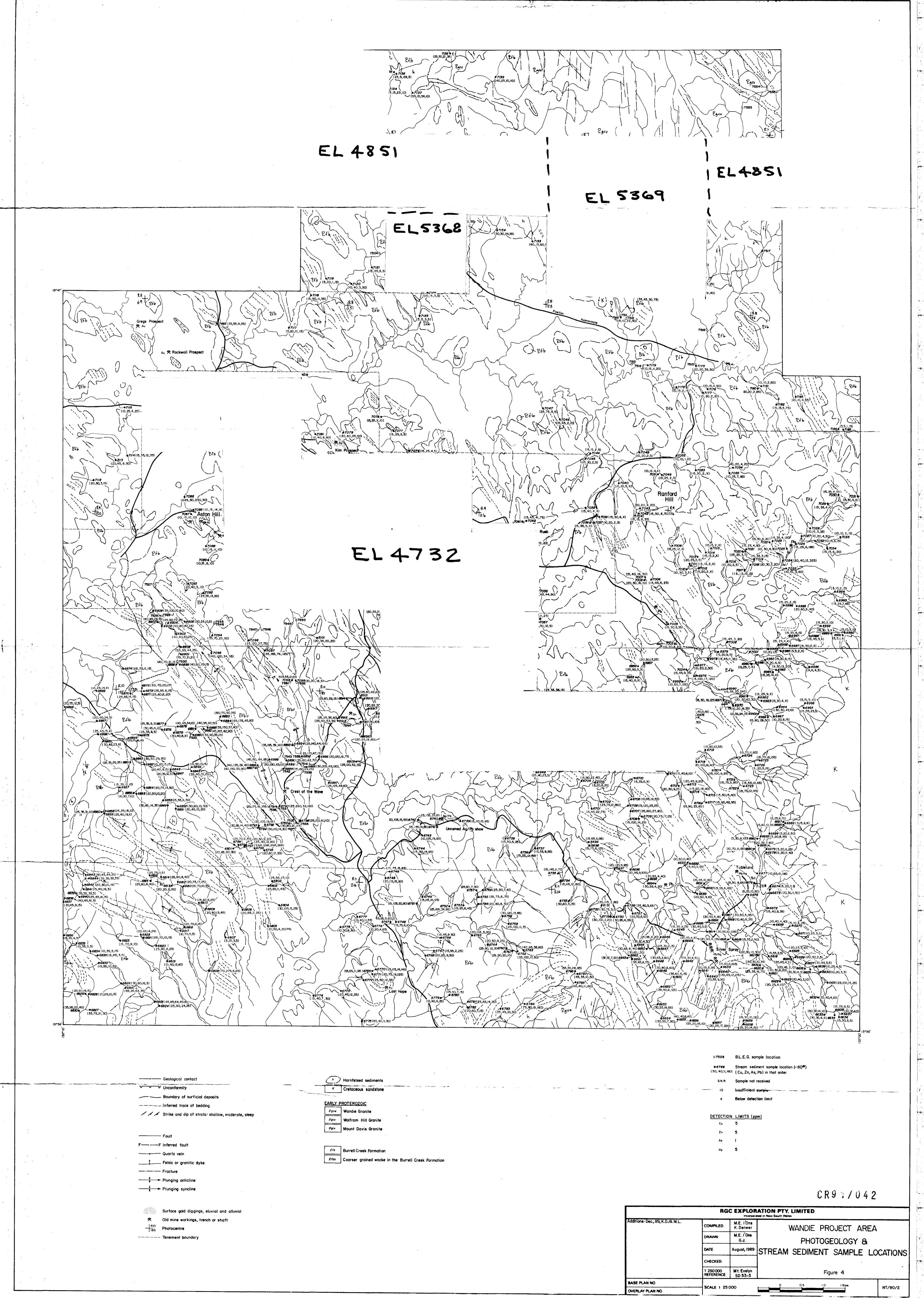

100% 50% 0% of sample Quartz

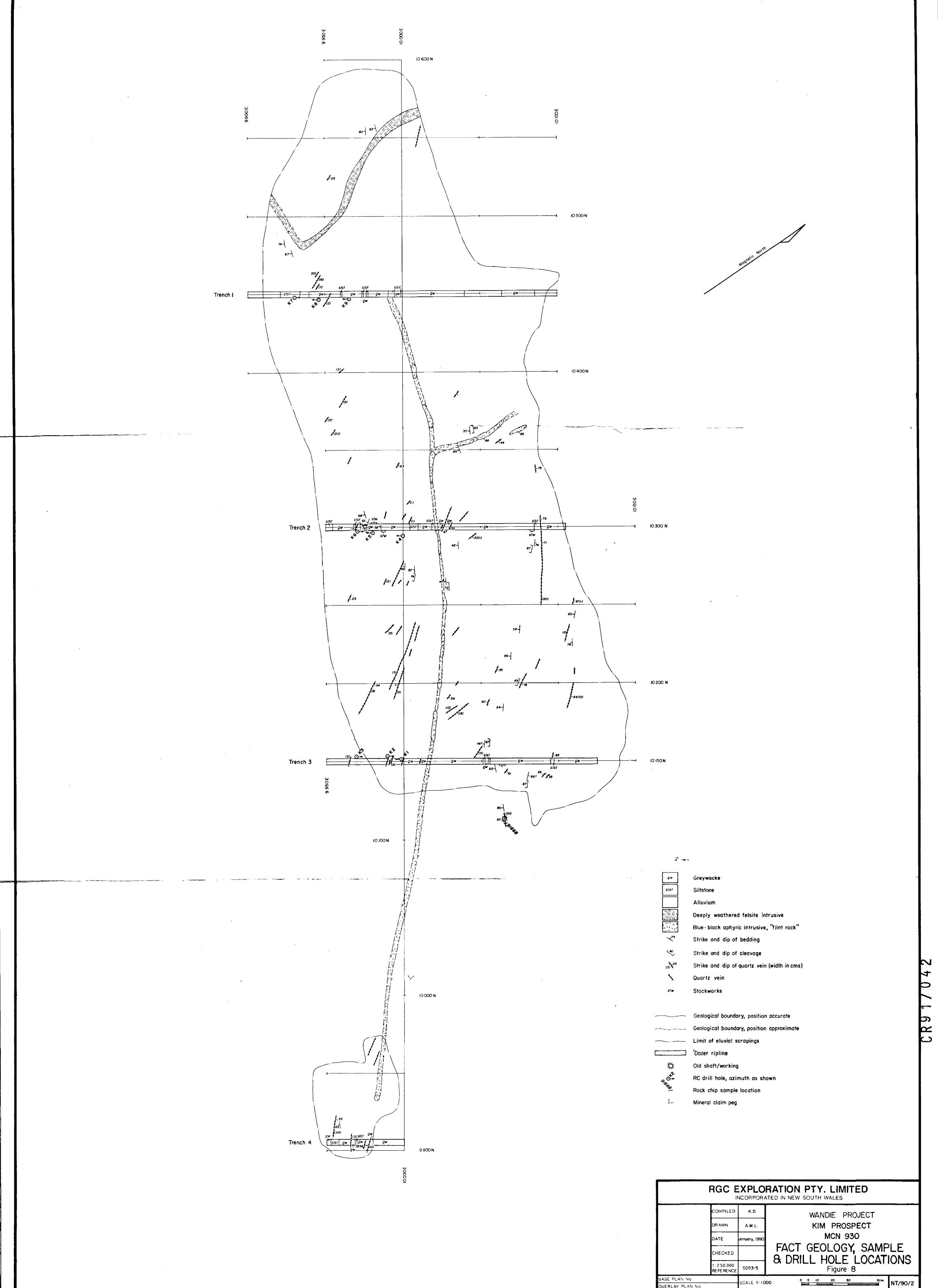

Greywacke

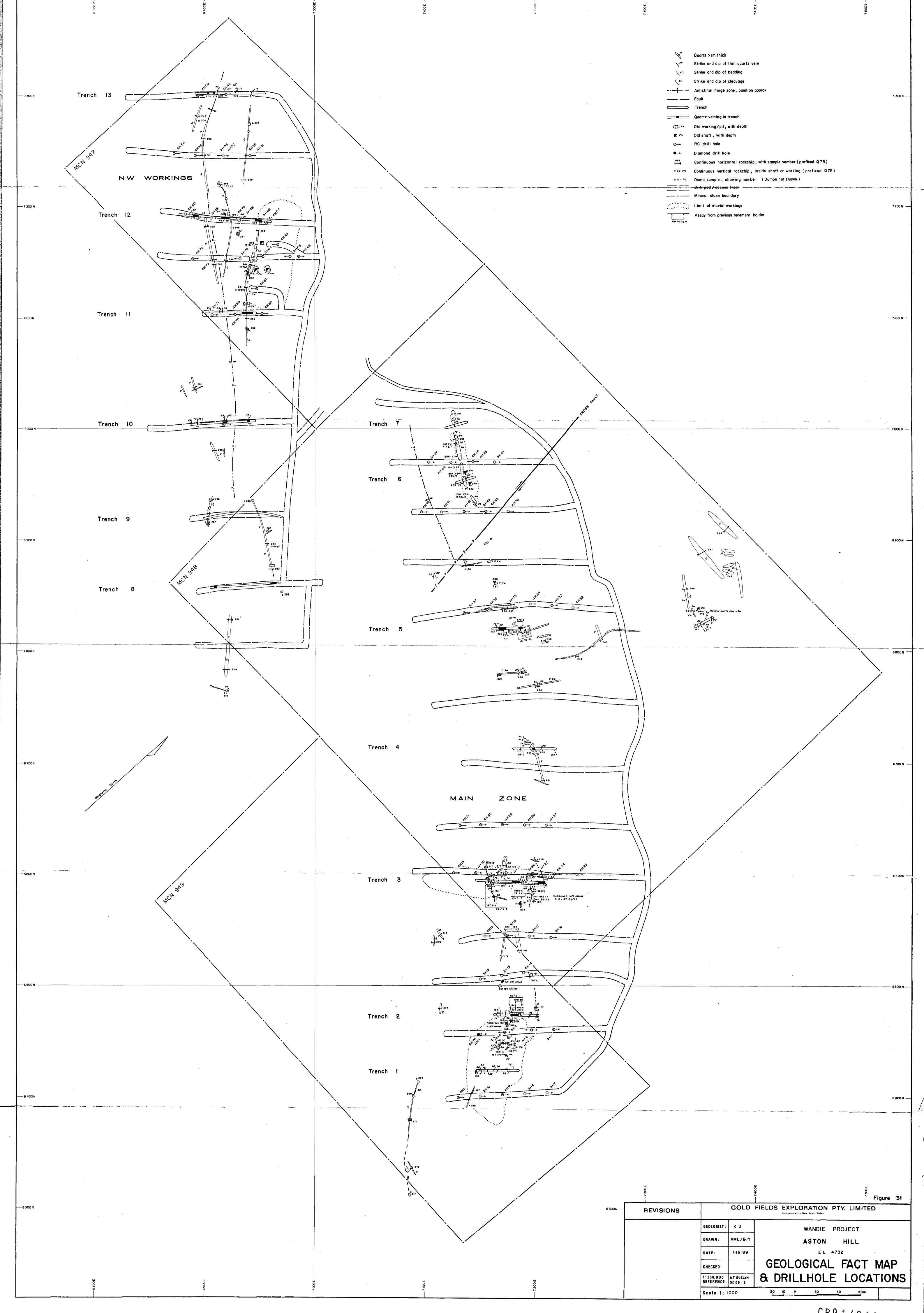
Siltstone


Im Assays <0·10 Au g/t not shown <200·0 As ppm not shown

	RG	C EXPLORATION PT		.D								
GEOLOGIST:	M.D.W.	"ASTON HIL	ı" PRC	SPECT	-							
DRAWN:	C.L.	A01011112										
DATE:	Jan.'89	ΙΔW	WANDIE									
CHECKED:		SECTION	1 7162	N								
1: 250 000 REFERENCE	SD 55-03	<u> </u>										
SCALE.	500 H	5 0 10	20	30 metres F	late 44							







20134 01007 01007		97354 97355 97355 97355
EL4851		EL 4851
	EL 5369	
EL 5368		P87517

OPEN FILE

APPENDICES - VOLUME II.

APPENDIX 1. ASSAY RESULTS - WORK DONE 1987 SEASON.

- 1.1 Trench and Rock Chip Samples Analytical Method.
- 1.2 Trench and Rock Chip Samples Kim Prospect.
- 1.3 Trench and Rock Chip Samples Un-named Ag/Pb Prospect.
- 1.4 Trench and Rock Chip Samples Crest of the Wave Prospect
- 1.5 Trench and Rock Chip Samples West Brilliant Prospect.
- 1.6 Bulk Leach Samples.
- 1.7 80# Stream Sediment Sampling.

APPENDIX 2. ASSAY RESULTS - WORK DONE 1988 SEASON.

- 2.1. Assay Results Analytical Method.
- 2.2 Trench and Rock Chip Samples Aston Hill Prospect.
- 2.3 Drilling Logs and Assays Diamond Drilling Aston Hill.
- 2.4 Drilling Logs and Assays RC Drilling Aston Hill.

APPENDIX 3. ASSAY RESULTS - WORK DONE 1989 SEASON.

- 3.1 80# Stream Sediment Sampling Over General Area.
- 3.2 BLEG Results.
- 3.3 Rock Chip Samples Double Anti Prospect.
- 3.4 Drilling Logs and Assays RC Drilling Kim Prospect.
- 3.5 Trenching Kim Prospect.
- 3.6 Regional Work Mt Davis.

CR91/042 B

DME LIBRARY
0 2 MAR 1995
SCANNED

ASSAY RESULTS FROM 1987 SEASON.

1.1 Trench and Rock Chip Samples - Analytical Method.

APPENDIX 1. : ANALYTICAL METHOD

All samples were prepared and split by ANALABS in Darwin, N.T., then assayed at either ANALABS in Perth, W.A., ANALABS in Cairns, Queensland or ANALABS in Darwin, N.T. The following elements were determined:

Element	Method	Detection limit	ANALABS stated Quality Parameter
			•
Au	FA 309	0.008 ppm	±15% @ 2ppm
As	AAS101	50 ppm	±10% @ 2000ppm
As	AAS101	5 ppm	±10% @ 250ppm
G.,	330101		
Cu	AAS101	5 ppm	±10% @ 250ppm
Pb	AAS101	5 ppm	±10% @ 250ppm
Zn	AAS101	5 ppm	±10% @ 250ppm
Ag	AAS101	0 5 222	1100 0 25
**9	ANDIUI	0.5 ppm	±10% @ 25ppm
Sn	XRF401	10 ppm	N/A
Sn	XRF403	30 ppm	N/A
W	XRF401	20 ppm	N/A
W	XRF403	50 ppm	N/A
Вi	AAS102	1	** / *
Bi	AAS102 AAS104	1 ppm 25 ppm	N/A
		23 ppm	N/A

APPENDIX 1. ASSAY RESULTS FROM 1987 SEASON.

1.2 Trench and Rock Chip Samples - Kim Prospect.

Kim Prospect Gold Fields Exploration GEOLOGIST: K. Denwer Zn DESCRIPTION SAMPLE bibit Dung Sample: Fe-on grants (NW most pid)

625 2m rock chip: Fe-on grants from NW wall of

pit. (SE most pid) 50 25 0.5 0.017

ASSAY RESULTS FROM 1987 SEASON.

1.3 Trench and Rock Chip Samples - Un-named Ag/Pb Prospect.

Analyses were performed by Analabs in either Darwin or Perth. Methods and Analabs quality parameters are listed below:

Element	Met	hod	Detecti	Analabs Stated Quality Parameters							
Au	FA	309	0.00	8ppm	<u>+</u> 1	.5% @	2ppm				
*As	AAS	101	100	ppm	± 1	.0% @	2000ppm				
*As	AAS	114	1	ppm	± 1	.0% @	20ppm				
Cu	AAS	101	5	ppm	<u>†</u> 1	.0% @	250ppm				
Zn	AAS	101	5	ppm	<u>+</u> 1	.0% @	250ppm				
Ag	AAS	101	0.5	ppm	<u> </u>	.0% -@	250ppm				
Pb	AAS	101	5	ppm	<u>±</u> 1	08 @	250ppm				

^{*} Two different detection limits were employed at various times.

NOTE: Assay results below detection are donated with an 'x'.

ASSAY RESULTS FROM 1987 SEASON.

1.4 Trench and Rock Chip Samples - Crest of the Wave Prospect.

									•	
PROJECT			2 (4)		-	Gold	l Fiel	lds Es	cplora	ition
GEOME	1ST: K.Danwer July 1987 Crest of the Wave Pr	ospect	(2)	1	1		<u>. </u>	1		
SAMPLE	DESCRIPTION	Au	tué	As	Cu	РЬ	Zn	Ag		
Q61825	In rock chip: Fe-on quark, silicitied sillstone	0.017		550	1500	60	145	×	<u> </u>	
826	2.5m rock chip: silicified sillstone interhedded with	n		50	160	60	375	n		
	Spotted shale.									-
827	in rock chip: Fe-on quart, Silicified S//kstone	0.017		800	770	120	590	1.5		ı
828	Dump Sample: Green hornfelged state and quarty	λ		/00	280	75	430	x		
	breccia									
\$29	Dump Sample: Thinky quarts bissel green shale with	u		×	60	330	205	0.5		
	a pegmatitic selvage						·			
830	STD : PHY	0.025		ж	550	20	220	72		
831	Dump Sample: included sedement/ Quanto vein, to-ox rich	0.025		1050	260	245	260	0.5		
832	1.5m roch chip: thinly remed siltstone Not wall of pit	0.008		800	295	180	360	ж		
833	2m roch chip: quarty stack worked + brecatated silicitied state	72		400	150	100	190	2		
834	Dump Sample: Blish, From mic accous (red-brain) quarty	0.008		150	130	55	75	u		
835	2m roch Chip: Micaceas (red-brown) milley quarts	ય		100	45	35	40	પ્ર		
836	In roch chip: Micaceous (red-brown) incluy quants	×		ж	30	235	45	×		·
837	2m roch thip : boxworkeed (minor) silicified granqualle	×		450	45	240	200	2 i		
838	3m Sami continuous roch chip: Fe-ou rich purtic quanto.	· 71		150	20	45	40	κ		
839	3m semi continuous roch chip: Fe-on pyritic quarts vein	n		150	25	100	45	х		
840	STD : CPD	0.500		1200	140	20	70	ג		
061841	Dump Sample: intensely reined, tourmalinized bando	72		100	25	95	35	x		
	Sillistone.			1			<u> </u>			·

PROJECT: Wandle DATE: Gold Fields Exploration Creek of the Wave Prospect (2). GEOLOGIST: K. Denwer July 1987 DESCRIPTION As Zn Ag SAMPLE 35 × × 0017 75 × 185 405 30 ζυź 50 × 45 380 0.050 1500 592 470 1.0

ASSAY RESULTS FROM 1987 SEASON.

1.5 Trench and Rock Chip Samples - West Brilliant Prospect.

 											
	: Wandie DATE: ST: K. Denwer July 1887 West Brilliant	Pro	spec	t	·		Gold	l Fiel	lds E:	cplor	ation
Sample	DESCRIPTION	Au	tue	Sn	As	Cu	РЬ	Zn	Ag	W	Bi
Q61848	1.5m rock chip, across silicified siltstone and	z		380	2200	<i>53</i> 5	105	265	1.0	100	135
	0.2 m wide iron formation bed.										
49	From rich, silicifical quartz voiced bounded silbeton.	0.067		3910	7800	1850	1500	345	10.0	600	8750
50	std: GC9	3./00	ì	j	1350		i	60	I	NA	
51	From ouide rich boxworked silicitied silbetone	0.025		56400	8200	2150	446	425	15.5	450	2650
52	from dump, some charty bands. 2m roth thip, across vugge, Ferox milly 9+3 vein.	z		160	100	70	425	180	0.5		12.
53	5m roch chip aeross pyritic (miner) Fe-on quarty vein.				50	1	1	280	24	u u	/80 ·5
54	2. toch chip across Fe-on rich (up to 60% inplaces) quantities				150		Ros			×	55
55	5n rock thip across milky quarks vein	\$0xQ		65	250	90	460	105	10	વ્ય	25
56	7 4 4 4 4 4	九		20	u	/5	105	45	×	z	n
<u>57</u>	Im rock thip across formagenous, quarks veined.	710.0		N/A.	750	400	35	<i>35</i> 0	72	N/A	NA
	(mms-cms) silfstone.					<u> </u>	<u> </u> 				
						<u> </u>	<u> </u> 	 			
1											
					:			·			
AT LOS AS A STATE OF THE STATE					<u> </u>						
	-										
i		<u>!</u> }				<u> </u>	1				

APPENDIX 1. ASSAY RESULTS FROM 1987 SEASON.

1.6 Bulk Leach Samples.

ANALYSIS

SAMPLE	Au	WEIGHT KG
MARK	(ppm)	KG
Q57906	5.4	6.910
Q57907	0.55	5.870
Q57908	3.4	6.360
Q57909	7.2	6.450
Q57910	71	5.160
Q57911	59	5.670
Q57912	4.7	5.415
Q57913	2.7	6.185
Q57914	1.7	5.440
Q57915	0.72	5.660
Q57916 /	2.1	5.310
Q57917 [/]	2.2	6.250
Q57918	1.9	7.090
Q57919	1.6	5.655
Q57920	2.7	5.480
Q57921 /	1.9	5.680
Q57922	1.2	6.460
Q57923	0.15	5.300

METHOD : PM6

APPENDIX 1. ASSAY RESULTS FROM 1987 SEASON.

1.7 - 80# Stream Sediment Sampling.

Australian Laboratory Services PTY: Brisbane Head Office and Laboratory Services LTD. 32 Shand Street, Stellord, Q. 4053. P.O. Box 66, Everton Park, Q. 4053. Phone: (07) 352 5577. Talex: ALSEV 42 Fax: (07) 352 5109. CONSULTING ANALYTICAL CHEMISTS rax: (07) 332 5109. Perth Office and Laboratory 16 Bassendean Road, Bayswater, W.A. Phone: (09) 272 2300. Fax: (09) 272 57: Townsville Laboratory 457 Bayswater Road, Garbutt, O. 4814 Phone: (077) 74 5045. Fax: (077) 74 64: LABORATORY REPORT 3 01 Page GOLDFIELDS EXPLORATION PTY. LTD. .ddress: G.P.O. BOX 1090 DARWIN **Batch Number:** H155 5794 N.T. No. of Samples: 42 MR. J. FORD. Date Received: 17/08/87 Date Completed: 21/09/87 Sample Type: SOIL ırder No. 3206 Zn Αg Fe Pb Cu ppm ppm ppm ppm ppm 10591 IC591 IC591 10591 10591 **网络了网络阿拉斯斯斯** #345751394 85 85 Q57913 45 (2)00 in the first of the last of th 40 75 2,12 Û Q57915 17:89 1:32 SALO) 65791688 .03 Q57917 6600 1110 10 Q57919 6900 50 057920 8050 Q57921 1769 20 a la trig 10 1,73 30 Q57923 0.01 2 5 2 1

ESS NOTIFIED PULPS WILL BE DUMPED ON 17/02/88 AND SPLITS (IF ANY) ON 30/11/87

This Laboratory is registered by the National Association of Testing Authorities, Australia. The tests reported herein have been performed in accordance with its terms of registration. This Document shall not be reproduced except in full.

Signatory:

L. Friedayon.

Australian Laboratory Services PTY, LTD. 32 Shand Street, Stallord, O. 4053, P.O. Box 66, Everton Park, O. 4053, P.O. Box 67, P.O. Box

LABORATORY REPORT

SOIL

Peth Office and Laboratory 16 Bassentian Rand Bayswater WA Phone: (00) 272 2300 Fax. (00) 272 5 Townsville Laboratory 457 Bayswater Rand, Garbutt, O. 4814 Phone: (077) 74 5045 Fax. (077) 74 44 64

Page

4 01

4

ddress:

GOLDFIELDS EXPLORATION PTY, LTD.

G.P.O. BOX 1090

DARWIN

H.T.

Q57917

Q57919

Q57921

057923

Q57918

G57920

a57922

The Control of the Co

5794

Sample Type:

35

30

35

35

40

35

Batch Number:

H155

MR. J. FORD.

No. of Samples: Date Received:

As.

ppb

10591

2700

42

8i

ppb

10591

400

100

ırder No. 3206

Mo

ppm

10591

17/08/87 21/09/87 Date Completed:

	Mn ppm IC591	Ca ppm IC591
Q57912	75	120
057913 057914		170 170
Q579 15	90	340
057916	30	150

450 49.8ppm zaza za jaj. 766m 400 17.0ppm 400 100 150 <2 50 80 6750 <2 100 110 6600 160 <2 5650 100 300 100 110 <2 8000 50 5750 100 100

and the second of the second o

34.9ppm

5

1.0

9.0

5.0

5.0

This Laboratory is registered by the National Association of Testing Authorities, Australia. The tests reported herein have been performed in accordance with its terms of registration. This Document shall not be reproduced except in full.

Signatory:

A Hindayson.

APPENDIX 2.
ASSAY RESULTS FROM 1988 SEASON.

2.1 Analytical Method.

					DI	AMOND DRILL HOLE LOG	<u> </u>			PAG	ie 1	0F <u>2</u>	PAGES
DATE:	November, IST: Kim Des	1988 2 WE		GOLD	FIEL	_DS EXPLORATION PTY. LTD.		OJECT: W		,	Astor	_ Hill	1
	GEOLOGY		IINERALS (% EST)	DISSEM. MINERALISAT	10N (% EST)	Om. ARIMOTH 038 Indination 50°		SAMPLING	·		AS	SAYS	
	ROCK	1 1 1	·			97m figureth 034 Inclination 50°	ER (SAMPLE FROM	то				
FROM TO (m)	TYPE BCA VCA	QUARTZ PYRITE RSENOPY	GALENA SPHALERITE FE-OXIDES CLAY CARBONATE	FE-OXIDES SILICIFIED BLEACHED PYRITE ARSENOPY GALENTE	CLAY	Base of oxidation 82.0m	RECOVERY (%)	NUMBER (Q) (m)	Δ	u AuR	As	Cu Pb	Zn Ag
0 15.0		18	8 14 10	JE 18 12 12 12 15	101	Pre-collar no sample.							
<u> </u>													! !
5-0:38-7m	6. 4.					15.0-38.7m Greywache	8/%					:	
19.0 129.1W	GWEE						19.20						
15.0 16.3						Fine grained workly ferriagnous massive	103%			<u> </u>			
						unit with finer needs up to 50 cm wide	76%						
19-3	600	 				Quartz and lithic clasts (30-40%, up to long	81%						1
25.3						diameter) in a silty matrix finer silty	27%			:			:
26.0						unit hend to be more hematitie atthough beating	86%	:					
28.1	62	0				parallel hematitic fractures are common in the	189%						
129.4	- 06					V	89%						
31.3						greynache.	92%						
33.4							96%	:			-		
36.0	650					All structure at high angle to the core axis	94%						
39.1	65°					herban 20mg (\$20 cm) 16:10 19:2 26:0 26:5 28:0	194%				<u>i </u>		
1						29.3 35.0 m miner Clan.					!		
						29.3 35.0 m minor clay. major faults 22.1-25.3 m, major core loss fine rubble and wache minor day some quarte veinir							
						(~10cm)	•						
						(Nount)	1			i 			
								'		<u> </u>			
						Vicinia							
						26.50					1		
						Minor thin Veins 2-10mm thick 22.3-22.4	'						
						Computer fractured hematitic milling quartz. Minor							
						Veins at 28.8 m 29.3 m.		<u> </u>					
							<u> </u>				1 1		-
											- 		
8750~	SDF.					38.7-51.0m Siltstone	83%	0					
							10.2	1			 		
39.1 42.2						Hematitic micageous cleaved red weathered	94 % 84 %	6		···········	1 		
46.3	65° 75					Siltstone. Laminations (variable For content) increase	84 %	<u> </u>					
484						towards base of unit.	82 %						
50.3	68°				1		54°/			<u> </u>			
:52.15						Structure	97%	2					
						38.8m Dug seam	1			:		· · ·	
						· 45.7 - 45.8m brecented 3 one		 			1	- :	
	:						-	1		:			
						Vening Poor Veined unit					:		<u> </u>
		1 !				45.0 m micacease, Chloritic milly quart	3			- !			
:			<u> </u>		1 . 1	Vein						······································	

APPENDIX 2.

ASSAY RESULTS FROM 1988 SEASON.

2.2 Trench and Rock Chip Samples - Aston Hill Prospect.

PROTEC	T: WAND IE	DATE:		1		·	, . =							
GEOLOG	1ST: Kim Denwe	er April	1988	Aston	Hill Pros	gect		1 /13		Gold	l Fie	lds Es	plore	rlioi
SAMPLE		DESCRIPTION				Au	Aué	As	. Cu	Pb	Zn	Ag		
Q 75152	Trench to nth of Se	ctan 1, 2.5m	they of 20c	m wide w	dipping oft vein	. 0.059		30	0 25	320	30	40.5		
Q75153	<u>,, , , , , , , , , , , , , , , , , , ,</u>	,	they altros			0.098		26	.	170	25	40.5		
P75154	R.C. in old works	•	wide nice			0.098	2	130	15	15	30	40.5		
Q 15155	//	2mvatical		flat veines		0.066		29	0 15	450	IZO	20.5		
⊋ <u>75156</u>	"	, 2m 11	milhy gue	(Mast	J	0.054		180) 15	100	45	40.5		
75157	4		<i>y</i> .		((fat) gregwach	. 0.355		170	20	105	50	40.5		
275158	//				of groupwach	3 1		250	20	95	40	10.5		
Q \$5159	4	, 4 m , the	by Viened	(minos) g	regwache.	0.090		24	0 15	75	50	<0.5		
Q75160		STD : PHY	·		<i>V</i>	0.044	0.	<u> 38 كو</u>	340	15	200	40.5		
<u> </u>	Outrop ; to who section	-2, R.C. 3m	milhy 9	wants mine	n grezwache	. 0.068		50	10	35	20	40.5		
775162		, R.C. 3m	rilly goes	anous quests ,	minos gwehe	0.302		5sc	35	285	55	10.5		
75163	"	, 1.5 m chip ,	Stochwoohed	, agry alte	red granuach	0.261		490	20	855	35	20.5		
215164		,3m,	. 11	7	n alf	. 0.811			20	320	55	20.5		<u></u>
975165		,1.5m, St	ochworhed	greguradie	miner Aspy	2.955	3:	344 1000	30	390	65	<0.5		
Q7516C	И	, 1.2m, guart	Stochworked	, aspy altere	d, greyward	40.475		620	25	280	85	<0.5		
135167		/m,				. 0.175			20	260	30	K0.5		
775169 R75169	Trunch to N of Section	,	gossanas		<u> </u>	0.093	<u> </u>	_	2 40	550	3/0	1.0		
<u> </u>	" " " " " " " " " " " " " " " " " " "	, 15.5-17.5m,	yorranous gt	veined, think	y Maronthe	0.168	1	620	40	925	50	20.5		
275170	Verned grey	mvache STD: 6C8				0.860		850	11.0	30	60			
275171	//	17.5-19.5m	·	, ha	greywach.		12-180 11			<u> </u>		1.0		

(FOTOF)	T: WANDIE 15T: Kim Danner	DATE: April 1988	Aston Hill Pro	spect		z /13		···········	Gold	l Fie	lds Exj	rloral
Ample	Ď.	SCRIPTION		Au	tué		As	Cu	РЪ	Zn	Ag	
75172	Truck to Nhof Section	2, 19.5-21.5 goesonan gt	vined sory altered on	nh. 0.236			440	30	310	60	<0.5	
15173	"	, 21.5-23.5 garanan mi		1	i		240	20	100	40	<0.5	
775174	. 11	, 23·5-25·5 _m , "	gra	المحمد	(610	30	175	35	40.5	
75175		, 25.5-27.5m, 5cm wide					330	20_	125	40	20.5	
75176		, 39.5-40.5 , gissano		. I	1.405	1.359	140	25	60	25	20.5	
15177		rilhy quart vein.		;	3-440	2.129	950	45	220	25	0.5	
75178	i -	voling, very gossanous	quanty stockworked gray	want 0.137			260	45	260	15	0.5	
75179		on, wally gosonous,		0.127			130	20	390	105	0.5	
75180		STD : 6C4+		0.662			3450	250	15	170	0.5	
75181	R.C. Sm. Bubo	rosping, Fe-on nich, po	ched quarte vein.	0.376			80	30	170	15	0.5	
75182	L.C., Gm, Subs	outcropping milly	quantz.	0023			130	20	495	55	0.5	
75183	R.C. 6m, 4	, 4	<u>"</u>	0.027			200	25	650	45	0.5	
•		In clip , milhy	quarty vein.	4.580	3.640	3.159	570	35	75	20	0.5	
75185	. •	In Stochworked (predominer		3.556		2.246	730	40	135	30	0.5	
15186	"	40, 11 11	,,	2.578		2.416	660	40	90	35	0.5	
45187	"	Im, NK wall, Steep E	lipping milhy gt vein	0.437			900	30	65	25	40.5	
15188		1.6m, stock worked	reywache,	0.335			600	30	30	20	40.5	
75189	7	1.7m, "	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	87-400	17-200	19.70	950	40	50	20	6.5	
15190	S	TD : CPD		0-444			1100	135	15	40	20.5	
75191	"	1.5m, quarty Stochworks	d greywacke	0.163			336	20	30	10	0.5	
175192	R.C. in old working,	1m, Sulpilie gossanou	s quart vein	1-222	0.934		33 <i>0</i>	45	75	20	0.5	

POJEC	V . 1 - 3 . 5		DATE:								10.	. 15	1. 0		
GEOLO G	nst: Kim Der	ner	1 Ap	Fil 1988.	Aston Hill Pro	guet		<u>s</u> /13			Gold	l Fie	lds E:	cplore	ati
SAMPLE		PESCRI	PTION			Au	tu,	٤	As	Cu	Pb	Zn	Ag		T
7 5193	R.G., Im, 31	3/6/W	goranous	with of vein,	greywork hod Aspy as	Utend, 0.62	,		460	30	125	75	20.5		+
275194	Truck at Section	5, 9-12	- a/	son flat vi	ein and greywa	che. 0.49	_		480	30	185	120	0.5		
275195		12-15	5m Stack	worked greywa	ele and Aspyrite	quart. 1.026		1-036	1300	45	170	90	0.5		1
Q 15196	"				veined work Asy all				590	35	65	65	40.5		
Q15197	ų.	18-21	on, is	eterfedded 9	raywach & Seltst	0.138	1		290	30	20	55	0.5		
275198	"				9t vein and interbeded		}		420	40	45	40	20.5		
15199	11	/		· • • • • • • • • • • • • • • • • • • •	quarty of thinky viewed	1			850	80	85	45	40.5		\Box
775200			· PHY			0.03		6.052		350	20	220	0.5		\vdash
J75201	u.	27.0-	30.0	Cleaved	gregivache.	0./03			330	30	40	. 40	<0.5		-
275202	lt .		,		Veined greywords, mus	teret			750	25	210	40	10.5		-
Q15203	11				spen 202, 353-36.0 gur				730	50	180	50	<0.5	 !	
275204			-39.0m,	 -	ed wally Asymatter	I			440	25	135	20	20.5		_
Q 75205	11	,	• - ,	,	yevenha, 41.0-42.0 Viin	//			560	40	50	15	20.5		
275206	n	,		0 0	by quarte thinky limente	stake !		1	350	30	15	20	<0.5		
075207	ŢŢ	•	-48.0m	11 4	" + Selfstone	. 0.604	1		900	40	45	20	K0.5		
275208	"		,	18-48.5 Veine	d guh, 48.5-51.0 gre				590	30	55	1	<0.5		
Q15209	lt	51.0-	54-0m.	quart Ve	ined greywache	. 004;	1		280	30	5	1	<0.5		
Q75210			· 6C8			0.908			850	140	25	1 .	CO.5		
275211		_		Veined	nerwache.	0.041			280	25	5		20.5		-
D75212	//	•			to veins & Kinky Veined				280		45	15	0.5		
27523	//				villy grant "remuisdes go		1		240		_		20.5		

PROTECT: WANDIE DATE: GEOLOGIST: Kim Denner April 1988 Aston Hill Pros	spect		4 /13			Gold	l Fie	elds Ex	cplora	rtion
SAMPLE DESCRIPTION	Au	łuż	Au(2)	As	Cu	Pb	Zn	Ag		
Q75214 R.C. old heuch, 4m, Massive Aspy select milby quant & mino	1-269] `	400	20	35	15	K0.5		
O75215 R.C. 2m, quarts stocknowhed greywache & seltstone			<u> </u>	<u> </u>	-			<u> </u> '		-
Q75215 R.C. 2m, quark stocknowhed greywach & seltstone	0.186	1 i		540	30	60	30	<0.5		
(49216 P.C. old working, 2.5 vertical, quanty stochwooled grayworks Sultitore			7	900	1	190	50	<0.5		
Q75217 just and section 5, P.C. 2.5m, Ward dipping milly quanty veining	4.870	4.840	4.520	580	40	325	40	1.0.		
and enclosing thin by veined greywache.					-	-	-		<u> </u>	í
Q75218 R.C. 2.5m, Fe-on stained milley quarte vein.	0.122		-		20		40	40.5		 -
075219 Dump Sample, Fe-one " " " " " " " " " " " " " " " " " " "	0.471			1	40		45	0.5	,	·——
Q75220 STD: 6C4+	1.396			3550	230	10	185	0.5		
The state of the s	0.144			410	35	535	/30	0.5		
Q75222 Trench od Section 7, 18 to 20.5m, Fe-on milling quests, minn cleared sect and	0.145			240	25	335	100	0.5		
	0.157			340	20	320	85	0.5		-
O dans of the first of the firs	0.038			300	30	30	20	40.5		
175225 just to NH of Q75224, 4m, Fe-on tained milly guarte	0.036			220	35	595	55	40.5		
Oscool .	0.087			300	35			0.5		
Q15227 " " " " " " " " " " " " " " " " " "	0.029			230	20_	5	20	40.5		
Q7528 Workings to shofsection a, 4m, Stochworked granwache.	0.015			200			Ī	10.5		
	0.028		0.040	i	20	1		205		
Arran	0.776			850	/40			40.5		
True de la companya del companya de la companya del companya de la	0.049			560		630		40.5		
Q15232 " 18.0 to 22.5m massin zone of Fe-on stained nully of				1200			55	0.5		
, , , , , , , , , , , , , , , , , , , ,	<u> </u>		<u> </u>							

PROJECT: WANDE DATE: GEOLOGIST: KIM DENWER APRIL 1988 Aston Hill Pro	spect		5,/13			Gold	l Fie	lds Es	cplora	- Lioi
SAMPLE DESCRIPTION	Au	tué		As	Cu	РЪ	Zn	Ag		
275233 Truck at section 9, 22.5 to 270, massive zone of Ferox stained milly quark.	0.206				50	545	50	0.5		
Q15234 Old hund tol Bechang, 5m R.C., milly quarte veried (70%) graywache	0.019				40	45	30	40.5		
Q 15235 " " " " " " " " " " " " " " " " " " "	0.048	<u> </u>		· 	35	25	20	<0.5		
275235 "" "" "" "" "" "" "" "" "" "" "" "" ""	40.070			· ·	30	95	35	40.5		
9 75 B7 Old working on section 10, Fe-we stormed milty quarty viewed selfstone	0.018				40	30	25	40.5		
					30	150	40	0.5		
275238 All heach 6.C. 6800N, 7200E Fe-on Stand milly quark vin. Q75239 All heach 6.C. 6820N 7180E, 3m Chip flat Veried quark Staturoled quark	0.723				70.	160	50	K0.5		
Q75240 STD: PHY.	0.038			•	340	25	210	40.5		
75241 11 4 11, 3m chip 4 4 4 4	0.348				50	240	.30	40.5		
275242 6. C. 6790N 7240E, 3m R.C., Vuggy, Fe-on rich quart vein.	0.014				25	45	20	0.5		
15243 G.C. 6820N 7260E, 4 m R.C., Fa-on rich abundant unchant sed of vain					20	85	40	40.5		
75244 R.C. del working, G.C. GELON 7350E, Massive flit miller of vein minor Asp	0.010	0.010	0.033	_	25	110	25	20.5		
75245 R.C. " ", " " Stockworked groupwarks above flast	0.029				45	135	50	40.5		
vein en 975244.										
275246 Atyveirs of approx 6.1. 6850N 7360E, 5m R.C, Fe-on Pinhish milly quartivein	0.016				10	10	20	40.5		
75247 11 4m R.C., 11 11 4 7 7	0.009				10	5	15	40.5		
15248 " 2m R.C, Subcropping mithy quarte vein	0.011			···	15	25	20.	0.5		
75249 ", 6m. R.C., milly quark Vien	<0.008			·	10	5	15	20.5		
75250 STD: CPD	0.428				130	15	55	0.5	·	
75251 Workings just north of section 11, Im, governous, hematific melly quarte	2.822		2.998		100	895	100	1.0		
75252 R.C. in old herch 1.2m Fe-on Stained locally gosponais milly yt vein.	0.081				35_	240	120	<0.5		

PROJECT: WANDIE DATE:			··-··					·		
GEOLOGIST: Kim Dennier April 1988 Aston Hill	Progre	d (/ ₂ /13	•		Gold	l Fie	lds 6:	cplore	rtion
SAMPLE DESCRÍPTION	Au	tué		As	Cu	Pb	Zn	Ag		
075253 waling between sections 11+12, R.C. Im, Fe on rich, gosanous milky quest	0.633			540	275	955	130	105		
Q75254 " , R.C. 12m, Pyritie, assangiguetie? mely quarte ven			1.690	350	80	250	45	0.5		
Q75355 11 , R.C. 2m, n n n	0-3//		ļ	4-50	35	230	50	L0.5		
Q75256 workings to north of section 12, R.C. Imvest, quarte stochworked (30%) gregue	40.101			340	40	200	60	0.5		
Q75257 11 R.C. 2m Verd, Wdygeres?, quent stockworth (95% gt		8:350	7420	1250	105	345	80	1.0		
175258 " R.C. Imhorizontal, Steeply east dipring	0.475			400	70	475	75	0.5		
guarty vein with a west digging stockwork feeding of wedge.										
075260 at section 13, small working, 3m chip pyratic milky quart vein.	0.289		0:241		30	390	100	0.5		
	0.804	<u> </u> 			145	35		405		
	3.993		3:207		20	50	45	20.5		
A- /	0.064			32 200	15 20	35	105	1.0		
075264 " , Im R.C., Surficially breezested impure quarte.	0.534	9-920	K Lux		20	25	<i>70</i>	0.5		
Q75265 ", Olm RC, 318/50E melly quark vein.	İ	22.080			20	30	35	2.5		
Q75266 " , 15 mRC, Querty stockworked graywache.	0.241	i		200	40	175	95	0.5		
075267 Southern workings, 3m RC, Fe-on stoward micacenes 95, Sulfide allevel god	1			400	40	145		λ .		
075268 dump sample, Milly quarty view Fe-ox rich - included sediments				100	ઢ ૦	290		×		
Q75269 2m RC, 30cm wide quant vein, granwach hort	0.015			5o	20	25	35	x		
075270 STD CPD	0435			350	70	35	25	7		
Q75271 2m RC, Intensely Veined greyworks	0-205			50	25	120	30	Je		
										i

PROTECT: WANDIE DATE: GEOLOGIST: Kim Denwer April 1988 Aston Hill Pr	ospect	7/13		Gold	l Fie	lds 6.	xploration
SAMPLE DESCRÍPTION	Au	tué As	Cu	РЪ	Zn	Ag	
075272 3m roch chip, subcropping milky quarte vein.	0.026	74 (##80	30	385	200	74	
075273 1.5m rock chip, 0.4m wish you of E digrain of veins and	L 0.086	n	20	10	20	н	
1-/m of gremvache.		*					
075275 3m R.C. Fe-on milly gt minor gts verned gurhe	0015	x	30	50	30	×	
Q75276 3m RC Fe-on milly gts vein	0.011	. x	30	50	30	х	
075277 2m R.c. " " " "	0.024	и	20	190	20	u	
075.078 Im R.C., Fe-ox milley quarts in pit	0-018	х	20	5	10	2	
075279 4 R.C. Fe-oa, Scoradito bearing breaciated quarte	0.269	800	30	2550	190	0.5	
Q75280 STD PHY	0.032	100	330	35	210	าน	
075281 4m 8c, Assenspijutie, quanto vein.	७.५६३	300	20	5	20	×	
Q75282 dump Sample, Fe-on stained milly quarte.	0.015	260	20	5	10	×	
Q75283 2m RC, Locally and rated milky quarty Vem in zit.	0.048	250	20	10	15	74	
Q75284 35m R.C, subcropping pinkish quant	1.046	900	75	1650	270	05	
45285 4m K.C., 1 wall of trench zone of 9ts veining.	0.479	1150	70	75	75	ત્ર	
475286 dung sample Pinkish Fo-on Stringed quant	0.051	200	20	5	20	24	
Q75287 2m R.C. Gossanows poched vein nth wall of git. Q75288 2m R.C. Farm Stand milk Gunt in Them are huccusted.	0.727	400	45	40	70	74	
The state of the s	0.028	500	40	240	80	ж	
125289 3m R.C. out Subcropping mely quarts	0.012	200	20	5	10	74	
Q75290 STD GC4+	1.269	3300	250	10	170	0.5	
Q75291 2m R.C., Milly quarte Vein.	R	50	15	ત્ર	25	ઝ	
Q75292 4m R.C. Feron milly quants, NM wall of trench.	0.073	50	20	200	50	χ	

PROJECT:	WANDIE DATE: F: KIM DENWER April 1988 Aston Hill	Prospect	8/13		Gold	l Fie	lds Es	chloration
SAMPLE	DESCRIPTION	Au tu,	ė As	Cu	Pb	Zn	Ag	
)76293	4m R.C. Milly quark vein.	0184	50	20	30	15	74	
Q75294	3m R.C. 4 " "	0.010	x	15		20	н	
Q75295	5m R.C., massive milly quarte vein	0-498	300	40	70	25	ત્ર	
075296	Im R.C. Porked Fe-on milly quark vein	0.549	100	20	80	45	×	
Q75297	0.3 m roch chip acros E depping quant vem.	0.019	100	25	55	40	ત્ર	
Q75298	2.5 m RC, Pyritic, geothete bearing, milly quanty view	1-342	60	75	150	110	0.5	
Q75299 !	2m R.C, Assenopyntie, Vuggy quarty vin	0-019	х	40	50	100	и	
Q75300	STD 6C8	0.810	800	125	25	60	0.5	
() 75301	8 m R.C, Milly quanty outerops float.	0.106	n	20	120	. 30	7	
Q75302	5m R.C., Milley great Vein	0.035	100	25	105	40	ĸ	
Q75303	4m R.C, Milly 9to vei	0.024	ж	20	60	25	н	
Q75304	hand picked from Q75305, Vugger, coppershand? quanty	0.198	7	30		30	0.5	
Q75305	Dump sample, Fe-on pyritie? quant.	0.073	50	40	430	15	x	
<u> </u>			·	<u> </u>		<u> </u>		<u> </u>
-						<u> </u>		
								<u> </u>
					 			
					}			

. . .

· ·

	WANDIE Kim DENWER	April 1988	Aston Hill	Prospe	.सं	a/ <i>13</i>		Gold	l Fie	lds Ez	ploration
SAMPLE	DESCA	ZÍPTION		Au	tué	As	Cu	Pb	Zn	Ag	
	Samples +	aken from in	vicinity of								
		1t, 7000N - 7200									
Q7530C			bundant included sedemen	£ 0.048		21	n.	10	21	0.5	
Q75307	Im R.C, Fe	-ox rich fractured	milly quart veri	0.011		ત્ર	5	5	и	х	
Q 75308			ment milling quant vein.	0.023		স	10	25	ત્ર	~	
Q75309	4m RC,	hematite Farm m	illy quants vei	0.011		и	25	100	10	×	
Q75310	STD C			0.466		950	130	20	45	મ	
Q75311	um R.C., g	ossanous, Cematitie vi	eggy gt vei.	0.013		150	70	1300	85	Я	
Q75312	5m R-C,	Fe-on stange mell	by gts vein 3mx/m wide	0.009	.	ત્ર	7	10	u	بر	
0.75313			de conseign vein.	0.020		50	20	l≤	10	х	
Qxxy		my shuhe Fe-on v		0.023		ત્ર	10	15	ત્ર	ઋ	
Q45315			wide seperated by 0.5-	0.014		ત્ર	20	375	65	0.5	
0	Stochworked	greenste.									
079316	Im R.C.	syntie, aroenopyute:	gossawu gtz vem.	0.046		250	45	280	75	0.5	
(275317	float,	gorsanous milly 9/	ente from dump.	0.037		71	5	175	15	n	
						<u> </u>					E
	· · · · · · · · · · · · · · · · · · ·										
i	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		-						
			-			-		<u> </u>			
· i								<u> </u>			

PROJECT: WANDIE DATE:	· · · · · · · · · · · · · · · · · · ·				1.0			
GEOLOGIST: KIM DENWER June 1988 NEW WORKING	AS.	TON 1	4144 1	<u>0/13</u>	Gold	l Fiel	lds 6.	chloration
SAMPLE DESCRÍPTION	Au	tue	As	Cu	РЪ	Zn	Aq	
Trench at 7300N,								
075673 9.5-10.5m, Pyrete, gorsonous quents vein.	0-189		100	135	630	280	×	
075674 14.3 - 15.3 m. Pyritic grossnows milly gts vei	0-228		х	75	505	155	0.5	
075675 18.0m, 15cm wich pyrite, 5 Holente melly gts, brecciated in plan			×	140		1250	3.0	
Q7676 33:On, 15 cm wide gossmans Fe-on rich milly quant vein			100	45	160	155	x	
Q75/77 50.5m Brecciated lemonte thin 9ts ven	n		u	105	780	255	u	
GRENCH AT 7200N								
Q75678 11.0-11.3m, Sphalentic, nilly 9ts, abundend Aspy alkeration	2.109		7a	50	295	1000	0.5	
adjacent to the vein.								
Q75679 12-13:0m. Quest veined Aspy altered greywards - shale	0.348		400	45	780	200	05	
Q75680 STD GC4+	1.362		2900	235	15	195	ж	
075681 13-14:0 m as per 679.	0365		650	50	955	/85	u	
Q75682 14-15.0m in a a.	0.538		550	45	795	150	я	
075683 37-38 Om Fe-ac milly quarte vein. System 075684 38.0-39.0m " " " "	0719		300	70	/05	i55	<u>x</u>	
h ,	1.120		250	65	80	/05	χ.	
1475685 39-40 Om	6.600	7-400	300		125	210	×	
A = d =	0.415		150		130	95	ત્ર	
Q75687 41-42.0m " " " " " " " " " " " " " " " " " " "	0.119		<u> </u>	20	40	45	24	
675/89 45.5m Sample of 20 cm wiche nully gts vein	0.036			10	1		и	
Q75690 STD GC4+	0.051	.	2050	1		130	7	
	1.556		2850	1430	/5	180	7	

	T: WANDIE DATE: 1ST: KIM DENWER June 1988 NW WORKINGS	ASTON	N' HKL		1/13	Gold	l Fie	lds E	xplore	ztion
SAMPLE	DESCRIPTION	Au	tué	As	Cu	РЪ	Zn	Ag		
/	TRENCH at 7200 mN.							-	 	
075691	48.5m Sample of thin Feron vich milling quant	0.031		71	20	25	55	21		
Q75692	50.5 - 52.5m, Q.C. across 2 x 20cm Veins and thinly			400	40		115	2		-
-	Veined greywache									
Q15693	67.5-69.0m	0.023		100	20	300	40	ત્ર		
Q75694		0.024		150	25	30	-55			
Q75695	70.0 - 71.0 m	0-016		n	15	10	30	7		
Q75696	71·0 - 72·0m	0.014		u	15	10	30	2		
Δ .	TRENCH AT FLOOMN.									
075697	12.4-14.4m, Souls of two 10 cmx 15 cm wede veins	0.031		100	35	130	75	·x		
	weathly arrangemente, minor Aspy alterate of side hard									
Q75698	31-32:0m	0.020		n	/0	15	35	z		
Q75699		0.053		100	20	60	60	74		
Q75700	STD 608	0.866		800	140	30	70	2		
975701	33-34·0m	0.087		n	25	60	45	ч		
Q75702	34-35.0m	0.153		200	30	65	55	Ж		
Q75703		0.035		200	30	125	85	х		
Q75704	i	0-082		200	30	160	95	х		
075705	37-38.0 m	0.161		400	40	1050	140	2(
Q15706		0-073		200	25	315	95	×		
Q75707	39-40-0 m	0-000		150	25	30	75	z		į

GEOLOGIST:	WANDIE DATE: K. DENWER June 1988 NW WORKINGS	ASTO	W. HILL	<u>.</u>	- 12/13	Gold	l Fie	lds E	cploration
SAMPLE	DESCRIPTION	Au	tué	As	Cu	РЪ	Zn	Ag	
	TRENCH AT 7100mN.								
Q75708	40-42.0m	0-024		100	15	10	30	22	
Q75704	TRENCH AT 7000 mN								
Q75709	1.5-158 m, Milhy quarty Vein, locally gosonou	0.029		n	65	275	380	н	
Q75710	STD CPD	0.420		900	130	15	60	×	
075711	65-7.5m.	0.019		א	30	75	80	ж	
075712	31-32 m	0.023		x	20	10	80	γ	
Q757B	32-33 m	0.026		100	25	10	55	7	
Q75714	33-34 m	0.014		_X	45	20	45	71	
Q75715	51.5-545m	0.025		n.	20	75	60	×	
	TRENCH AT 6920MN								<u> </u>
Q75716	40-6.0m Stochworked Greywache.	0.02		100	25	40	115	0.5	
075717	23.0-25.0m	0.017		u	25	15	35	n	
Q75718	250-26.0m	0.170		250	25	20	35	7L	
Q75719	26.0-27.0m	0.087		200	15	25	20	7.	
Q75720	STD PHY	0.046		n	400		230	ж	
	TRENCH AT 6850 mN								
Q75721	2.5 - 4.0m gossanous melly great ven	0.300		250	30	55	35	х	
Q75712	54-55.0m	0-020		7L	15	۔ ر		24	
Q 75723	55- 56-0_	0.135		350	40	70	65	n	-

PROTECT: WANDIE DATE: 13/13 Gold Fields Exploration June 1988 NW WORKING ASTON HILL GEOLOGIST: K. DENWER DESCRIPTION TRENCH AT 6850mN SAMPLE $Z_n \mid A_g$ 440 Q75724 56.0-57.0 1.064 25 200 30 075725 57.0 -58.0 -0.185 Q75726 58.0-59.0 m 0.606

APPENDIX 2.

ASSAY RESULTS FROM 1988 SEASON.

2.3 Drill Logs and Assays - Diamond Drilling - Aston Hill.

		-							
GEOLOGIST: K. Denver July 1987 Unnamed Ag 1965.	Show				Gola	, Fiel	ds Es	plora	tion
SAMPLE DESCRIPTION	Au	tué	As	Cu	Pb	Zn	Ag		
Object 0.5m rock chip; From, galena rich quark vain.	0.032		500	385	5/5%	90	260.0		
926 Handpicked sample: Flat lying pyritic, arconopyrite quants	0.017		500	i	6550				
3.001									
927 Dump Sample: Gossaneaiz, jaspern quarts. 20m to sir	4.330		300	50	2000	1200	0.5		
928 Float Sample: Fe-on milky quarts.	×		×	40	510	195	1.5		
929 I'm roch chip: minor Fe-one milley quarty, subcrop.	74		R	5	160	25	- 7 4		
-1	0.475		1000	145	25	మ	Z		
931 15m rock Chip: Gossan, gossanears quarty and graywards	0.025		500	40	365	570	ઋ		
932 3m roch chip: Fault breccia, ferrigenors greywache and qual	-0.025		400	20	1800	180	ત્ર		
1001 733! 3m rock Chip: Located ~100m at 340 from	メ		×	5	190	45	ж		
NH mort pit.					<u> </u>				
N o H					<u> </u>				
061937 2m Vertical roch chip. Flat pyritic quartz veins (as per	×		150	70	1.35%	250	4.5		·
abigab) and enclosing benneganous greywalle									
	0.017		450	70	1850	825	0.5		
hingsaspeny iron oxide veined (mms) milley quants.					<u> </u> 				
939 5m rock chip: Fe-on Grantwed Gerngenas Sillatone	π		250	3≤	780	850	×		
miner thin (mm's) quarts veins.				-					
gyd STD GC4	1.320			255		200	7		
941 5m roch chip: ferrigenous breccia, quarte breccia.					1950	1			i
942 Float sample: Very gossaneous, quarts, greywache breccia	0.017		1150	85	2000	1800	2		

APPENDIX 2. ASSAY RESULTS FROM 1988 SEASON.

2.4 Drill Logs and Assays - R C Drilling - Aston Hill.

PROJECT:

WANDIE

PROSPECT: ASTON HILL

GEOLOGIST: K. DENWER

DATE: 5:7:88

RGC EXPLORATION PTY. LIMITED

REVERSE CIRCULATION

PERCUSSION HOLE LOG

PAGE: DRILLER: J. WATSON MACHINE: INVESTIGATOR

WATER TABLE: NOT REACHED

BASE OF OXIDATION: REACHED

INCLINATION: 620 TOTAL DEPTH: 30m. HOLE NUMBER: AH:1 AZIMUTH: 035

INTERVAL	-		GEOL	OGICA	L DE	SCRIP	TION	/ •	SAMPLE		ASSA	Y RE	SULTS			
(m)	1	SLST		OTHER	PY	ASPY		OTHER	NUMBER	Au	Au(R)	Cu	Zπ	As	Ag	P
0 - 1	15		85						Q96001	0.045		45	40	200	1.0	2
1-2	10	20	70						002	0.037		50	35	150	x	1
2-3	60	10	30						003	0.022		30	35	100	0.5	1
3 - 4	2	70	30			,	 		004	0.008		70	220	х	0.5	24
4 - 5	<u> </u>	•			7	1										
5-6		95	5						005	0.051		40	50	100	1.5	:
6 - 7		90	10						006	p.014		35	35	200	x	
7-8		98	2						007	p.008		35	30	150	x	
8 - 9		99	1						008	0.009		20	30	х	х	
9 - 10	100								009	0.011		10	25	x	x	
10-11	100								011	0.019	0.02	15	20	х	x	
11 - 12	100								012	x.		10	10	х	0.5	_
12 -13	100	 							013	х		10	20	x	х	1
13-14	99		1						014	0.009		20	20	100	0.5	1
14-15	100	1		1					015	х		10	20	х	х	
15-16	100			1					016	х		10	25	x	x	
16-17	100						1		017	0.00		15	105	x	x	
17-18	100								018	0.01	•	15	195	х	x	
18-19	100								019	х		15	140	х	0.5	
19-20	100		<u> </u>				<u> </u>		021	х		10	105	x	x	
20-21	100	1			1				022	x		10	105	х	x	_
21-22	100	-	<u> </u>						023	х		25	160	x	x	1
22-23	100	 						1	024	×		10	220	x	х	
23-24	100		1	1					025	х		15	190	х	х	
24-25	100		 		1				026	х		5		 	х	
25-26	100			1					027	х		5	l	<u> </u>	x	+
26-27	100								028	х		5	55	x	×	_
27-28	100	0							029	x		5		+	0.	5
28-29	10	d							031	x		10			+	\perp
29-30	10	d							032	х		x	40	x	x	\perp

PROJECT:

WANDIE

PROSPECT:

ASTON HILL

GEOLOGIST: K. DENWER

DATE: 5:7:88

RGC EXPLORATION PTY. LIMITED

REVERSE CIRCULATION

PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE: MACHINE: 250 SUPERCHARGE

WATER TABLE: NOT REACHED

BASE OF OXIDATION: NOT

REACHED

HOLE NUMBER : AH 2 AZIMUTH: 350

INCLINATION:

64⁰

TOTAL DEPTH:9m.

HOLE NUN	1									>4 T				PTH:91		
NTERVAL	<u> </u>	OCK -		OGICA	L DE	SULPH	IDES	/ <u>-</u>	SAMPLE		ASSA	Y RE	SULTS	3		
(m)	GWKE	SLST	QTZ	OTHER	PΥ	ASPY	GAL	OTHER	NUMBER	Au	Au (R)	Cu	Zn	As	Ag	РЬ
0 - 1		99	1						Q96033	0.30	0.11	15	15	200	x	45
I - 2		100							034	0.03	0.01	15	20	200	x	5
2 - 3		100							035	х		20	20	100	x	65
3-4	}	100							036	х		15	25	х	x	25
4 - 5																
5-6		100				ļ		ļ	037	×		15	20	х	x	5
6 - 7	<u> </u>	100							038	×		20	20	х	x	x
7-8		100		<u> </u>					039	x	_	20	15	100	x	5
8 - 9		100						ļ	041	0.01	0	15	20	200	X	5
9 - 10	ļ						ļ	<u> </u>		 				<u> </u>		
10-11				<u> </u>			ļ			 						ļ
11 - 12	ļ		<u> </u>			ļ <u></u>				<u> </u>			-	<u> </u>		1
12 - 13					ļ	<u> </u>		ļ		<u> </u>						
13-14		ļ	ļ <u>.</u>	ļ		<u> </u>		ļ								
14-15	<u> </u>	ļ		<u> </u>			ļ			ļ <u>-</u>			_			-
15-16				ļ			<u> </u>				ļ					-
6-17 					<u> </u>			_			<u> </u>					-
17-18			· .		<u> </u>					ļ				ļ		<u> </u>
18-19	<u> </u>									<u> </u>				<u> </u>		<u> </u>
19-20						_	ļ			ļ			ļ			<u> </u>
20-21							-			ļ				<u> </u>	 	\vdash
21-22				<u>;</u>			<u> </u>	ļ <u>.</u>				ļ		<u> </u>		<u> </u>
22-23							ļ	<u> </u>	ļ	<u> </u>						
23-24		<u> </u>			<u> </u>	ļ			<u> </u>					<u> </u>	ļ	
24 ₇ 25					ļ <u>.</u>	1	ļ <u>.</u>		<u> </u>		-	<u> </u>	<u> </u>	ļ	<u> </u>	 -
25-26		ļ ·									<u> </u>	<u> </u>				-
26-27		1.0	<u> </u>	<u> </u>	<u> </u>						-			-		-
27-28					ļ										_	-
28-29			_			_						-	<u> </u>	1	 	
29-30								<u> </u>		<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u></u>	
COMME	4TS:_															

PROSPECT: ASTON HILL GEOLOGIST: K. DENWER

DATE:

RGC EXPLORATION PTY. LIMITED REVERSE CIRCULATION

PERCUSSION HOLE LOG

DRILLER: J. WATSON

MACHINE:

WATER TABLE: NOT REACHED

BASE OF OXIDATION: NOT

REACHED

PAGE:

INCLINATION: 65° TOTAL DEPTH: 30m. HOLE NUMBERAST . 28 | AZIMUTH: 35 GEOLOGICAL DESCRIPTION SAMPLE ASSAY RESULTS INTERVAL SULPHIDES % (m) GAL OTHER NUMBER Ati(R) Cu ŽΩ Аs Αq Рb ASPY Αu GWKE SLST QTZ OTHER 0 - 110 15 10 lo96042 x x x 1-2 100 2 - 3 25 20 100 5 x 043 x 3 - 4 100 100 5 15 15 044 x 100 4 - 5 5 15 15 100 045 x 100 5-6 20 20 100 6 - 7 046 x x x 100 5 25 25 100 x 047 x 100 7-8 10 048 35 25 x x x 100 8 - 9 35 15 x 10 x 049 x 9 - 10 100 15 15 30 051 x x x 10-11 100 0.008 100 20 35 X 052 X 100 11 - 12 100 5 20 30 053 x x 12 - 13 100 5 30 35 100 x 054 х 100 13-14 5 35 100 20 x 055 х 100 14-15 5 x 25 40 200 x 056 100 15-16 057 5 200 0.5 35 40 16-17 100 0.5 5 25 40 100 Х υ58 100 17-18 200 5 20 40 x 059 0.012 18-19 100 300 0.5 15 40 x 061 x 19-20 100 200 x 25 45 x 20-21 062 100 J.016 15 35 100 x X 063 21-22' 100 200 20 35 x x υ64 0.028 100 22-23 0.008 065 200 15 30 x X 23-24 100 p.010 35 200 15 x x 066 100 24-25 300 55 85 х x 067 100 25-26 100 25 35 X 068 0.010 26-27 100 J.009 25 40 х х 069 27-28 100 0.010 10 30 100 40 071 28-29 100 30 55 400 072 011ل.ر 29-30 100 COMMENTS:_

PROJECT:

WANDIE

PROSPECT:

GEOLOGIST:

DATE:

ASTON HILL

K. DENWER

RGC EXPLORATION

PTY. LIMITED

REVERSE CIRCULATION

PERCUSSION HOLE LOG

DRILLER:

J. WATSON PAGE:

MACHINE:

WATER TABLE: NOT REACHED

BASE OF OXIDATION: NOT

REACHED

HOLE NUMBER: 3

AZIMUTH:

INCLINATION:

58°

TOTAL DEPTH:

11m.

NTERVAL	ļ . ,	ROCK		OGICA	L DE	SCRIF	IDES .		SAMPLE		ASSA	AY RE	SULTS	3		
(m)	GWKE			OTHER	PY	ASPY			NUMBER	Au	Au (R)	Cu	Zn	As	Ag	РЬ
0-1			·													
1-2		99	1						Q96073	0.108	0.11	2 15	45	200	0.5	50
2-3	2	18	80						074	0.054		15	90	100	0.5	160
3 - 4		25	7 5						l	0.024		15		100	0.5	115
4 - 5		100								0.046		15		x	х	45
5 - 6	55	5	40					ļ	077	0.047		20	55	300	x	120
6-7	20	5	75							0.073		20	<u> </u>	300	x	415
7-8	60		40						079	0.013		15		100		115
8 - 9	5		95			trace		ļ	081	0.071		15	65	300	x	240
9 - 10	10		90			trace			082	0.127		65	375	600	1.0	195
10-11	85		15			ļ			083	0.029		25	95	200	x	22
11 - 12																
12 -13																
13-14																
14-15																<u>-</u>
15-16																
16-17																
17-18					} 											
. 18-19	7															
19-20																
20-21																
21-22																
22-23															<u></u>	
23-24																
24-25																<u> </u>
25-26														ļ	ļ	
26-27					12					<u> </u>						_
27-28													ļ			
28-29														<u> </u>		
29-30																
COMMEN	TS:															

PROSPECT: ASTON HILL GEOLOGIST: K. DENWER

DATE: 6:7:88

RGC EXPLORATION PTY.LIMITED REVERSE CIRCULATION

PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE: 1/2

MACHINE:

WATER TABLE: NOT REACHED

BASE OF OXIDATION: NOT REACHED

			GEOL	OGICA	L DE	SCRIP	TION		CAMBLE			AY RES	SILLTS			
NTERVAL (m)	F		TYPE %			_	HIDES */	%	SAMPLE	<u> </u>	 1					
(m)	GWKE	SLST	QTZ	OTHER	PY	ASPY	GVL	OTHER	NUMBER	Au	Au(R)	Cu	Zn	As	Ag	РЬ
0 - 1			Ĺ	<u> </u>				!		<u> </u>						
1 - 2	95		5	'				<u> </u>	Q96084	0.064	1	20	. 60	100	x	45
2-3	75	20	5						085	0.047		20	50	100	0.5	40
3 - 4	10	30	60						086	0.036	<u> </u>	20	70	200	1.0	190
4 - 5	15	80	5						087	0.012	 	10	35	100	x	60
5-6	10	75	15				٤١		088		2 0.04	!	35	100		50
6 - 7	20	20	60			<u> </u>			089	0.058	3	20	50	300	x	140
7-8	89	10	1						091	0.03	1	15	30	x	0.5	
8-9	70	75	5					FE OX trace		0.01	 _	15	45	200	 	110
9 - 10	10	1	89						093	0.05	8	35	80	300	0.5	100
10-11	25	1	74	_	T	T			094	0.11	2	55	185	600	x	20
11 - 12	80		20			T			095	0.04	 	20	75	300	11	
12 - 13	30		70	,					096	0.06	4	15	75	300	x	3
13-14	50		50	,†		$T_{_}$			097	0.02	:3	15	75	400	0.5	32
14-15	10	 	90			1_	1_		098	0.05	,\$	30	105	400	0.5	70
15-16	50		50		1	1			099	0.01	<u> </u>	25			0.5	48
16-17	55	+	45	,		1_	1_		101	0.01	<u>\$</u>	15	25	200) x	22
17-18	75	1	25	;	1		T _		102	0.03	<u>}</u>	25	60	300	1.0	60
18-19	10		50	~	1			1	103	0.79)}	45	95	500	0.5	13
19-20	-	3	97	7	1		1	FE OX		0.31	15	15	30	200) x =	1
20-21	10				+	1	+	1	105	0.10	04	60	90	500	1.0	0 38
21-22'					+		1	+	106	0.02	29	55				0 3
22-23	90			+	+-	+-	+		107	0.0	16	35	35	300	0.5	5 2
23-24	70	30		+	+	+	1		108	0.02	29	25	20	200	0 1.0	0 .
24-25	70			+					109	0.0	15	30		 -	+-	
25-26	90		0	1	1	1			111	х		25	_			
26-27	65	j 1	0 2	5		4.1		1_	112	0.07	9	40	0 80	500	0 1.	5 2
27-28	75	5 1	0 1	5	+	+	1	1	113	0.1	84	50	- 			0 4
28-29	87	_ —			1				114	0.1		50				.5 1
29-30	1	45	5 55	;	1				115	0.3	,21	85	5 135	150	0.5	5 4
COMME	NTS:															

WANDIE PROJECT:

PROSPECT: ASTON HILL GEOLOGIST: K. DENWER

DATE:

6:7:88

RGC EXPLORATION PTY. LIMITED

REVERSE CIRCULATION

PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE 2/2

MACHINE:

WATER TABLE: NOT REACHED

BASE OF OXIDATION: NOT.

REACHED

HOLE NU	MBER:			HUTH		-		NATION: 58			TOTA	L DEF	PTH: 3	36m.	
INTERVAL	ļ ,		GEOL	OGICA	L DE	SCRIF		SAMPLE		ASS	Y RE	SULTS	3		
(m)	GWKE			OTHER	PΥ	ASPY	Γ	NUMBER	Au	Au (R)	Cu	Zη	As	Αg	РЬ
30-I		40	60					Q96116	2,02	1 2.0	90	155	1600	1.0	27
31-2		30	70					117	b.236		65	175	900	1.0	910
32-3		85	15					118	0.568		90	130	1200	х	2
3 3 - 4		95	. 5					119	0.675	0.58	70	55	800	x	5
34-5		100						121	0.051		55	105	600	x	1
35-6		98	2					122	0.014	1	40	160	400	0.5	3
6 - 7													<u> </u>		ļ
7-8										<u> </u>		ļ			
8 - 9									ļ			ļ			lacksquare
9 - 10									<u> </u>			ļ	ļ <u> </u>		<u> </u>
10-11											ļ	<u> </u>	ļ		<u> </u>
11 - 12									ļ <u></u>						_
12-13									<u> </u>			ļ			ļ
13-14															
14-15												ļ			<u> </u>
15-16										ļ					ļ
16-17								<u> </u>					<u> </u>		ļ
17-18		<u>.</u>								<u> </u>					ļ. <u> </u>
18-19							<u> </u>		<u> </u>	ļ <u>.</u>			<u> </u>		_
19-20						ļ									\perp
20-21								 	<u> </u>		ļ	ļ <u>.</u>			-
21-22									ļ		<u> </u>			ļ	_
22-23												<u> </u>			oppi
23-24										<u> </u>		<u> </u>			┥_
24-25							,				ļ		<u> </u>	<u></u>	\perp
25-26											ļ		<u>_</u>	<u> </u>	_
26-27								<u> </u>							<u> </u>
27-28														ļ. <u> </u>	
28-29														-	_
29-30										<u> </u>			<u> </u>	<u> </u>	
COMME	NTS:_							 							

PROSPECT:

ASTON HILL

GEOLOGIST:

K. DENWER

DATE:

PTY. LIMITED

REVERSE CIRCULATION

RGC EXPLORATION

PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE:

MACHINE:

WATER TABLE: NOT REACHED BASE OF OXIDATION: NOT

REACHED

PROSPECT: ASTON HILL GEOLOGIST: K. DENWER

DATE:

RGC EXPLORATION PTY.LIMITED

REVERSE CIRCULATION

PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE:

MACHINE:

WATER TABLE: NOT REACHED

BASE OF OXIDATION: NOT REACHE

AZIMUTH: 220 TOTAL DEPTH: 13m. HOLE NUMBER: 5 INCLINATION: 600 GEOLOGICAL DESCRIPTION ASSAY RESULTS SAMPLE INTERVAL SULPHIDES % ROCK TYPE % (m) GAL OTHER NUMBER Рb Αg Au(R) Cu Ζn As ASPY GWKE SLST OTZ OTHER 0 - 10.5 35 20 40 x Q96155 0.043 90 10 1 - 2 200 125 30 156 0.067 20 80 20 2 - 3 45 200 0.5 50 0.032 30 157 15 3 - 4 85 60 400 1.0 158 0.045 25 45 60 40 4 - 5 0.5 485 0.033 0.032 25 70 300 159 95 5 5 - 6 200 80 40 20 161 0.015 X 6 - 7 50 50 0.5 40 15 30 **b.**013 x 162 1 74 25 7 - 8 45 15 20 100 x 163 100 8 - 9 20 15 25 \mathbf{x} 164 x 100 9 - 10 100 30 1.0 10 15 165 x х 10-11 0.5 20 15 30 x 166 x 100 11-12 15 15 80 167 0.015 100 12 - 13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22' 22-23 23-24 24-25 25-26 26-27 27-28 28-29 29-30 COMMENTS:_

PROSPECT: ASTON HILL

GEOLOGIST: K. DENWER

DATE:

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE:

MACHINE:

WATER TABLE: NOT REACHED

BASE OF OXIDATION: NOT

REACHED

NTERVAL	<u></u>			OGICA	L DE	SCRIP	TION		SAMPLE		ASSA	Y RE	SULTS			
(m)	T	SLST	YPE */	OTHER	PY	ASPY			NUMBER	Au	Au (R)	Cu	Źn	As	Ag	РЬ
0 - 1	95		5						Q96168 (.1 59		15	35	200	x	40
1 - 2	80		20						169	0.115		15	25	300	х	35
2-3									Q96155	0.013		20	40	7(0.5	<u>ک</u> و
3 - 4									156	0.067		20	30	200	21	125
4 - 5	85		15						171	0.033		20	45	400	1.5	35
5 - 6	1		98						172	0.019		15	40	200	ж.	115
6 - 7	15		85						173	0.023		10	35 30	200 x	x	30
7-8	85		15						174	x				^		
8 - 9	50	50	< 1						175	x	<u></u>	20	25	х	x	2
9 - 10	3	96	1						176	x	ļ	15	30	x	XX	31
10-11	2	97	1						177	x	ļ	10	20	100	x	4
11 - 12	5	95							178	0.01	-	15	25	100	0.5	
12 -13	1	99	<1			<u> </u>			179	×		15	30	200	x	2
13-14	40		60					FEOX trace		0.06	8	35	75	400	х_	20
14-15	50	20	30	1 -					182	0.08	1	55	90	300	xx	9
15-16			20	egg _a				<u> </u>	183	0.04	.	30	60	200	0.5	
16-17	60	20	20						184	0.06))	50	110	400	ļ	
17-18	30	55	15	;					185	0.04		35	140	300	 	+
18-19	98	3	2						186	0.0	14	25	105	300	x -	10
19-20	40		60				trace	2	187	0.0))	25	+	 	 	11
20-21	100								188	×		20	-	 	┼	-
21-22	100								189	х		20	60	X	x	-
22-23	100		<u> </u>						191	х		25	55	<u>x</u>	x	+-
23-24	80	20							192	x		25		200		4
24,25	100								193	×		20		100		2
25-26	60	40							194	х		25	80	100	-}	5
26-27	- 299	त							195		:	25			1.0	
27-28	100)							196	,	:	20		-	X	
28-29	100								197	x		20		200		0 4
29-30	≥99	- 1						<u> </u>	198	0.0	<u>'1</u>	35	85	200	<u></u>	14
COMME	NTS:_						,									
							•									

PROSPECT: ASTON HILL

GEOLOGIST: M. WALTON

DATE:

RGC EXPLORATION PTY.LIMITED REVERSE CIRCULATION PERCUSSION HOLE LOG

DRILLER: J. WATSON

MACHINE:

WATER TABLE: NOT REACHED

BASE OF OXIDATION: NOT

REACHED

60⁰ TOTAL DEPTH: 27m. AZIMUTH: 220 INCLINATION: HOLE NUMBER: 6 DESCRIPTION GEOLOGICAL ASSAY RESULTS SAMPLE INTERVAL SULPHIDES % ROCK TYPE % (m) |OTHER | NUMBER Pb Αg Zη As ASPY GAL Αu Au (R) Cu GWKE SLST OTZ OTHER 0 - 110 30 15 X х Q96199 X 99 1 1 - 2 15 25 25 201 х Х x 2 - 3 10d 1.5 15 25 30 x 202 х 3 - 4 *>* 99|<1 10 20 30 100 х 203 x > 99/< 1 4 - 5 x 204 10 100 0.5 30 35 100 5 - 6 205 10 200 1.0 45 40 100 X 6-7 35 100 10 30 X. 206 100 7-8 10 45 30 200 x x 207 100 8 - 9 208 300 15 25 35 99< X **<** 1 x 9 - 10 15 30 35 300 x 100 х 209 10-11 25 35 300 5 x x 211 100 11 - 12 212 10 300 0.023 25 40 x 100 12 - 13FECY 213 55 0.037 30 45 400 x 13-14 90 10 trace FE OX 214 405 800 0.082 65 120 х 60 40 14-15 trace 0.4550.415 FE OY 420 215 90 220 1200 x 97 3 15-16 FE OX 70 100 1.0 115 0.0617 25 75 25 216 16-17 C 1 175 35 90 300 0.07 217 17-18 10 85 C1 210 218 500 35 95 0.197 X 2 96 18-19 FEOY 480 219 0.5 0.066 55 170 60U 50 50 19-20 trace 10 85 5 280 221 700 20-21 0.063 45 160 x 222 165 105 400 21-22' o. 106 0. 1**1**3 45 97 3 FEOX 223 155 35 60 100 x 207 97 3 22-23 trace 285 95 165 400 X 0.060 40 60 224 23-24 60 400 60 70 X 0.022 225 24-25 > 99 < 1 226 0.5 40 300 x 35 95 5 25-26 30 60 600 \mathbf{x} 50 b.019 10 90 227 26-27 27-28 28-29 29-30 COMMENTS:

PROSPECT: ASTON HILL

DATE:

GEOLOGIST: M. WALITON

RGC EXPLORATION PTY.LIMITED

REVERSE CIRCULATION PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE:

MACHINE:

WATER TABLE: Intersected, but the RC system gives dry sample BASE OF OXIDATION: SO W.T. estimated to be at 27m.

					OGICA	_ DE	SCRIF		SAMPLE		ASSA	Y RE	SULTS			
VTERVAL (m)	GWKE	SLS	Т		OTHER	fΥ	ASPY	GAL.	NUMBER	Au	Au (R)	Cu	Zn	As	٨g	Рb
0 - 1	10		_		clay 90				ი 96228	x		15	20	x	x	10
1 - 2																
2 - 3	100								229	х		15	20	х	×	15
3 - 4	100								 231	х	ļ,. <u>-</u>	15	30	100	х	25 ——
4 - 5	30	7	0	S 1					232	х		20	35	х	х	25
5 - 6	97	H	3						235	х		10	20	Х	х	25
6 - 7	100								234	х		10	20	хх	x	15
7 - 8	99			1					235	x		15	15	100	x	40
8 - 9	100								236	0.008		15	15	100	x	25
9 - 10	97	7	2	1					237	0.008	ļ	15	30	100	x	25
10-11	85	-	5						238	0.008	} 	15	30	100	0.5	
11 - 12	100								 239	0.02	<u> </u>	50	20	100	x	50
12 - 13	100								241	0.00	1	20	25	x	x	1'
13-14	100)							242	x		65	40	100	x	8
14-15	100	5							243	×		30	30	100	 	20
15-16	> 99	1	1						 244	0.00	9	25	30	х	х	2
16-17	100	0							245	x		15	25	100	 	3
17-18	10	0							 246	0.02	<u></u>	35	45	100	 	16
18-19	10	Ō							 247	×		20	35	X	0.5	x
19-20	10	0							248	0.23	δ φ	25	35	<u>x</u>	0.5	5 ×
20-21	80	2	0						249	0.0		25	30		x	X
21-22'	5	9	5						 251	0.0		75	65	300	X	}
22-23	50) [Ō						 252	x		30 25	40	100 x	0.5	7
23-24	40) (50						 253	x		35	55			
24-25	95	5 !	5						 254	^				ļ. <u> </u>	ļ	
25-26	75	5 2	25						255	×		25	40	100	X	<u> </u>
26-27	40		50	10					256	x	<u> </u>	35	55	100	x	7
27-28	70	o	30	<1					257	×	-	30	 	x	x	2
28-29	10	0							 258	×	-	20			X	1
29-30	10	0							 259			15	60	x	x	
СОММЕ	NTS:													,		

PROSPECT: ASTON HILL GEOLOGIST: M. WALTON

DATE: 10:7:88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE: 1/2

MACHINE:

WATER TABLE: NOT REACHED BASE OF OXIDATION: NOT

REACHED

TOTAL DEPTH: 37m. INCLINATION: 60° HOLE NUMBER: 8 AZIMUTH: 2040 GEOLOGICAL DESCRIPTION SAMPLE ASSAY RESULTS INTERVAL SULPHIDES % ROCK TYPE % (m) OTHER NUMBER PЪ Λg Au (R) Cu Zn. Λs GAL ASPY GWKE SUST QT7 OTHER 0 - 120 30 200 1.0 25 0.020Q96261 100 1 - 2 10 100 30 30 x 0.033 100 262 2 - 3 10 φ.o20 15 30 100 х <1 263 >99 3 - 4 10 264 35 30 200 Х 100 4 - 5 5 0.5 35 35 100 265 100 5 - 6 5 0.5 266 30 100 35 6 - 7 100 5 35 40 х \mathbf{x} 267 100 7-8 268 35 30 100 0.5 x 100 х 8 - 9 5 .200 0.5 269 25 30 х 100 9 - 10 271 25 45 200 1.0 x 10 - 11 100 200 1.0 50 100 272 40 х x 11 - 1250 200 10 273 30 x X 12 - 13>99 <1 5 1.0 0.010 40 40 100 274 100 13-14 200 10 45 50 275 Х 0.051 **>** 99 < 1 14-15 0.5 15 276 65 65 300 0.027 1 99 15-16 5 277 50 60 200 b.027 100 16-17 100 160 95 500 97 3 D.043 x 278 17-18 15 300 279 35 50 100 х 18-19 300 10 281 55 0.025 50 100 19-20 70 200 0.5 50 x 0.009 282 20-21 100 90 100 1.0 x 283 45 100 21-22' 1.0 5 105 50 284 х х 22-23 100 100 0.5 35 105 X X. 285 23-24 100 5 100 1.0 30 110 286 X 100 24-25 200 1.0 45 100 x 287 X 70 30 25-26 200 1.0 5 90 288 45 x 26-27 40 60 100 1.0 30 80 289 0.01 100 27-28 100 1.0 x 70 291 0.008 15 28-29 100 200 0.5 5 20 75 292 х 100 29-30 COMMENTS:

PROSPECT: ASTON HILL

GEOLOGIST: M. WALTON

DATE: 10:7:88

RGC EXPLORATION PTY.LIMITED

REVERSE CIRCULATION

PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE:2/2

MACHINE:

WATER TABLE: Not Reached

BASE OF OXIDATION: Not reached

ITERVAL			GEOLC			SULPH	IDES '	°/-	SAMPLE	ļ	A55#		SULTS	, . — — —	I	·-··
(m)	GWKE			OTHER	ΓY	ASPY	GA1_	OTHER	NUMBER	Au	Au (R)		Zn	As	Ag	Pb
0-1		100							ପ୍ର6293	х		25	95	200	0.5	10
1-2		100							294	х		35	85	200	0.5	x
32-33		90	10	i				-	295	х		55	70	500	x	<u>x</u>
3 3 - 4		100				ļ			296	0.016		35	110	100	1.0	5
3 4 - 5		100	- - -			-			297	x		40	150	<u>x</u>	1.0	
<u></u> 3 5 - 6		100							298	x		35	70	x	1.0	x
6 - 7			.,									ļ <u>-</u> -	<u> </u>		- 	<u> </u>
7-8		<u> </u>								<u> </u>	<u> </u>	 	ļ		<u> </u>	
8 - 9	\vdash	1									<u> </u>				 	-
9 - 10		-							<u> </u>		ļ					-
10-11							<u> </u>			<u> </u>	ļ	 -	-			
11 - 12															_	
12 - 13															_	
13-14							_			<u> </u>		_				
14-15												_			-	
15-16											4					-
16-17					_							<u> </u>				-
17-18				_		_							-			
18-19	Ĭ					_							_		<u> </u>	-
19-20	_															
20-21									_		_		_	_	_	_
21-22						_										
22-23				_	_						_	+-				-
23-24					_				_ 							
24-25							$-\downarrow$			_		_				
25-26				_ _	_ -			_								
26-27					_ -							_				
27- 28			_	-	-						_		_			
28-29										- -	-	_		_ -		
29-30									l							

PROJECT: WANDIE

PROSPECT: ASTON HILL

GEOLOGIST: M.D. WALTON

DATE: 10:7:88

RGC EXPLORATION PTY.LIMITED

REVERSE CIRCULATION

PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE://2 MACHINE:

WATER TABLE: Not reached

BASE OF OXIDATION: Not reached

HOLE NUN					. 5					1	1					
INTERVAL.	<u> </u>		GEOL	OGICA	L DE	ESCRIF SULPI	HIDES °	٩/،	SAMPLE	Ĺ,	ASSA	Y RE	SULTS	;		r
(m)	GWKE	T		OTHER	PY	ASPY	GAL	OTHER	NUMBER	Au	Au(R)	Cu	Zn	As	Ag	РЬ
0 - 1	99		1						၃୨6299	0.040	\[\tag{-1}	so	35	100	x	30
1 - 2	5											_				i
2 - 3	100							<u> </u>	301	x		20	30		0.5	15
3 - 4	100					1			302	х		5	20	100	1.0	10
4 - 5	25	73	2					† _	303	х		5	20	100	1.0	10
5 - 6	80	20	1						304	х		5		100	0.5	10
6 - 7	90	10	·						305	х		10	20	х	1.0	10
7-8	100								306	х		10	25	х	0.5	15
8 - 9	100		I						307	ļ	0.008		25	х	0.5	10
9 - 10	90		-10						308	х		15	25	x	1.0	20
10-11	90		10						309	х		10	25	x	1.0	15
11 - 12	60		40				<u></u>		311	0.008	<u> </u>	25	30	100	x	15
12 - 13	20	20	60	<u> </u>					312	х		45	45	х	х	75
13-14	96	3	~ 1						313	х		60	50	100	х	40
14-15	95	5 5			<u></u>		<u> </u>		314	х		45	55	х	х	20
15-16	100	,				T _			315	х		35	40	х	1.0	20
16-17	50			<u></u>	<u> </u>	_	1_		316	х		35	35	100	х	1
17-18	20	80	<1						317	x		35	40	200	0.5	
18-19	5	94	1 1		<u> </u>	<u> </u>	_	1	318	x		40	45	100	х	31
19-20		> 99	<1		1	<u> </u>	1		319	х		40	40	200	0.5	2
20-21		100			<u> </u>	1	+		321	0.03	1	60	50			 -
21-22'	+	> 99	<1		<u> </u>		_		322	0.03	7	35	50	300	х	5
22-23		100					†		323	0.03		30	65			
23-24		20	80	 _					324		10.360		 _			
24-25		30	70	,			T_			0.514	1	t	1			56
25-26	1_	10			1		T_	FE OX		1.521	1 1.48					19
26-27	1	10	90)	1_	trace	٤		327		67 0,651	·	_ 			9'
27- 28	1_	50	50	5	1_			FEOX trace		0.04	10	45	90	500) x	10
28-29	94	5	1						329			40				
29-30	66	5 3	30	0	1_			FE 07		0.0	76	50	80	500	0 x	
COMME	NTS:_						,		·							

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: M. WALTON

DATE: 10.7.85

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE 2/2 MACHINE:
WATER TABLE: NOT REACHED
BASE OF OXIDATION: NOT REACHED

30-1 4 31-2 32-33 95 33-4 100 34-5 35-6 36-7 37-8 38-9 39-10 40-41 41-42 42-43	15 50 100 60	96 85 5 50 40 90	OTHER	PY	SCRIF SULPH ASPY		°/. OTHER		Au 0.064 0.030 0-010	ASSA Au(R)	Cu 45 50 30 30	zn 75 /50 245	As 500 600 300	1.0	Pb 150 45 10
30-1 4 31-2 32-33 95 33-4 100 34-5 35-6 36-7 37-8 38-9 39-10 40-41 41-42	15 50 100 60 30 10 30	96 85 5 50 40 70 90	OTHER	PY	ASPY	GAL.	FEOX C1 FEOX	996332 333 334	0.030 0.030		45 50 30	75 150 245	500 600 300	× 1·0 2·0	150 45
31-2 32-33 95 33-4 100 34-5 35-6 36-7 37-8 38-9 39-10 40-41 41-42	15 50 100 60 30 10 30	85 5 50 40 70 90					FEOX FEOX	333 334	0.039 0-010	٠,٠	50 30	150 245	600 300	1.0	45
31-2 32-33 95 33-4 100 34-5 35-6 36-7 37-8 38-9 39-10 40-41 41-42	15 50 100 60 30 10 30	5 50 40 70 90					Z FE OX	334	0-010	سر	30	245	300	2.0	
33-4 10C 34-5 35-6 36-7 37-8 38-9 39-10 40-41 41-42	50 100 60 30 10 30	50 40 70 90						I	1						10
34-5 35-6 36-7 37-8 38-9 39-10 40-41 41-42	50 100 60 30 10 30	40 70 90						335	×	اسر	ايوا	01-	امما	1 1	
3 5 - 6 3 6 - 7 3 7 - 8 3 8 - 9 3 9 - 10 40 - 41 41 - 42	100 60 30 10 30	40 70 90		<u> </u>			1	1			30	360	200	×	×
36-7 37-8 38-9 39-10 40-41 41-42	60 30 10 30	70 90				1		336	0.018		25	135		S.O	25
37-8 38-9 39-10 40-41 41-42	30 10 30	70 90			1	ļ		337	0.015		25	130	300	0.5	10
38-9 39-10 40-41 41-42	10 30	90						338	1.313	0.971	75	90	boo	X	140
3 9 - 10 40 - 41 41 - 42	30			<u> </u>			FEOX trace	レージング	0.474			100	700		35
40-41								341	סרביו		23 <i>5</i>		3100	 	20
41 -42	3	70					FEOX trace	342	0.485		50	90	500	 	85
		97					FEOX trace	343	p.387		85	155	500		185
42 -43	25	75					FEOX Hrqce	1 261.	p.129		100	130	600	*	690
	70	30						345	0.047		55	80	500	1.0	45
43-44	75	25						346	0.025		40	b5	400	1.0	10
44-45	799	1						347	0.013		35	75	300	0.5	5
45-46	75	25						348	0.025		25	115	200	1.5	10
46-47	55	45						349	0.010		45	<i>5</i> 5	300	1.0	5
47-48	80	20						351	0.011		35	75	300	×	10
48-49	90	10					FEO)		0.014		75	95	400	X	2.0
49- \$ 0		70					FEOY trace	250	o.o.t	>	75	100	300) }	20
5 0- ≴ i g		30	-					354	0.016		50	70	400	بد ار	5
5 1- 5 2'	95	T	i					355	0.008	3	50	60	400	1.0	*
5 2- 5 3		15	1					356	0.09	3	125	40	200	0.5	\ ×
5 3- 5 4	100			741				357	×		40	45	100	*	*
5 4- 5 5	100	†	1					358	7	-	15	35	*	0.5	1
5 5- 5 6	100			1		<u> </u>		359	×	×	30	35	100) 1.0	×
5 6- 5 7	100	-	-					361	×		165	40	300	0.5	5 ×
5 7- 5 8	1,00	-	+	-				-							
5 8-29		-		 	1	 									
29-30	-	 -													

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: M. WALTON

DATE: 11.7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J.WATSON PAGE:1/2 MACHINE: WATER TABLE: NOT Reached BASE OF OXIDATION: NOT Reached

HOLE NUM	BER:	10		AZII	митн	:	40		INCLI	ATION:	bo.		TOTAL	. DEP	тн: (oor	.
INTERVAL					GICAL	. DE	SCRIF			SAMPLE		ASSA	Y RES	SULTS			
(m)	GWKE	OCK SUST		PE %	THER	PΥ	ASPY	GAL.		NUMBER	Au	Au (R)	Cu	Zn	Λs	Λg	Pb
0 - 1		-				· · · · · · · · · · · · · · · · · · ·											
1 - 2	30		b	00	lay	,,			FEOX Hrace	Q96362	0.021		30	30	400	×	175
2 - 3	40		ŧ	00						363	0.053	·	25	35	200	×	210
3 - 4	100		_			- Vade - Va				364	×		30	50	100	×-	55
4 - 5	65	5	3	30						3bs	0018	0.016	40	55	*	1.0	40
5 - 6	25	5	1	30	c lay					366	0.013		25	25	300	×	35
6 - 7	75	10	1	5						367	0.014		35	40	200	×	50
7-8	10	-	C	70						368	1		20	40	100	->د	40
8-9	90	S	-	5				<u> </u>	FE OX	369	0.013	.	30	55	300	×	25
9 - 10	98			2				<u> </u>	<u>.</u>	371	0.853	,	.35	6:	800	 	25
10-11	100									372	X	ļ	35	60	200	1.0	10
11 - 12	95			5	 					373	X		15	35	7	1.0	
12 - 13	99			-1					<u> </u>	374	0.00	1	bo	65	300	1.0	5
13-14	100									375	<u>x</u>		30	50	300	1.0	20
14-15	90			10						376	0.010		30	60	100	1.0	60
15-16	5			92		trac	e < 1	< 1	FE 0	377	0.032	-	55	150	300	1.0	1650
16-17	85			15		trac	e			378	0.05	10.063	45	80	200	1.0	330
17-18	95	_		5					feo trac	e 319	0.013		30	60	100	1.0	145
18-19	15			85					FE O	المد الإ	0.07	8	30	60		 	+
19-20	15	T	1	82		1				382	0.04	8 _	35	55	100	1.0	180
20-21	95	 		5						383	X		25	<u> </u>		1.0	
21-22	80			20					FEC	* 384	0.00	9	30		200		
22-23	94		5	<1						385	0.0		25		200	<u> </u>	65
23-24	4			94	From 2				fec tra		5.89	05.90	0 82		_ i	1.0	
24-25	5			95	T	trac	æ		FE C	× 200	0.31	8	75		900		
25-26	2.0			80		trac	e		<u>ا ح</u> اج	388	o.d	0	55				225
26-27		? <	1	<1						389	0.01	5	20			01.0	
27- 28	10									391	×	_	50	115	300	1.0	25
28-29	10	_								392	_			_		<u> </u>	
29-30	90	_ _		10						393	×		55	75	300	2 1.0	10
COMME	NTS:_											.,					

PROJECT: WANDIE

PROSPECT: ASTON HILL GEOLOGIST: M. D. WALTON

DATE: 11.7.88

RGC EXPLORATION
PTY LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE: 2/2
MACHINE:
WATER TABLE: Not reached
BASE OF OXIDATION: Not reached

NTERVAL			GEOL		L DE	SCRIP			SAMPLE		ASSA	Y RE	SULTS			
(m)	GWKE	· · · · · · · · · · · · · · · · · · ·	YPE %	OTHER	PΥ	ASPY			NUMBER	Λu	Au (R)	Çu	Zn	As	Ag	РЪ
30 - 1	15		85		trace				Q96395	0.541	ı in m	85	145	600	1.0	810
31 - 2	94	5	1						396	0.020		30	60	400	2.0	1/5
32-3	20	80	<u>~ 1</u>						397	×		25	40	500	0.5	5
33-4		100							398	0.028		30	35	200	1.0	\times
34-5		85	15							0.012		35	ļ <u></u>	300		25
35-6		90	10			trace			401	0.013	<u> </u>	25		100	—··	10
36 - 7		25	75		4	c/	<u> </u>		402	0.015		35	T	400	1	240
37-8		30	70		<1	k/			403	0.278	 	65	1	500		675
38-9	10	40	50						404	0.014		35	+- 	T		180
3 9 - 40		100					ļ		405	*	1	25	 	400		5
40-41		96	4				-	FEOT	406	0.039	-i	45		1000	 	295
41 -42		30	70		<u> </u>			<u> </u>	407	0-023	 	65	125	 	0.5	470
42-43	85	10	5						408	0000	7	30	160	200	*	15
43-44	100	,							409	*		20	120	*	\	5
44.45	100)						_	411	×		15	110	100	0.2	·
45-46	79	20)						412	<u> </u> ×		20	110	200	T	70_
46-47	80	20	,						413	×	<u> </u>	10	80		0.5	
47-48	10	70	20	>					414	×		15	90	400	 	30
48-49	790	7	< 1						415	<u> ~</u> _		20		400		220
4 9- 2 0	2		90)				,,	416	0.01	2		380			650
ક્ર⊙-5ા	85								417	206	2	20		100	_	- • •
51-52	82	2 /5	3						418	0.05	7	20				
52-53	2 :	5 20	5	5	<)			419	1×	<u> </u>	85		300	ľ	- 1
5 3- 5 4		>9	9k !	/			_		421	<u> ×</u>		25				45
5 4- 5 5			2 30		_				4.22	+	-	35				80
≨ 5- 5 6		9	0 10	2 _					423	×		40				50
5 6- 5 7		>9	9 = 1						424	×		30		100		105
5 7- 5 8		10	0	_ _			_	_	425			35		5 200	- 1	153
5 8- 5 9		10	0		_ _		_ -		426			40		300		
5 9.60		10	0						427	×		55	3 /30	/ 300		
COMM	ENTS:								and the second s							

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: M.D.WALTON

DATE: 11.7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE: 1/2
MACHINE:
WATER TABLE: NOT REACHED
BASE OF OXIDATION: NOT REACHED

TERVAL			GEOL		_ DE	SCRIF			SAMPLE		ASSA	Y RE	SULTS			
(m)	GWKE		TYPE %	OTHER	ΡY	ASPY	GAL		NUMBER	Au	Au(R)	Cu	Zn	As	Ag	Рb
0 - 1	>20		40	clay 40					adpts8	0.018	0.021	35	SS	200	×	80
1 - 2	(•										· ·			
2 - 3	95		5						429	×		25	60	200	1.0	25
3 - 4	100					, ,			431	*		20	40	200	0.5	20
4 - 5	299		< 1						432	×		20	40	500	ャ	20
5 - 6	100								433	×		20		100		· ·
6 - 7	95		5				ļ		434	1	<u> </u>	25	50	200		45
7-8	70		30]			:	435	<u> </u> ~_		25	40	200		30
8 - 9	90		10			<u> </u>		FEOT	436	0.02	7	30				35
9 - 10	95		5				<u> </u>	<u> </u>	437	0.010	+	25		100	×-	45
10 - 11	70		30	ļ	ļ				438	0.080		35		200		30
11 - 12	85		15		<u>.</u>	_	ļ	_	439	0.013	<u> </u>	40	70	-	1.0	15
12 - 13	50	20	30		ļ	ļ			441	<u> ~</u> _	-	40		SOO	╁╌╌┈	20
13-14	75		25				<u> </u>		442	0.01	7	35	+ 	100	0.5	30
14-15	50		50					_	444	\ \ \		40		100	× _	45
15-16	30		70				<u> </u>		445	0.03		35	 	200	*	115
16-17	60		40				1		446	0.00	90.016	 		100	\ -	45
17-18	85	_	15					<u> </u>	447	0.01	3	25	55	X	0.5	20
18-19	60	25	15						448	0.01	3	65	115	500	 	50
19-20	65	5	30		<u> </u>				449	1 ×	<u> </u>	25	45		 	10
20-21	100				<u> </u>	_			451	X	<u> </u>	35	T	200		1
21-22'	99	,		imon.	te.				452	X		45			1.0	
22-23	99		-	inon	1/2				453	0.00	8	50		300		
23-24	100								454	<u>\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ </u>		30		200		
24-25	20)	80						455	0.47	6	35		300		
25-26	90	,	10						456	0.00	12	25		200		
26-27	100	,							457	0.0	7 _	20		200		
27- 28	85	5	15						458			25				35
28-29	9:	5	5						459	0.0		50		50		
29-30	10	0				<u> </u>			461	00	e0	25	40	200	<u>' </u>	50
сомме	NTS:						*****	,								

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: M. D. WALTON

DATE: 11.7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J.WATSON PAGE: 2/2
MACHINE:
WATER TABLE: Not reached
BASE OF OXIDATION: Not reached

			GEOL	OGICA	L DE	SCRIF			SAMPLE		ASS	AY RE	SULTS	3		
NTERVAL (m)	GWKE		TYPE %	OTHER	PY	SULPH	GAL		NUMBER	Au	Au (R)		Zn	As	Ag	РЬ
•	 	SLSI	UIZ	OTHER	PT	ASPT	13/10	1	R96462		210 (117	25		-		70
30-31	100								463	I						25
31 - 2	70	30			,. <u> </u>		-		ļ — —	1		25	65		1	1
32 - 33	80	,	20				ļ	_	464	<i>≻</i>		1	150	1	1	200
33 - 4	80	10	10				 		465			25			0.5	1
34-5	 9 9		<u> </u>				<u> </u>		466	x	<u> </u>	15	250	 	0.5	† `
3 5-6	100					-		-	467	×		5	2.00	*	-	10
6 - 7			ļ						· · · · · · · · · · · · · · · · · · ·	 			<u> </u>	<u> </u>		-
7-8				ļ		<u> </u>	-				<u> </u>					
8-9						-		 		-	-			ļ <u></u>		
9 - 10	ļ <u></u>				-		 	-			 	_	 		_	-
10-11							<u> </u>	-			-		<u> </u>		 	+
11 - 12	ļ	<u> </u>					-			-			<u> </u>	-		
12 - 13	_	-		-	<u> </u>		 					-		<u> </u>		
13-14	-			-	ļ		_			<u> </u>			 		 	+
14-15				-			 			<u> </u>		-	1	<u> </u>	 	+
15-16	ļ			_	ļ	ļ				ļ	<u> </u>	<u> </u>				-
16-17			-		<u> </u>	 	ļ	_			_	-	ļ	 -		-
17-18						-		 		 	\ <u>-</u>	 	 	-		
18-19			ļ	ļ <u> </u>	ļ	-					_	-	-	-	-	
19-20	_			_	ļ	-					<u></u>				_	-
20-21	_				ļ <u>.</u>									 	<u> </u>	+
21-221					_	ļ	<u> </u>		-		-			 		-
22-23		_	-		<u> </u>	-			ļ. <u>.</u>		<u> </u>	-		-		
23-24				ļ		<u> </u>	-				-	-				-
24 ₅ 25		_	ļ		J			_				-	_			-
25-26						_	 -			<u> </u>	 	-		-		+
26-27										<u> </u>	-	-	_			
27- 28			_		1							 		-		
28-29				_	-	_	_			<u> </u>	-	-				
29-30																L_
COMME	NTS:_					.,										
·																

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: M. WALTON

DATE: 11.7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE:
MACHINE:
WATER TABLE: Not reached
BASE OF OXIDATION: Not

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: M. WALTON

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER J. WATSON PAGE:
MACHINE:
WATER TABLE: Not reached
BASE OF OXIDATION ALTERCHEA

HOLE NU	MBER:	13	AZ	IMUTI	4:	40		INCLI	NATION:	60°		TOTA	L DEF	этн : §	SOm	
				OGICA		SCRIP			SAMPLE	<u> </u>	1884		SULTS			•
NTERVAL (m)	GWKE	SLST	TYPE %	OTHER	PY	SULPH	GAL	•	NUMBER	Au	Au (R)	Cu	Zn	As	Ag	Pb
0 - 1	 		70	OTTIER		ASET	17/16	 	096501	 	AU(IV)	45	55	3¢0	X	47
1 - 2	K25		7)					-	990301		-a saraina -a	7 -			,	
2 - 3	20		80						502	0.043		30	65	500	+	30c
3 - 4	20	10	70							0022		35	55	600	<u>ب</u> د	165
4 - 5	10		90					F€OX ← J	504	0.117		20	40	<i>5</i> 00	*	80
5 - 6	1		99						505	0.035		20	25	100	0.5	40
6 - 7	50		50						506	0.040		35	65	300	0.5	10:
7-8		70	30					ļ	507	0.098		30		400		34
8 - 9	10	30	60						508	270.0		30		400		+
9 - 10	10	20	70						509	0.187		35	125	600		+
10 - 11	60	10	30						511	0-033		3 5		300		
11 - 12	60	5	35						512	0.024		25		300		15
12 - 13	20	10	70						513	0.093			120	300	0.5	40
13-14	10		90						514	0.060	0.064	25	140	200	0.5	30
14-15	1	9	99					and the second second second	515	0.033		20	100	200	0.5	16
15-16	1		99				<u> </u>		sib	0.046		20	85	+	0.5	—~-
16-17	9	/_	90					<u> </u>	51)	0.038		30		300		+
17-18	10	5	85						518	p.03 5		30	120	700	0.5	3)
18-19	5	5	90						519	0.104				1000		4:
19-20			90						521	0.017		35	125	600	1.0	33
20-21	30	50	20				ļ	ļ	522	X			 	500	-	90
21-22	5	15	80						523	0.08	<u> </u>	60	90	600	0.5	16
22-23]:	99	<1					ļ	524	0.07]	25	+	500		
23-24	70	30				<u> </u>			525	0.011	0.009	100		1000	 -	/5
24-25	70	30					<u></u>		526	0.008	}	40		600	1	13
25-26	80	20	<1			<u> </u>		<u> </u>	527	0.015		20	ļ	300	 	30
26-27	1,	99						<u> </u>	258	X		15	25			10
27-28	1	40					ļ		529	1		45	·	100	<i>×</i>	A.
28-29	+	50				-		 	530	X			215	*	+	1
29-30	.1	80]			<u> </u>	<u></u>	332	1	<u> </u>	80	240	×	*	h
COMMEN	ITS:															

PROJECT: WAN DIE RGC EXPLORATION DRILLER: J. WATSON PAGE: PROSPECT: ASTON HILL PTY.LIMITED MACHINE: INVESTIGATOR GEOLOGIST: R.TONGE /M. WALTON REVERSE CIRCULATION WATER TABLE: Not rached DATE: BASE OF OXIDATION NOT PERCUSSION HOLE LOG reached bo° TOTAL DEPTH: 60 m. HOLE NUMBER AHIL AZIMUTH: INCLINATION: 40 GEOLOGICAL DESCRIPTION SAMPLE INTERVAL ASSAY RESULTS ROCK TYPE % SULPHIDES % (m) OTHER NUMBER GWKE SLST QTZ OTHER ASEY GAL Au (R) Αu Ċυ Рb 7 n Αg FEOX ,95 trace 1996533 0.041 700 0 - 1 4 80 0.5 4 170 40 1 - 2 FFOX 90 2 - 3 9 534 0.046 30 60 700 بر 220 trace 3 - 4 5 80 15 535 0.079 50 800 4 SOO 35 FEOX 4 - 5 6 90 600 225 536 50 X 0.124 25 trace 3 2 90 5 - 6 95 p.2*5*4 1000 537 40 ٦-800 98 6 - 7 20 45 538 500 185 0.093 ~ FEOX 97 20 60 7 - 8 200 **2**7 539 0.039 0.052 \prec 75 trace FEOX 8 - 9 50 55 300 O.S 450 95 5 541 010 trace 98 25 9 - 10 : 1 542 5 20 100 0.5 0.024 10 - 11 3 300 0.5 2 95 0.036 20 15 20 543 90 5 20 300 lo.5 5 10 10 11 - 12०.००४ 544 12 - 1380 15 5 20 200 1.0 10 x 545 10 90 13-14 10 15 200 p.5 سيد 546 0.024 5 0.5 5 14-15 60 40 15 20 400 0.024 547 60 548 15-16 20 20 20 400 0.5 ېد 15 0.135 16-17 15 1.0 سيلد 25 60 15 0015 25 400 549 17-18 4000.5 60 551 40 15 ~ 40 ャ 18-19 20 25 500 ٦ 10 65 552 30 5 7 19-20 90 10 200 25 20 \star 5 *55* 3 7 20-21 60 40 554 15 20 100 سيد × - 21-224 60 SO 7-5 40 0.037 20 100 55 S 22-23 Sec 90 25 20 ہد 556 0.016 10 5 3 500 23-24 × 8S 15 20 0.01 25 5 557 24-25 300 99<1 25 سر ہد 30 ~ 5 558 25-26 80 200 20 50 35 7 5 سد 559 26-27 ISO. 65 60 40 561 0.984 800 0.5 25

PROJECT: WAN DIE
PROSPECT: ASTON HILL
GEOLOGIST: L.TONGE (M. WALTON
DATE:

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE 1/2
MACHINE: INVESTIGATOR
WATER TABLE: Not reached
BASE OF OXIDATION: Not

NTCOVAL			GEOL	OGICA	L DE	SCRIF	TION		SAMPLE		٠ا	· DC	SULTS	•		ກ.
NTERVAL (m)	1		TYPE %	[IDES	T								Ι
3 0 l	GWKE	SLST	QTZ	OTHER	PY	ASPY	GAL	OTHER		Au	Au(R)	Cu	Zn	As	Ag ~	Pt
30 - 1		···	c./						996565		*			200		7
31-2		99	۲/					ļ	566	×			205		と	5
32-33	ļ	100					·		l	p.008		bo	140	300	×	۲
3 3-4		100	•				r = 1_==10== = 1			0-033		60	145	200	\times	:
34 - 5	ļ	40	60	and the second second		·		ļ	569	0.036		30	ಽ೦	400	×	1
3 5 - 6	10	89	1						571	0.03	}	30	50	$b\infty$	~	:_
3 6 - 7		80	20						572	0:733	0.750	50	75	2200	<i>ب</i> د	ļι
37-8		35	65			to condition the second		ļ Ļ	573	2.396	2.406	80	· -	2400		6
38-9		35	65						574	2.012	z:163	60	145	2900	0.5	32
39 - 40		45	55						575	1.426	1.483	100	130	2200	*	30
40-41		45	<i>5</i> 5						576	0196		40	100	900	*	ıs
41 -42			100						577	0.047		15	45	100	ャ	10
42 -43		50	ဘ						578	o.0 5 0		20	55	200	*	16
43-44		40	60						579	0.204		45	100	600	ک ہ۔	13.
44-45		60							,	0.350		5 5	100	700	7	30
45-46			50				-		582	0.084		45	105	800	<i>></i> ~	3
46-47		70	30	-						0.094	_	bo	125	1700	> -	3
47-48		99	1		·					0.040		65	95	1300	4	1:
48-49		100				A C. T. M. CARRIETT STOLET VA V	rum i um unumana m			0.015	×	25	55	5000	×	٧
19-5 0		100							586	0.015		25	70	600	>	ہد
≨ 0-≨i		90	10						587	*		30	80	800	*	۲
ई।-ई2'		/	15	,					588	0.08	7	S	125	700	4	2
5 2- 5 3	 	80								0.013	,			600		6
5 3- 5 4		799							591	ン		40	 	400		2
5 4- 6 5		99							592	ン		90	70	300	×	د
≨ 5- ≨ 6		100							593	Х			-	200	X	>
£ 6- £ 7	l	100							,	0.008	•		55		×	د
5 7- 5 8		100						-	595	×		20	45		×	ر ا
5 8- 5 9		100							596	0.01)	15	55	·	×	٨
5 9- 6 0		100				ļ			597	ン		······	55	 	*	٦,
COMMEN	TS:								·····							

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: M.D. WALTON
DATE: 28.7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE:
MACHINE:
WATER TABLE: NOT reached
BASE OF OXIDATION: NOT:

HOLE NU	1	11115		IMUTI		40			NATION:	bo		1012	L DE	- in - ¿	30n	າ.
NTERVAL (m)	F	юск	GEOL	OGICA	L DE	SCRIF	TION		SAMPLE		ASS	AY RE	SULTS	3		
(1117	GWKF,	SLST	отг	OTHER	PY	ASPY	GAL	OTHER	NUMBER	Au	Au (R)	Cu	Zn	As	Ag	Pt
0 - 1	7	99.	e 1						Q96598	\times		40	30	100	×	30
1-2																
2 - 3	10	801	د ا						599	0.028	}	20	30	\times	×	11
3 - 4	70	30							601	\times		20	40	100	×	Si
4 - 5	269	30	< }						602	0-010		40	80	200	У-	4
5 - 6	88	Ŋ	10						603	×		25	70	100	メ	6
6 - 7	98	2.							604	2018	×	20	70	100	0.5	2
7-8	ક્ષ	10)						005	০.০০র		30	105	×	\times	5
8-9	198		<1						606	0.008		20	60	*	~	1
9-10	99		<				 	ļ	607	×		25	80	7	*	5
10-11	93	5	2_				ļ 		608	0.013		45	90	100	0.5	2
11 - 12	94	1	5						609	0.011		35	115	200	4	2
12 - 13	799		÷1						611	0.010		25	70	100	*	10
13-14	98	1	j						612	X		45	110	100	*	3
14-15	99)						613	*		40	150	100	+	4
15-16	95	5							614	7		25	130	100	ャ).
16-17	160								615	0.016	>	20	125	*	*	5
17~18	100								616	0.008		20	140	4	4	_ <
18-19	100								617	+		15	115	*	ャ	د
19-20	100								618	7		10	125	100	×	د
20-21	100								619	ナ		10	140	<i>></i> ــ	*	5
21-221	100								62i	بد			150	 	7	5
22-23	80	20						-	622	*	×		 	200		10
23-24	10	90							623	×			T	200	ナ	د
24 ₋ 25	40	60							624	*			50	 	ょ	د
25-26	73		25	<u> </u>					625	7			50	 	*	د
26-27	1	60	 	ļ					626	×			85	 	ャ	د
27- 28	1	90							627	×_				100		1
28-29	 	50	<u> </u>					 	628	X				100	1	5
29-30	95	5		<u> </u>				<u> </u>	1629	×		20	115	 * _	4	S
COMMEN	TS:									12-1117						
							'									

PROJECT: WANDIE PROSPECT: ASTON HILL GEOLOGIST: M. D. WALTON

DATE: 28.7.88

RGC EXPLORATION PTY.LIMITED REVERSE CIRCULATION

PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE:

MACHINE:

WATER TABLE: NOT REACHED BASE OF OXIDATION: NOT

0-1 1-2 2-3 3-4	50 10	SUST	TYPE %	OTHER	L DE		IDES .		SAMPLE		ASSA	Y RE	SULTS	3		
0-1 1-2 2-3 3-4	50 10	10		ļ	PY	ASPY										
2-3	10		40			-	GAL	î .	NUMBER	Au	Aυ(R)	Cu	Zn	As	Αg	Pb
2-3		,			<u> </u>			FEOY trace	996631	0.027		40	120	300	×	170
3 - 4)														
	15	1	89						632	0.038	>	40	65	400	X	157
4 - 5		5	80		r 1981 - 20 - 22 - 1			FBOX trace		0.166		40	60	600	4	19:
	15	45	40	country design	on an Andrea and Anne				634	0.109	,	50	85	700	4-	18
5-6	70	20	10	·					635	0.071	0.088	45	80	500	×	8
6 - 7	40		60						636_	0.159		115	 	900		183
	30		70					FEOX	— 	0.253	-			<i>\$</i>	0.5	100
	15		85					trace FEOX		0.766			ļ	400	\	95
9 - 10	2		98					trace FEOX	639	 	1.493		 ,	600		12:
10-11	60		40					traic FEOX	· ·	0.254	-	80	 	600		67
11 - 12	2		97					trace	- × 7	0.153		90		400	*	60
-	329	10	1					,	642	0.045		30	-	300	*	15
	99		<i>-1</i>						643	D-008		25	ļ -	100	χ ,	10
14-15 15-16	74	25				<u> </u>			644	0.02	0.030	30	 	100	\	60
	60	<1 /	40						645	\frac{1.025}{\frac{1}{3}}		20	ļ ·	200	メ	5
	40	60			AND THE PARTY OF THE PARTY OF				646	0.021			 • • •	300		21
	20		20		,				647	0.013		40 30	<u> </u>	200	*	7
	65		20		,	ļ <u>.</u>			649	0014	l		 	200		5
	100	20	/3_		/				651	*		60	1	100	7	10
21-22'		25	<1						037			80				
22-23	100			1												
23-24	98		2			-										
24-25	40	60														
I	30	70	د/													
26-27		100														
27- 28	70	30														ļ
28-29	70	30														
29-30	75	25											<u></u>			
COMMENT	s:						·						m- n-			

PROJECT: WAN DIE RGC EXPLORATION DRILLER: 5. WATSON PAGE: PROSPECT: ASTON HILL PTY. LIMITED MACHINE: GEOLOGIST: K. DENWER REVERSE CIRCULATION WATER TABLE: NOT REACHED DATE: 14.7.88 Drilled: 13.7.88 BASE OF OXIDATION: NOT REACHEL PERCUSSION HOLE LOG HOLE NUMBER: 67° TOTAL DEPTH: 30m. AZIMUTH: 042 INCLINATION: GEOLOGICAL DESCRIPTION SAMPLE ASSAY RESULTS INTERVAL TYPE % SULFHIDES % (m) OTHER NUMBER GWKE SLST QTZ OTHER ASPY GΛt. Au(R) Cu Рb Ζn 0 - 198 2 1 - 2 2 - 3 30 70 a96652 × 90 3 - 4 5 30 300 5 25 \prec 25 6530.021 4 - 5 20 5 75 55 40 200 ہد 80 654 0008 95 4 1 20 100 **SO** 5 - 6 15 × 6 - 7 65 5 25 200 7 × 30 15 30 7 - 8 70 30 8 - 9 70 9 - 10 SO 50 10-11 30 70 25 11 - 12 75 90 12 - 13 10 130 13-14 70 85 15 14-15 90 15-16 10 16-17 30 70 30 17 - 1870 20 80 18-19 19-20 100 20-21 100 21-22' 100 22-23 100 23-24 100 24-25 99 25-26 100 26-27 100 27-28 100 28-29 100 3 29-30

COMMENTS:

26/10

PROJECT: WANDIE RGC EXPLORATION DRILLER: J. WATSON PAGE: PROSPECT: ASTON HILL PTY. LIMITED MACHINE: GEOLOGIST: M. Walton REVERSE CIRCULATION WATER TABLE: DATE: BASE OF OXIDATION: PERCUSSION HOLE LOG AZIMUTH: 043 HOLE NUMBER: 18 65° INCLINATION: TOTAL DEPTH: 30m. GEOLOGICAL DESCRIPTION SAMPLE ASSAY RESULTS INTERVAL ROCK TYPE % SULPHIDES % (m) ASPY GAL OTHER NUMBER GWKE SLST QTZ OTHER Au(R) Cu ΡЬ Ζn Αg 0 - 1 100 1 - 2 90 2 - 3 10 3 - 4 100 4 - 5 100 100 5 - 6 100 6 - 7 7-8 100 8 - 9 100 9 - 10 100 10 - 11 100 11 - 12100 12 - 13 100 13-14 100 100 14-15 15-16 100 100 16~17 17-18 100 18-19 100 19-20 100 20-21 100 21-22' 100 22-23 99 23-24 100 1 24-25 100 25-26 100 26-27 100 27-28 100 28-29 100

29-30

COMMENTS:

100

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: M. Walton

DATE: 13.7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J.WATSON PAGE:
MACHINE:
WATER TABLE: NOT REACHED
BASE OF OXIDATION: NOT REACHED

NTERVAL	 		GEOL	OGICA	L DE	SCRIF	TION		SAMPLE		ASSA	Y RE	SULT	3		
(m)		SLST	T	OTHER	PΥ	ASPY			NUMBER	Λu	Au(R)	Cu	Zn	As	Ag	Pb
0 - 1	<u>}</u>	20	80			 		FEOX	996656	0.550	0.595	45	35	300	×	40
1 - 2)						100000									
2 - 3	30	5	65					FEOX	657	0.020	and the second second	40	50	100	×	12
3 - 4	25		75					FEOX 2	657 658	0.016		65	90	100	×	130
4 - 5	90		10					FEOX	659	×		40	70	×	×	45
5-6	98		2													
6 - 7	99		1	·	**********											
7-8	100															
8 - 9	70		10	c/ay 20					661	0.013		50	75	×	X	6
9 - 10	95		5													<u> </u>
10-11	100		<1				.,.									
11 - 12	100															
12 - 13	100															
13-14	100															
14-15	799		</td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>													
15-16	100				•											
16-17	100															
17-18	100															
18-19	100															
19-20	100									İ						
20-21	100							•	_							
21-22'	100				·											
22-23	80		20					FEOX	662	X		50	75	200	×	100
23-24	75		25					FEOX		×		75	T .		×	6
24-25	15		85					FEOY 2	664	0.009		60	85	200	×	185
25-26	80	[20						1/	0.145		40	50	200	メ	60
26-27	45		55					FE OX		0.013		25	30	200	ャ	20
27-28	90		10						667	ャ		45	40	300	4	3
28-29	100															<u> </u>
29-30	98		2													
COMMEN	TS:															

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: K. DENWER

DATE: 18- 7 - 88

RGC EXPLORATION PTY.LIMITED REVERSE CIRCULATION

PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE: MACHINE: INVESTIGATOR

WATER TABLE:

BASE OF OXIDATION:

NTERVAL	F		GEOL	OGICA	L DE		TION	7.	SAMPLE		ASS	ΛΥ RE	SULTS	3		
(m)	GWKE	I			₽Υ	T		•	NUMBER	Au	Au (R)	Cu	Zn	As	Ag	Pb
0 - 1	280		20						996808	0.340	0.284	40	40	300	X	35
1-2																
2-3	95		5						809	0.203		30	35	200	ン	70
3 - 4	100															
4 - 5	100															
5-6	100															
6 - 7	60	40														_
7-8	5	95														
8 - 9	100	}	<1													
9 - 10	100	-														<u>.</u>
10-11	100															
11 - 12	80		so					FEOX trade	810	0.043		30	50	300	ャ	7
12 - 13	90	10							811	0.012		20	45	100	*	2
13-14	93	2	5						812	X		15	40	100	ス	21
14-15	100															
15-16	100									ļ				İ	,	
16-17	100															ļ. <u>.</u>
17-18	100															
18-19	100															
19-20	99		1					FEOX 2								
20-21	799		</td <td></td> <td></td> <td></td> <td></td> <td>Æ0x 2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					Æ0x 2								
21-22	100			,												
22-23	799		</td <td></td> <td></td> <td></td> <td></td> <td>FEO) 2</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td>					FEO) 2	1							_
23-24	97		3					FF OX					<u> </u>			-
24-25	100															_
25-26	199		< /													_
26-27	97	2	1									ļ				igspace
27-28	40	60											<u> </u>			ļ
28-29	5	95											<u> </u>			<u> </u>
29-30		100														
COMMEN	TS:															

PROJECT: WANDIE PROSPECT: ASTON HILL

GEOLOGIST: K. De nuer DATE: 14.7.88

RGC EXPLORATION PTY.LIMITED REVERSE CIRCULATION PERCUSSION HOLE LOG DRILLER: J. WATSON PAGE: 1/2

MACHINE:

WATER TABLE: NOT reached BASE OF OXIDATION: Not reached

NTERVAL			GEOL	OGICA	L DE	SCRIF	TION		SAMPLE		ASSA	Y RE	SULTS	3		
(m)		SLST		OTHER	PY	ASPY	GAL		NUMBER	Λu	Au (R)	Cu	Zn	As	Αg	Рb
0 - 1	2100							·	996668	0.03)	15	20	30O	Х	26
l - 2																
2 - 3	70		30						669	0-04.4		15	35	500	X	70
3 - 4	<1		99					trace	671	0.044		ID	20	200	х	2
4 - 5	40	***	60						672	0.061		20	30	300	*	35
5 - 6	98		2						673	0.032		20	40	200	0.5	24
6 - 7	99		1			ļ			674	0.017		25		200		15
7-8	15		85				ļ		675	0.028	0.033	20	30	300	×	15
8 - 9	25		75					ļ	676	0.073			 	400		50
9 - 10	40		60					1	677	0.040				400		30
10-11	10		90				ļ 	<u> </u>	678	X		30	<u> </u>	300		2
11 - 12	30		70	-1-				ļ	679	0.020		35		400		15
12 - 13	8		87	clay 5				ļ	681	0.015		25	30	300	ļ	大
13-14	75		25					ļ	682	$ \times $		25		200	<u> </u>	~
14-15	299		<1				ļ		683	x		20		<u>soo</u>	X	5
15-16	100						<u> </u>		684	X				100		×
16-17	50		50				<u> </u>		685	X		20	-	200		10
17-18	20	15	65						686	0.010	}		ļ <u></u>	200		6
18-19	95		5				ļ <u>.</u>	ļ	687	X		25	20	100	ナ	5
19-20	100								688	X		20	25	2.00	ン	1
20-21	20	79	1						689	0.061		<u> </u>	 	300		10
21-22.	95	5		1					690	0.081		40	1	300		15
22-23	80		20				ļ	5	691	D.134	<u></u>	40	 	500		6
23-24	3		97					<u><1</u>	692	0.08		30	+	300	 	11
24-25	20	5	75		ļ		<u> </u>	5	693	0.100		60	 	500		8
25-26	1		99					2	694	0.168) 	55		500	 	6
26-27			100					ļ	695	0.380	1	20	1	200		2
27- 28	20		80					1	696	1	1.156	 -	1	800		2
28-29	4		96	ļ				1	697	0.07		40	 	500	 	4
29-30	15		85						698	0.08	<u>2</u>	35	35	400	\ <u> </u>	2
COMMEN	ITS:															

PROJECT: WANDIE
PROSPECT: ASTON HILL

GEOLOGIST:

DATE: 13.7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION

PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE: 2/2 MACHINE: WATER TABLE: Not reached BASE OF OXIDATION: Not reached

HOLE NUM	<u> </u>		GEOL	OGICA		SCRIF	PTION		NATION: 6	1		Y RE	SULTS			
(m)	GWKE		TYPE %	OTHER	PY		IIDES "		NUMBER	Au	Au (R)		Zn	As	Ag	Pb
30 - 1	< }	-	99			7.51	.,,,,	+	Q96699	 				300		20
31 - 2		14"	40					ļ	700					500	l	5
32 - 33	98	, ,	2			ļ			· · · · · · · · · · · · · · · · · · ·	0.025			ŧ	1		<u>ر</u> بح
33 - 4	100		_			ļ			-' '	V-025	0.010	30		200	 	<u>5</u>
- 34-5	100				AVENUEL				702	×				100		10
35-6	60	40							703 704	1			!	200		X
36 - 7									107							
3 7-8																
38 - 9										1						
39 -40			·													
10-11																
11 - 12																
12 -13																
13-14				Livery was an in [F 1.000 9792											
14-15																
15-16												·				<u> </u>
16-17																
1718										ļ						
18-19																
19-20																
20-21										<u> </u>				ļ <u></u>		
21-22'																<u> </u>
22-23						ļ <u>-</u> -		_		<u> </u>			<u> </u>	<u> </u>		-
23-24					· · · · · ·					-				-		
24-25							ļ	-		-				<u> </u>		<u> </u>
25-26	-								-	 		<u></u>				
26-27			-							<u> </u>				<u> </u>		
27-28		ļ 						1		-					 	-
29-30	ļ							-				ļ				-
COMMEN	L TS:		l				l		<u> </u>	1		<u> </u>		l	L	<u> </u>

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: M.D. WALTON
DATE:

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE:).

MACHINE:

WATER TABLE:

BASE OF OXIDATION:

DATE						PE	RCUS	SSION	HOLE LO	OG	BASE	OF O	KIDATIO	: NC		
HOLE NUI	MBER y	AH 27	2 AZ	IMUT	н: С	740)	INCLI	NATION: 6	000		TOTA	L DE	PTH: (-8 r	ກ.
INTERVAL		госк	GEOL	OGICA	L DE	SCRIF	TION		SAMPLE		ASS	AY RE	SULT	S		
(1117	GWKE	SLST	OTZ	OTHER	PY	ASPY	GAL.		NUMBER	Αu	Au(R)	Cu	Zn	As	Ag	Pb
0 - 1	Z 30		70					trace	996705	0.188		35	30	300	ャ	30
1 - 2)															·
2 - 3	30		70					trace	706	0.059	0.059	145	80	1000	<i>\\</i>	70
3 - 4	3	2.	95					trace	707	0.036		95	40	$s\infty$	*	3
4 - 5	5	5	90					trace	708	0.173		35	25	300	0.5	2.
5 - 6	2	10	88					trace	1 ·· -,-,	0.223		30	20	400	4	25
6 - 7	2	25	73					trace		0.160		40	30	400	*	30
7-8	15	5	80					trace	I	0.113		35	20	300	4	10
8 - 9	4		96							0.053		50	30	400	×	83
9 - 10	10	30	60						713	0.069		35	25	600	ャ	6
10-11		40	60						i	0.163		30	25	700	×	5
11 - 12	3	5	92						•	0.125		20	20	500	><	4.
12 - 13	3		97						716	0.122		30	25	boo	×	5
13-14	3	2	95						 	0.310		25	25	400	*	30
14-15	60		40						/ -/	0.102		20	20	300	ہذ	2.
15-16	70	20	10							0.057		20	30	800	×	1
16-17	60		40			ļ		<u> </u>	721	0.060		2 5	45	300	×	1
17-18	10	80	10						722	0131		40	50	700	<i>≻</i> -	2
18-19		5	95					<1		0108		55	30	500	4	13
19-20	2	4	94					</td <td>,</td> <td>1049</td> <td>1.231</td> <td>70</td> <td>20</td> <td>600</td> <td>ン</td> <td>3</td>	,	1049	1.231	70	20	600	ン	3
20-21	1	1	98					trace	 	0.066	ļ		15	200	4	د
21-22'	ļ	1	99	į			-	trace	1	0.008		10	10	100	×	د
22-23	2	1	97					trace		0.043		35	30	400	<i>></i> -	د ا
23-24	,		99						728	0469	0.419	20	15	300	*	5
24-25	2	,	97					trace	T	0.036	****	30	15	400	ナ	1
25-26	 	1	99			† .	<u> </u>	trace	730	×		15	10	100	*	A
26-27	 	2	98					trace	T	0.049		45	20	400	ャ	1
27- 28		4	96					2	732	0.130	 	20	20	400	ب د	
28-29		85	15			<u> </u>			733	0.000		25	25	300	x	,
29-30			1						1	×		30	30	200	*	1:
29-30 COMMEN	TS:	99	,			Manager version .			734	×	,	30	30	200	ント	

PROJECT: WAN DIE
PROSPECT: ASTON HILL
GEOLOGIST: M. D. WALTON
DATE:

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J.WATSON PAGE
MACHINE:
WATER TABLE: NOT FEACHE
BASE OF OXIDATION: NOT FEAC

22/1

HOLE NUMBER: AH22 AZIMUTH: 040 INCLINATION: 60° TOTAL DEPTH: 48m GEOLOGICAL DESCRIPTION SAMPLE INTERVAL ASSAY RESULTS ROCK TYPE % SULPHIDES % (m) FEON NUMBER GWKE SLST QTZ OTHER ASPY GAL Au(R) Сu Ζn Αg 30 996735 0.022 30-1 80 40 *3*00 70 $\boldsymbol{\sim}$ 25 736 0.014 300 31-2 75 30 40 λ 737 32-33 35 30 25 75 3**0**0 \prec 0.011 738 99 30 33-4 0.052 30 200) 35 34-5 100 739 0.142 0.150 35 400 × 25 75 65 740 6.08 35 300 25-6 \sim 3 35 97 00 4 36 - 7 741 30 \times 37-8 100 38 - 9 100 100 39-40 40-41 100 60 40 742,0.021 30 40 400 4 41 -42 40 55 600 x 30 70 42 43 743 0-111 15 85 45 45 700 ャ 43-44 744 0.050 50 40 700 ャ 50|50 0.073 44-45 745 45-46 100 46-47 100 799<1 47-48 18-19 19-20 20-21 21-22 22-23 23-24 24-25 25-26 26-27 27-28 28-29 29-30 COMMENTS:

PROJECT: WANDIE PROSPECT: ASTON HILL GEOLOGIST: K. DENWER

PTY. LIMITED REVERSE CIRCULATION

RGC EXPLORATION

DRILLER:

PAGE

MACHINE:

WATER TABLE: Not reached BASE OF OXIDATION: Not reac.

DATE: 14.7.88 PERCUSSION HOLE LOG 660 HOLE NUMBER AH 23 AZIMUTH: 039 TOTAL DEPTH: 30m INCLINATION: GEOLOGICAL DESCRIPTION SAMPLE ASSAY RESULTS INTERVAL SULPHIDES % ROCK TYPE % (m) GAL FEOX NUMBER GWKE SLST QTZ OTHER ASPY Au(R) Cu Ζn Αg 0 - 1 95 5 1 - 2 100 < 1 2 - 3 70 20 90 10 90 10 5 - 6 30 6 - 7 70 70 30 7-8 8 - 9 100 9 - 10 100 10-11 100 11 - 12 100 12 -13 100 13-14 100 14-15 99 196746 0.000 40 200 0.5 15-16 20 99 747 00600012 16-17 75 20 35 200 0.5 25 60 17-18 748 35 40 200 40 2 0.00 × 18-19 90 10 19-20 100 20-21 100 21-22 100 22-23 100 23-24 100 24-25 100 25-26 100 26-27 100 27-28 100 28-29 100 29-30 100 COMMENTS:

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: K. DENWER

DATE: 14.7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE:
MACHINE: INVESTIGATOR
WATER TABLE: NOT REACHED
BASE OF OXIDATION: 29 m.?

INTERVAL	ļ	ROCK	GEOL	OGICA	L DE		TION	SAMPLE		ASSA	AY RE	SULT	s		
(m)		SLST		OTHER	PY	ASPY		NUMBER	Au	Au (R)	Cu	Zn	As	Ag	F
0-1	788	10	2					,							
1 - 2															
2 - 3	85	15													
3 - 4	70	30													
4-5	20	80		,											
5-6		100				<u>.</u>									
6 - 7		100													
7-8		100											<u></u>		L
8 - 9		100								!					
9 - 10		100													<u> </u>
10-11		100													
11 - 12		100													
12-13		100													
13-14		100													
14-15		100					i								
15-16		100													
16-17		100													
17-18		100									ı				
18-19		100													
19-20		100													
20-21		100													
21-22		100													
22-23		100											,		
23-24		100													
24-25		100													
25-26		100						_							
26-27		100													
27-28		100													
28-29	2	98													
29-30		100													

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: M.D. WALTON

DATE: 15.7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSO N PAGE:

WATER TABLE: Not reached
BASE OF OXIDATION: 31 m.

36/107

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: M.D. WALTON

DATE: 15.7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE: 2;
MACHINE:
WATER TABLE:

BASE OF OXIDATION: 31 m.

	Ĭ		GEOL	OGICA	L DF	SCRIE	TION								36 r	
(m)	GWKE	ROCK	TYPE %			SULP	IDES *	/•	SAMPLE NUMBER		1		SULT	1	T	T
30 - 1	ļ <u>.</u>	3631	 	OTHER	PΥ	ASPY	AVE	1	HOMBER	Αu	Au(R)	Cu	Zn	As	Ag	Pt
· · · · · · · · · · · · · · · · · · ·	99)	<u> </u>		<u> </u>	ļ	5		<u> </u>	1		-			┼
31 - 2	90		10	ļ				;		·	<u>.</u>		<u> </u>		<u> </u>	-
32 - 3 <i>3</i>	99		<				: ! 				 		ļ			ļ
33-4	100	ļ						· 		*** ********	<u> </u>		ļ			<u> </u>
34-5	99		<u> </u>							•			ļ		ļ	_
3 5 - 6	99		</td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ļ</td>													ļ
6 - 7													ļ		ļ	_
7-8																ļ
8 - 9																_
9 - 10													<u> </u>			-
10-11																ļ
11 - 12													<u> </u>			ļ
12-13					_								ļ			_
13-14																
14-15													ļ			
15-16																
16-17																
17-18			,													
18-19																
19-20																
20-21							·									
21-22+																
22-23																
23-24																
24-25																
25-26																
26-27		1,5							-							
27-28								<u> </u>								
28-29																
29-30																
COMMENT	ˈs:							1	<u> </u>	L	l		1,	· · · · · · · · · · · · · · · · · · ·		

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: M.D. WALTON

DATE: 15-7-88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE: 1/2
MACHINE:

WATER TABLE: Not reached
BASE OF OXIDATION: Not intersed

	1	11,	AZ			220			NATION: 6	0°		1017	AL DE	РТН:3	10m	
INTERVAL		ROCK	TYPE */	OGICA	L DE	SCRIF SULPI	TION		SAMPLE		ASS	AY R	ESULT	S		
	GWKE	SLST	QTZ	OTHER	PY	ASPY	G∧∟	OTHER	NUMBER	Au	Au(R)	Cu	Zn	As	Ag	PI
0-1	345	15	40						996775	0.108	0.115	40	40	300	×	30
1 - 2		,					1									
2 - 3	4	10	86						776	0.157	}	30	25	300	*	2
3-4	15		75	clay 10					777	0.08	9	20	25	300	ہد	2
4-5	45			chy 20					778	0.122		30	30	300	×	2
5 - 6	3_	15	82						779	0.524	0.510	50	30	800	<i>></i> -	9
6 - 7	20	10	70						781	0382		40	30	800	*	3,
7-8	40	10	50						782	0.099		25	30	400	0.5	5
8-9	20	10	70						783	O-243		25	40	500	×	2
9 - 10	10	2	88						784	0.229		65	45	600	×	8
10-11	45	5	50						785	0.163		50	35	600	メ	30
11 - 12	15	15	70						786	0.107		35	25	600	メ	6:
12-13	2	3	95						787	0.065		35	30	500	X	4:
13-14	25		75							0.132		30	25	600	X	6:
14-15	48	2	50						789	0.271		30	30	700	X	30
15-16	100								790	0059		15	25	300	$\boldsymbol{\kappa}$	2
16-17	30		70						791	0.061		30	35	300	×	30
17-18	100								7 9 2	×		25	35	200	×	10
18-19	98		2						793	X		20	30	100	×	×
19-20	70	30							794	o. 00 08		30	30	200	ャ	10
20-21	65	30	S						795	0025		40	45	300	×	5
21-22.	80	5	15						796	0.101		45	60	600	x	K
22-23	99		1						797	0.244		40	50	400	ャ	10
23-24	30		70						798	0.057		30	45	400	ト <u></u>	20
24-25		90	10						799	0.027	0.031		1	i 1	×	10
25-26	20	го	60						800	0.121		115	140	1700	4	3,
26-27	7	5	88			Nage a			801	0.371		150	100	2400	×	49
27-28	3		97						802	0.072		20	30	300	*	12
28-29	2	</td <td>297</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>803</td> <td>0.016</td> <td></td> <td>15</td> <td>25</td> <td>300</td> <td>*</td> <td>10</td>	297						803	0.016		15	25	300	*	10
29-30	15		85						804	0.021		30	40	300	*	16
COMMENT	rs:															

PROJECT: WAN DIE PROSPECT: ASTON HILL GEOLOGIST: M.D. WALTON

DATE: 15.7.88

RGC EXPLORATION PTY.LIMITED REVERSE CIRCULATION PERCUSSION HOLE LOG DRILLER J. WATSON PAGE

MACHINE:

WATER TABLE: Not reached, BASE OF OXIDATION: Not inte:

	Ì		GEOL	OGICA	L DE	SCRIE	TION		SAMPLE	1					
NTERVAL (m)		1	TYPE 7				IDES '		l '	 			SULT	1	l .
	 	SLST	 	OTHER	PΥ	ASPY	GAL		NUMBER	Au	Au (R)		Zn	As	Ag
3 0 - 1	45		55					-	996805	0.016	:-	50	55	300	*
31 - 2	80		20					ļ	806	0.146		55	140	400	*
32 - 33	90		10		_				807	0.012		30	160	×	×
33 - 4	299		<1												
3 4 - 5	799		<1												
3 5 - 6	100														
6 - 7															
7-8															
8-9												·			
9 - 10													-		
10-11															
11 - 12															
12-13									reserve v						
13-14															
14-15															
15-16															
16~17															
17-18							•								
18-19									<u> </u>						
19-20															
20-21															
21-22.															
22-23															
23-24	-														~~~
24-25															 .
25-26															
26-27															
27- 28															
28-29				\neg											
29-30															
COMMENT	`\$:_			1		i				.,	1	l			

PROJECT: WANDIE PROSPECT: ASTON HILL GEOLOGIST: K. DENWER DATE: 19-7.88

e je je jamaja a kor

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER J. WATSON PAGE !! MACHINE: INVESTIGATOR WATER TABLE: NOT REACHE! BASE OF OXIDATION: 29 m.?

NTERVAL	ļ	ROCK	GEOL	OGICA	L DE	SCRIP	TION		SAMPLE		ASS	AY RE	SULT	s		_
(m)	GWKE		QTZ	CLAY	PY	ASPY	GAL	FEOX	NUMBER	Au	Au (R)	Cu	Zn	As	Ag	
0-1	8	2	90			<u> </u>		,	996813	SNR		SNR	SNR	SNR	SNR	5
1-2	5		· · · · · · · · · · · · · · · · · · ·													T
2-3	5		95					,	814	0.044		15	15	200	*	1
3-4	5		90	5				0.5	815	0.144		10	10	300	*	,
4 - 5	9		90	1				0.5	816	0.045		15	15	300	Х	
5-6	5		95	</td <td></td> <td></td> <td></td> <td>0.5</td> <td>817</td> <td>0.035</td> <td></td> <td>35</td> <td>15</td> <td>400</td> <td>×</td> <td>1</td>				0.5	817	0.035		35	15	400	×	1
6 - 7	15		85					0.5	818	0.012		15	10	400	×	
7-8	30	30	40						819	0016	0.021	10	15	300	*	
8 - 9	25	15	60						820	0.012		15	15	100	*	
9 - 10	85		15						821	0.014	0.013	20	30	100	7	١
10-11	99		1							<u> </u>				·		
11 - 12	95	5														L
12 - 13	90		10													
13-14	299	•	-/													
14-15	100															
15-16	98		2						. :							
16-17	55	5	40						822	ょ		25	20	200	*	
17-18	57	3	40						823	×		25	15	300	0.5	
18-19	95		5						824	х		25	20	200	*	L
19-20	100				!				·							
20-21	100															
21-22'	100															
22-23	35		65					2	825	0.132	0.098	35	20	200	Х	ļ
23-24	70	5	25						826	0.015		35		300		١
24+25	60	40							827	ょ		20	20	200	0.5	
25-26	100							- 1-1- 	828	*	0.020	25	25	400	0.5	Ŀ
26-27	2.		98					1	829	*		15	25	200	o.5	4
27- 28	75		25					2	83 <i>0</i>	ہد		25		200		Η.
28-29	98		2.					ঠ	831	ン					0.5	! –
29-30	99				Ì				832	ャ		40	210	100	0.5	

PROJECT: WANDI€

PROSPECT: ASTON HILL GEOLOGIST: K. DENWER

DATE: 19.7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE 27
MACHINE: INVESTIGATOR
WATER TABLE: NOT REACHED
BASE OF OXIDATION: 29 m.

INTERVAL		20011		OGICA	L DE				SAMPLE		ASS	AY RE	SULTS	5		
(m)		SLST	TYPE */	OTHER	PY	ASPY	GAL		NUMBER	Au	Au (R)		Zn	As	Ag	Р
30-1	100					******			Q96833	×		40	200	100	0.5	د
31-2	38	2	60					2		0.037				200	1	1
32 - 33	20	5	75					3		0.014				300		
33-4	99		1							0.010			145			ļ
34 - 5	50		50							SNR		SNR				-
3 5-6	20	60	20				• • • • • • • • • • • • • • • • • • • •			0.016		30	60	400	ャ	-
6 - 7									,							
7-8										:						
8 - 9											·					
9 - 10																
10-11																
II - I2								_								
12-13																
13-14																
14-15																
15-16																
16-17																
17-18																
18-19	·								, , , , , , , , , , , , , , , , , , , ,							
19-20										:						
20-21																
21-22•																
22-23																
23-24																
24-25																
25-26																
26-27	441	2.1												<u>. </u>		
27- 28																
28-29																
29-30																

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: K. DENWER
DATE: 19. 7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE: 1/2
MACHINE: NUESTIGATOR
WATER TABLE: NOT REACHED
BASE OF OXIDATION: NOT REACHELS

	T		L GEOI	OGICA	l DE	SCRIP	TION		I	1					451	
INTERVAL		ROCK	TYPE %			SULP	IDES	'/a	SAMPLE		ASS	AY RE	SULT	S	•	+-
	GWKE	SLST	QTZ	OTHER	PY	ASPY	¢Λ∟	FE OX	NUMBER	Au	Au(R)	Cu	Źn	As	Ag	Pt
0 - 1	K 100															
1 - 2)			<u>-</u>						<u> </u>	! !					
2 - 3	99		1		·											
3 - 4	100															
4 - 5	100										1					
5-6	100															
6 - 7	100															
7-8	75	20	5						096839	0013	-	30	30	100	×	క
8 - 9		15	30					5	996839 841	×		20	25	100	0.5	بد
9 - 10	97		3						842	0.000		15	 	200	ャ	10
10-11	100															
11 - 12	100															
12-13	100															
13-14	73	25	2					5								
14-15	799		<]						-						, ,	
15-16	100															
16-17	100															
17-18	100		:						. "							
18-19	100															
19-20	100															
20-21		10														·
21-22 4	98		2													
22-23	100		,													
23-24	90	3	7						843	0.07)		25	35	700	०ऽ	×
24-25	5		95		3			,		p.792	···· · · · · · ·	7		1500		70
25-26	30		70 70		ر			3		1.453				2200		18.
26-27	50	1.0	40					1-5		0.298	•	7 5	75	1700		20
27-28	5	75						, 3		0026				700		4
28-29			20							0.428			\$5	600		4
29-30	15	2	83					2	(<u>Y</u>	0.074				500	*	4
COMMEN			0.00		!				- (/	L			<u>. </u>	<u>. </u>		

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: K. DENWER

DATE: 19.7-88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE: 2) E MACHINE: INVESTIGATOR WATER TABLE: NOT REACHED BASE OF OXIDATION: NOT REACHEL

INTERVAL	<u> </u>	ROCK	GEOL	OGICA	L DE		TION		SAMPLE		ASS	AY RE	SULT	5		
(m)	GWKE			OTHER	PΥ	ASPY			NUMBER	Au	Au (R)	Cu	Zn	As	Ag	P
30 - 1	70	10	20						996850	0.017		20	55	400	*	5
31 - 2	45	10	45					FEX 2	851	0:732	0.566	60	130	800	0.5	111
32 - 33		80	20					limanit	852	0.126	0 173	50	60	600	*	3
\$ 3 - 4	10		90					#10x		0062		45	65	900	0.5	3
34 - 5	40		60					Fe ox	854	0.018		30	40	600	*	1
3 5 - 6	40	10	50		trace			f€0X 	85 5	0.052		bo	45	900	0.5	15
3 6 - 7	89	1	10						856	×		25	30	300	*	د
37-8	3		97		trace			∓€ 0χ 2.	857	0.049		35	30	400	X	5
38-9	4	1	95					FEOX	828	0.043		25	25	300	0.5	1
3 9- 4 0	79	20	1						859	0.008		50	25	400	0.5	4
40-41	15		25					f€ox 2	860	0.095		35	30	600	0.5	7
41 -42	5		95		trace	trace		FEOX	861	0.041		60	30	300	4	17
42 -43	95	5				7										
43-44	90	10														
44-45	20	80														
15-16	:															
16-17																
17-18																
18-19																
19-20									-							
20-21																
21-22+							<u>.</u>									
22-23																_
23-24																_
24-25 25-26																
26-27		·														L
27-28							* .									
28-29													''			
29-30								<u> </u>								
COMMENT	L J															

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: K. DENWER

DATE: 20.7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J.WATSON PAGE: 1/2
MACHINE:
WATER TABLE: NOT REACHED
BASE OF OXIDATION: NOT REACHEL

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: K. DENWEK
DATE: 20.7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

MACHINE:
WATER TABLE: Not reached
BASE OF OXIDATION: Not reaches

DRILLER J. WATSON PAGE 2/2

HOLE NUMBER AH29 | AZIMUTH: 043 TOTAL DEPTH: 33m. INCLINATION: 600 GEOLOGICAL DESCRIPTION SAMPLE ASSAY RESULTS INTERVAL ROCK TYPE % SULPHIDES % (m) GAL OTHER NUMBER SLST GWKE QTZ OTHER ASPY Au(R) Cu Ζn Αg Рb 30 - 1 100 K] 31-2 100 32 - 33 < 1 100 3 - 4 4 - 5 5 - 6 6-7 7-8 8 - 9 9 - 10 10-11 11 - 12 12 - 13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-221 22-23 23-24 24-25 25-26 26-27 27-28 28-29 29-30 COMMENTS:___

PROJECT: WANDIE PROSPECT: ASTON HILL

GEOLOGIST:

DATE: 20.7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER J. WATSON PAGE:
MACHINE: INVESMG ATOR
WATER TABLE: Not reached
BASE OF OXIDATION: Not rached

			GEOL	OGICA	L DE	SCRIF	TION		SAMPLE	T	400	4 2 5 5				
INTERVAL (m)		SLST	TYPE 7	CLAY	£11/	T	IIDES *		NUMBER		1		SULT	T	l .	
0 - 1		ł			PY	ASPY	GVL	FEDX	!	Au	Au(R)		Zn	As	Ag	Pb
1-2	760		40	21					09687	0003	0 053	20	45	400	7	20
	<u> </u>		,			ļ		· · · · ·		ļ						
2 - 3	35	ļ	65				····	41	878	0.019		SO	40	600	*	30
3 - 4	25		75					<u> </u>	879	0.017		45	 	500	*	\S
4 - 5	85		13	2					880	0.035		35	25	800	×	25
5 - 6	30		70					2)	881	0.023		30	40	300	*	30
6 - 7	50		SD						882	0.020		<i>b</i> 5	20	300	*	25
7-8	15		85)	883	0.060		120	35	boo	×	1/5
8-9	49	1	50						884	0.015		30		400	ļ.——	40
9 - 10	60		40						000	0.040		75	· · · · · · · · · · · · · · · · · · ·	300		20
10-11	99	<1	د ا						886	0015		35	15	300	×	20
11 - 12	100		<< j					menni wasa-								
12 - 13	75	25					· · · · · · · · · · · · · · · · · · ·									
13-14	100					;		l L				1				
14-15	100															
15-16	100															
16-17	100															
17-18	100		<1													
18-19	70	30														
19-20	90	<]	10					1	887	0.013	-	35	35	100	بد	5
20-21	60	5	35					1		0.014		25		200	×	45
21-22+	98	2	<1						889	ン		55	180	ャ	ャ	20
22-23	100								9-4							
23-24	99	1	</td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>													
24-25	100								-							
25-26	100															
26-27	100															
27- 28	100		cc/													
28-29	100															
29-30	100															
COMMENT	S:					\. 					!	<u>.</u>				

PROJECT: WAN DIE.
PROSPECT: ASTON MILL
GEOLOGIST: K.J. TONGE
DATE: 20. 7. 88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER J. WATSON PAGE:
MACHINE: INVESTIGATOR
WATER TABLE: Not reached
BASE OF OXIDATION: Not reached

INTERVAL (m)	GEOLOGICAL DESCRIPTION HOCK TYPE % SULPHIDES								SAMPLE	ASSAY RESULTS							
		SLST	1	OTHER	PY				NUMBER	Αu	Au(R)	Cu	Zn	As	Ag	P	
0-1	,95	4	1														
1 - 2)																
2-3	50	50											<u> </u>			T	
3-4	100							<u> </u>									
4 - 5	100																
5-6	100	,															
6 - 7	99	J	< 1														
7-8	100	4	<1														
8 - 9	99		.}														
9 - 10	98		2														
10-11	10 0																
11 - 12	99		_														
12 - 13	99		1														
13-14	100		4														
14-15	100	,	<<														
15-16	95	5	<1														
16-17	99		-														
17-18	98		2					·	Q96891	×		45	50	100	×	10	
18-19	98		S					FEØY	892	0.019			55		4	53	
19-20	90		10							0.01				100	*	10	
20-21	10	65	25				-		894	×			105	×	×	5	
21-224	100		ex.1				·		895	×			160		4	30	
22-23	100																
23-24	100		4														
24-25	100																
25-26	100								896	ン		20	45	100	¥	7	
26-27	50	్రవ	45	14.3	ુ: ઉત્સન્ધિ	e jednika	gazeni).	n - 1	897	4		25	30	*	4	5	
27- 28	8	90	2				`		898	ャ		25	45	+	*	10	
28-29	100		<1						899	×		15	30	4	4	15	
29-30	50	50															

PROJECT: WANDIE PROSPECT: ASTON HILL GEOLOGIST: R. TONGE

DATE: 20.7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER J. WATSON PAGE:
MACHINE: INVESTIGATOR
WATER TABLE: Not reached
BASE OF OXIDATION: Not reached

AZIMUTH: 043 bs0 HOLE NUMBER AH 32 TOTAL DEPTH: 30m INCLINATION: GEOLOGICAL DESCRIPTION SAMPLE INTERVAL ASSAY RESULTS SULPHIDES % (m) OTHER NUMBER GWKE SLST OTHER ASPY GAL Au(R) Cu Ζn Αs Αg Рδ ا00ار 0 - 1 1 - 2 30 2 - 3 70 55 451 3-4 R96900 4 - 5 99 5 20 15 ¥ 90 901 10 25 5 - 6 × 25 15 ᢣ 4 6 - 7 60 40 902 25 25 \prec 7 15 ィ 95 7-8 5 8 - 9 </ 100 9 - 10 100 98 10-11 </ 100 </ 11 - 1295 12 - 13 5 13-14 100 99 14-15 1 15-16 25 75 99 16-17 1 98 17 - 182 18-19 100 19-20 100 20-21 100 21-224 100 22-23 100 23-24 100 24-25 100 25-26 100 <</ 26-27 100 4 27-28 \propto / 100 28-29 100 29-30 100 COMMENTS:___

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: K. TONGE
DATE: 20.7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J.WATSON PAGE:
MACHINE: INVESTIGATOR
WATER TABLE: NOT REACHED
BASE OF OXIDATION: NOT REACHED

71022 1101	1	11755							NATION: 640			TOTAL DEPTH: 30m.					
INTERVAL (m)		оск	GEOL						SAMPLE	ASSAY RESULTS							
	GWKE	SLST	QTZ	OTHER	PY	ASPY	GAL	OTHER	NUMBER	Au	Au (R)	Cu	Zn	As	Ag	Pb	
0-1	2,90		10														
1 - 2																	
2-3	99		,														
3 - 4	100							!					† 				
4 - 5	100																
5 - 6	100																
6 - 7	100		ï														
7-8	100		1 781														
8 - 9	90	10	د/														
9 - 10	100																
10 - 11	100				,												
11 - 12	95	5															
12 -13	100																
13-14		100		7, °													
14-15	80	20					,										
15-16		100															
16-17	100																
17-18	55	45															
18-19	}	60															
19-20	95	5															
20-21		100	<< <i>]</i>														
21-224	100	•			·					-							
22-23	100									•••							
23-24	1	100					,										
24-25	100											٠					
25-26	100																
26-27	95	5															
27- 28	100											•••					
28-29	80	20															
29-30	100		< <i>/</i>														
COMMEN	гs:)						. ,			

PROJECT: WAN DIE
PROSPECT: ASTON HILL
GEOLOGIST: R. TONGE
DATE: 20.7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE:
MACHINE: INVESTIGATOR
WATER TABLE: NOT REACHED
BASE OF OXIDATION: NOT REACHED

HOLE NUI	·		<u>` </u>			000:			NATION:	,					30m	' .
NTERVAL (m)		юск		OGICA	L DE	SCRIF	IDES	%	SAMPLE		ASS	AY RE	SULT	s		
,	GWKE	SLST	QTZ	CLAY	PY	ASPY	ማለ ኒ.	OTHER	NUMBER	Au	Au(R)	Cu	Zn	As	Ag	Р
0 - 1	B100							1.								
1 - 2	D							1								
2 - 3	98		2				 									
3-4	95	5	<1													
4 - 5	100		<1													
5-6	100		< </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>													
6 - 7	99		1													
7-8	100															
8-9	99		1													
9 - 10	100															
10-11	100															
11 - 12	100															
12 - 13	100															
13-14	20			80				1								
14-15	100														, ,	
15-16	100		</td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>													
16-17	99		/													
17-18	100		~ /													
18-19	100		</td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>													
19-20	100															
20-21	100		-/													
21-22.	98		2.													
22-23	100															
23-24	100								,							
24-25	100				•,											
25-26	100		<1													
26-27	70		</td <td>30</td> <td></td>	30												
27- 28	100		</td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>													
28-29	100															
29-30	100															
COMMEN	TS:															

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: R. TONGE/M. WALTON

DATE: 20.7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE:
MACHINE: IN UESTICATOR
WATER TABLE: Not Rached
BASE OF OXIDATION: Not reached

HOLE NU	1			OGICA		SCRIE			NATION: ()	·					30 n	-
NTERVAL (m)	F	юск	TYPE %				IDES '	/•	SAMPLE		ASS	AY RE	SULT	s 		
	GWKE	SLST	QTZ	OTHER	PY	ASPY	GAL	FEOX.	NUMBER	Au	Aυ(R)	Cu	Zn	As	Ag	Pb
0 - 1	715	•	85					<1	996903	0.0tb		45	20	600	+	13
1-2)														:	
2-3	20		80						904	2.485	0.491	75	45	1200	4	28
3-4	20	40	40							0.157		4	35	900	0.5	13
4-5	97		3						906	0.027		15	25	400	*	4.
5-6	95	5														
6 - 7	99		1					trace			·					
7-8	97		3													
8 - 9	99		1						907	<i>≻</i>		15	30	200	+	20
9 - 10	65		35					1	908	بخ		15	45	200	*	4
10-11	25		75					trace	909	0.011		50	85	300	ャ	16
11 - 12	35		65					2	910	0.202	0.230	80	125	1000	0.5	15
12-13	40		60					trace	911	0.012		20	90	460	×	8:
13-14	50		20					trace	912	0.040		40	75	800	×	13
14-15	15		85					trace	913	0.032		35	b 5	50O	7	רו
15-16	1		99						914	0.061		75	70	500	4	15
16-17	30	:	70					trace	915	0.047	0.046	50	20	500	Ó,5	14
17-18	30		70						916	0.066		60	75	400	ン	8
18-19	30	60	10						917	8900		70	45	200	0.5	5
19-20	95	5	c1						918	0013		25	25	200	٦٢	10
20-21	85		15						919	po.09		30	20	100	<i>ب</i> د	5
21-22+	199	•	<i>\</i>						920	×		20	20	200	ャ	5
22-23	65	15	</td <td>Clay 20</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ļ</td>	Clay 20					-							ļ
23-24	100															
24-25	100															_
25-26	100									· · · · · · · · · · · · · · · · · · ·			ļ			
26-27	100															
27-28 -	199		<i>- 1</i>													ļ
	199		<1													_
29-30	99		1				,									
COMMEN	rs:									··· 						

PROJECT: WAN DIE
PROSPECT: ASTON HUL
GEOLOGIST: M.D. WALTON
DATE: 21.7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER J. WATSON PAGE:
MACHINE:
WATER TABLE: Not reached
BASE OF OXIDATION: Not reached

			GEOL	OGICA	1 DE	SCRIP	PTION		1	1						
NTERVAL (m)		ROCK	TYPE %				IDES *	/•	SAMPLE	<u> </u>	ASS	AY RE	SULT	5 1	1	
····	GWKE	SLST	отг	OTHER	PΥ	ASPY	_ዓ ለ	FEOX	NUMBER	Au	Au(R)	Cu	Zn	As	Ag	Pt
0 - 1	7	60	40						096921	0.010		20	50	200	*	*
1 - 2	<u> </u>															
2 - 3	20	70	10						922	6011		25	60	500	*	5
3 - 4	59	40	1						923	×		25	65	\times	<u>بر</u>	5
4 - 5	40		60						924	×		15	45	200	*	15
5-6	5	10	85						925	0.015		35	55	400	7	80
6 - 7	5	5	90						926	0.02)		20	65	200	*	10
7-8	15	35	50						927	0.011		20	40	200	*	2.9
8 - 9	5	\$	85	cay cay					928	0.000		20	30	100	ャ	2
9 - 10	15		85	12				trace	929	0.05	7	35	35	500	×	20
10-11	8		90	clay 2					930	0.026		25	25	200	×	15
11 - 12	40		60						931	Octy		60	50	400	×	15:
12-13	5		95					trace	932	0-034		40	75	30O	×	47
13-14	10		90					trace	000	0.331	0.390	35	95	800	+	60
14-15	15		85						934	0106		35	75	800	4	14.
15-16	60		40					trace	 	0.037		25	35	300	ہد	90
16-17	2		98					trace	T	0.014		25	25	300	\succ	53
17-18	3		97					1	937	0010		20	15	100	×	20
18-19	20		80						938	0.017		25	25	200	\	15
19-20	30		70						939	0.050		35	35	400	<u>بر</u>	45
20-21	45		55						940	0-013		30	20	300	ャ	5
21-221	95		5						941	*		25	20	*	×	10
22-23	95			limoni 3	rē -				942	ャ		35	30	*	4	20
23-24	98			2					943	*		40	30	4	¥	13
24 ₋ 25	99		1						944	ン	4	35	-	100	ャ	5
25-26	100															
26-27	99			lmonit 	ĕ											
27- 28	97			3												
28-29	100															
29-30	199			<1			,	,								
COMMEN																

PROJECT: WAN DIE PROSPECT: ASTON HILL GEOLOGIST: M.D. WALTON DATE: 21.7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSO W PAGE: 1) 2
MACHINE:
WATER TABLE: NOT REACHED
BASE OF OXIDATION: NOT REACHED

			GEOL	OGICA	L DE	SCRIP	TION			ł			AL DE			
NTERVAL (m)		T	TYPE */				IIDĖS .	1	SAMPLE	ļ	ASSA	AY RE	SULT	S 	T	· · · · · ·
	GWKE	SLST	OTZ	OTHER	PY	ASPY	G∧∟	FE.DX		Au	Au (R)	Cu	Zn	As	Ag	Pt
0-1	190		10	ļ					096945	*		15	30	4	7	n
1 - 2	<u> </u>															
2 - 3	100								946	*		25	30	*	×	Sc
3 - 4	90		10						947	<u>ــــــــــــــــــــــــــــــــــــ</u>		15	25	200	4	Ję
4 - 5	100								948	4		20	3.5	*	*	5
5-6	100								949	X		SO	40	200	4	S
6 - 7	80		20				٠		951	~		15	30	*	*	د
7-8	100								952	*		15	35	*	*	5
8-9	10	30	60						953	~		35	65	+	+	15
9 - 10	10	30	60						954	*		35	65	*	+	3
10-11	30	10	60						955	×		15	50	*	٦٠	5
11 - 12	60		40						956	*	+	15	25	100	ょ	3
12 - 13	5	15	80					trace	957	\boldsymbol{x}		30	115	300	4	45
13-14	5	5	90					5	958	4		45	140	400	ャ	27
14-15	5	2	93	·				2	959	~		30	120	<i>3</i> 00	+	2
15-16	10	30	60				•	1	-, -	0.011		25	160	300	*	29
16-17	15	35	50					trace	961	0.010		35	15 5	400	+	9:
17-18		15	85					2	962	×		40	95	400	+	6
18-19	,	20	80					2	963	0.00			100	400	0.5	60
19-20	5	10	85			`			··· / ··· ·	0.000	,	25	105	300	4	65
20-21	25		75	·	,				7 ,	0.009	,	25	100	300	ャ	21
21-22+	25	5	70						966	ン		15	90	300	*	30
22-23	15		85					trace	7	<i>0.03</i> 2		20	65	200	+	85
23-24	10	5	85							0.009		35	70	200	ン	15
24-25	10	7	30							0.009		35	60	200	+	2
25-26	25	30	45					·	970	ャ		50	55	100	×	7
26-27	65		2						971	٦٠		25	35	200	4	S
27-28	90		10				}		972	X		30	45	200	٦٢	7
28-29	55	30	15					trace	973	4		40	55	3 <i>0</i> 0	+	7
29-30	40		60						974	4		40	60	200	ント	1

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: M.D. WALTON
DATE: 21.7.88

HOLE NUMBER AH37 AZIMU
GEOLOGIC

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER J. WATSON PAGE 2/2
MACHINE:
WATER TABLE: Not reached
BASE OF OXIDATION: Not reached

	' '	- 00			丄			SSION					01 0	AIDAIR	. Nc) KC	- Cons
HOLE NUM	MBER ;	443-	<u>' </u>	IMUTI		240		INC'LI	NATIC	N:	600		тоти	AL DE	ртн : 3	39n	า
INTERVAL		тоск	GEOL	OGICA	L DE	SCRI	TION		SAN	1PLE		ASS	AY RE	SULT	S	*****	
(m)	GWKE	1		OTHER	PΥ	ASPY			NUM	IBER	Au	Au(R)	Cu	Zn	As	Ag	Pb
30-1	50	10	40						Ogbo	}⊃s	+		40	65	300	ہد	15
31-2		70	30						9	76	×		35	50	200	ب د	15
32 - 33	88	2	10						a	רו	0.021		35	70	300	> -	حد
33 - 4	100								9	18	*		25	30	200	> -	10
34-5	100								1 1.	19_	7	7	25	30	100	4	15
35-6	क्ष		හ						91	80	x		30	45	SOO	~	25
36 - 7	100								93	<u>?) </u>	~		25	80	100	٠,	IC
37-8	lW								<u> </u>								
38 - 9	100								ļ								
9 - 10									<u> </u>								
10-11									<u> </u>								
11 - 12																	
12-13																	
13-14																	
14-15																	
15-16											<u> </u>						
16-17																	
17-18																	
18-19	,																
19-20																	
20-21																	
21-221																	
22-23					-			!									
23-24																	
24-25																	
25-26											:						
26-27																	
27- 28											\perp						
28-29										.,							
29-30									<u> </u>		1						
COMMENT	'S:											- -					

PROJECT: WANDIE PROSPECT: ASTON HILL

GEOLOGIST: M.J.D. DATE: 21. 7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE:
MACHINE:
WATER TABLE: NOT reached
BASE OF OXIDATION: Not reached

NTERVAL				OGICA	L DE				SAMPLE			AY DE	SULT			
(m)	GWKE		TYPE */	CLAY	PY	SULPH	GAL.		NUMBER	Au	Au (R)		Zn	As	Ag	РЬ
0-1		70	30					2			,,,,,,			7.3	7.9	-
1-2		/-						 -								
2-3	10	88	2					 			1					-
3 - 4		60				 -	ļ									
4 - 5	40	-						<u> </u>			1					
5-6	93	5	2													<u> </u>
6 - 7	80															
7-8	90	10														
8 - 9	94	5)					hace								
9 - 10	95		راء					trace								
10-11	95															
11 - 12	100															
12-13	90			20												
13-14	100															
14-15	100															
15-16	99		1		- "		·				,					
16-17	100															
17-18	100															
18-19	100						•									
19-20	100															
20-21	88		2	10	-				Q96982	<u>۲</u>		25	25	×	4	7
21-22.		20	20					2	983	ン		25	25	100	×	5
22-23	100		trace						984	ہد		45	70	×	ン	5
23-24	85		15						985	×		45	50	100	4	10
24-25	bo	30	10						986	٢-		35	55	100	>	5
25-26	25		5						987	4		10	55	100	ょ	16
26-27	10	85	5						988	<u>۲</u>		20	55	+	×	3.
27-28	50	49	,							<u> </u>						_
28-29																
29-30	40	60					,									
COMMEN	rs:															

PROJECT: WAN DIE PROSPECT: ASTON HILL

GEOLOGIST: M.J.D.
DATE: 21.7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE:
MACHINE: IN VESTIGATOR
WATER TABLE: Not reached
BASE OF OXIDATION: Not reached

INTERVAL	ļ,	ROCK	GEOL	OGICA	L DE		TION		SAMPLE		ASS	Y RE	SULTS	3		
(m)	GWKE			CLAY	PY	ASPY			NUMBER	Au	Au (R)	Cu	Zπ	As	Ag	Pb
0 - 1	40	10	50						Q96989	4		15	10	*	٠	4.
I - 2	}								, , , , , ,							
2 - 3	<i>y</i>															
3 - 4	98		2						990	×		10	10	ャ	4	15
4-5	85		15						991	×		10	55	+	0.5	*
5 - 6	98		2					FEOY SF	992	×		10	1	100	0.5	7
6 - 7	100						• • • • • • • • • • • • • • • • • • • •									
7-8	100															
8 - 9	95			5												
9 - 10	60		40						993	X		10	50	100	4	4
10-11	95			5												
11 - 12	95			5												
12-13	99		1													
13-14	98		2									·				
14-15	80			20												
15-16	83		5	15												
16-17	90	0														
17-18	95	5														
18-19	80	20														
19-20	70															
20-21	80	20														
21-22.	95															
22-23	1	15					,									
23-24	1	10														
24-25	90	10														
25-26	100															
26-27	95	5														
27-28	100	· · · · · · · · · · · · · · · · · · ·														
28-29	90	5		5			!									
29-30	95	5					,									
COMMEN	••								·			-,				

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: M. D. WALTON

DATE: 21.7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE:
MACHINE:
WATER TABLE: Not reached
BASE OF OXIDATION: Not reached

HOLE NUMBER AH40 AZIMUTH: 040 60° INCLINATION: TOTAL DEPTH: 30m. GEOLOGICAL DESCRIPTION SAMPLE ASSAY RESULTS INTERVAL ROCK TYPE % SULPHIDES % NUMBER GWKE SLST OTZ CLAY ASPY BAL Au (R) Cυ Zπ Рb Αg 0 - 1 7100 1 - 2 2 - 3 99 15 10 100 × 7 3-4 60 0.015 40 2000.5 20 15 5 4 - 5 90 10 0.01) 20 10 400 ¥ 98 2 5 - 6 15 15 300 0.5 ۔پد \leftarrow 93 6 - 7 5 2 300 10 20 15 4 ン 97 3 7-8 D.Ord 30 30 200 0.5 × 65 35 200 30 40 × 10 98 9 - 10 2 10-11 100 100 11 - 1212 - 13 100 0.009 55 70 200 13-14 95 5 002 × λ 20 45 40 200 14-15 55 بذ 40 45 003 \sim 15-16 70 30 004 30 200 \sim 0.014 30 Ю 95 5 16-17 25 255 **Z** x ¥ 005 7 17-18 85 15 18-19 95 5 19~20 85 15 20-21 100 21-224 5 69 25 006 25 55 40 200 0.5 ~ 22-23 10 65 70 40 200 10 trace 007 بر 15 15 0.018 23-24 40 300 5 80 ャ 20 bo 800 0.000 24-25 b98) < 1 300 0.5 5 009 40 ャ 45 25-26 82 15 100 05 20 3 2010 30 40 010 26-27 15 100 ナ 23 70 2 011 0.000 40 10 27-28 3 28-29 15 29-30-5 K1 COMMENTS:

PROJECT: WAND IE
PROSPECT: ASTON HILL
GEOLOGIST: M.D. WALTON
DATE: 22-7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER J. WATSON PAGE: 1/2
MACHINE:
WATER TABLE: NOT REACHED
BASE OF OXIDATION: NOT REACHED

										1 5	<u> </u>	· · · · · · · · · · · · · · · · · · ·				
HOLE NUM	MBER ;	9114 1		IMUTH		40		INCLI	NATION:	bo°		TOTA	AL DE	PTH: (†2n	า.
INTERVAL	<u> </u>	тоск	GEOL	OGICAI	L DE	SCRIF	TION		SAMPLE		ASS	AY RE	SULT	s		
(m)	GWKE	SLST	QTZ	clay	PY	ASPY	4VF	FECK	NUMBER	Au	Au(R)	Cu	Zn	As	Ag	РЬ
0 - 1	<u>}</u> 25	30	45					3	092012	7		45	35	400	4	15
1 - 2)								•							
2 - 3	75	15	10						013	×		30	20	100	*	5
3 - 4	60		40					trace		ــــــــــــــــــــــــــــــــــــــ		20	20	200	4	15
4 - 5	15	80	5					hace	015	×		35	35	300	*	5
5-6	bo	20	SO						016	0.014		40	35	400	*	35
6 - 7	30	53	15	2					017	0.008		30	35	300	*	25
7-8	50		50					~1	018	0027		40	70	5000	4	220
8 - 9	15		85					41	019	0.016		30	70	300	4	130
9 - 10	10		90					trace	020	0.015	•	20	50	200	ャ	15
10-11	90		10				ļ.,		021	ン		3 5	75	400	×	S
11 - 12	75	5	20					2	022	7		30	40	200	*	5
12 - 13	15	10	75					trace	023	×		25	30	100	¥	5
13-14	98		2						024	ン		30	35	ャ	¥	10
14-15	30		70						025	٧.		25	30	100	×	15
15-16	99		1						026	*		25	30	*	ナ	-کر-
16-17	75		25					trace	027	75		30	35	100	4	5
17-18	40		30	30					028	*		35	35	\times	ャ	10
18-19	80	20							029	×		40	45	100	×	10
19-20	20	10	20						030	×		40	కా	100	4	16
20-21	80	10	10					trace	031	بد		50	53	100	ہد	10
21-22+	20	5	75					ŀ	032	4		40	50	200	يد	10
22-23	10	20	70					2	033	×		<u>55</u>	80	500	4	30
23-24	10	30	60						034	0.011	0.011	30	55	200	+	25
24-25	90		10						035	ャ		20		100		+
25-26	90		10					trace	036	ょ		40		200		35
26-27	60		40					+	<u>037</u>	7				200		25
27-28	25		7 <i>5</i>					trace	038	0.009				300		20
28-29	3		97					1	039	7			ļ	<i>30</i> 0		1100
29-30	25		75				. ,	trace	040	ン		25	70	300	+	30
COMMENT	rs:															
												The trade of the				

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: M.D.WALTON

DATE: 22-7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE 2/2
MACHINE:
WATER TABLE: Not reached
BASE OF OXIDATION: Not reached

								331014		<u>.</u>	UMSE	01- 0.	^IDATIC	JOI: 106)) (4	
HOLE NUM	MBER /	} 44				40		INCLI	NATION: 6	e°		TOTA	AL DE	PTH: (42 r	n
INTERVAL (m)		ROCK	GEOL	OGICA	L DE	SULPI	TION	/•	SAMPLE		ASS	AY RE	SULT	S		
	GWKE	SLST	otz	OTHER		ASPY	GAL		NUMBER	Au	Au (R)	Cu	Zn	As	Ag	Pb
30-1	40		60					trace	Q92041	X		30	85	200	*	80
31 - 2	3		97						Ouz			25	so	00	*	10
32 - 33	5		95					<1	043	*		20	35	100	بد	+
33-4	95	_4	١						044	3		20	40	100	×	5
34 - 5	98	2							045	×		20	45	100	*	5
3 5 - 6	10	10	80						046	×		45	95	160	ہد	210
36 - 7	, <u></u>	40	bo					hace	I -	o.ozk		25	80	160	0.5	95
37-8	30	40	30					<u> </u>	048	0.008		35	110	100	0.5	35
38 - 9	25	15	60					Hace	049	×		45	105	200	0.5	175
	799	-	< 1				ļ 	ļ	8 51	+		15	70	+	0.5	25
40-41	60	40							052	ャ		30	135	×	ャ	5
41 - 42	80	20							053	*		50	85	ャ	ャ	7
12-13																
13-14					,		,									
14-15																
15-16																
16-17																
17-18	·		1					:						<u>.</u>		
18-19										,						
19-20																
20-21																
21-22+																
22-23								<u> </u>								
23-24																
24-25																
25-26																
26-27																
27-28																
28-29																
29-30							,									
COMMENT	`S;'					6 - 1 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4										
											· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			.,
				· · · · · · · · · · · · · · · · · · ·								,				

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: M.D.WALTON

DATE: 22.7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J.WATSON PAGE:
MACHINE:
WATER TABLE: NOT reached
BASE OF OXIDATION: NOT reached

NTERVAL				OGICA	L. DE	SCRIF			SAMPLE		ASS	AY RE	SULT			
(m)	GWKE	T	TYPE %	CLAY.	PY	ASPY	GAL		NUMBER	Au	Au(R)		Zn	As	Ag	Pb
0 - 1	2,70	}	10	20					1-1							
1 - 2																
2 - 3	68	30	2													
3 - 4	75	25														
4 - 5	1	80						 								
5-6	100															
6 - 7	70	30							:							
7-8	70	30														
8-9	70	30														
9-10	1	60														
10-11	20	(0	70					1	992054	٠.		105	70	200	×	70
11 - 12	80	10	10		,				055			45	45	200	¥	15
12-13		85	15				-	2	056	7		55	65	300	ト	15
13-14		80	20					Hace	057	0.024		55	45	200	7	40
14-15	35	10	22						028	0.009	0.013	50	80	200	×	85
15-16	15	30	25						059	0-013		45	55	300	~	15
16-17	10		90						obo	0.011		35	90	200	ャ	60
17-18	50		50						061	0.011		40	90	×	ኍ	100
18-19	85		/5						06z	0.013		30	40	¥	+	16
19-20	15		85					trace		0.014	1 1		130	100	+	23
20-21	40	40	20						064	0.028	•	60	75	200	سد	28
21-221	70		30						065	+		55	135	4	\	15
22-23	95		S							0012		45	125	4	4	16
23-24	60		40						067	0.012		35	120	+	+	20
24-25	50		ಽ೦						068	0.01	}	25	85	×	*	15
25-26	20	60	20						069	0.040	2	10	460	*	ャ	80
26-27	25	65	10						070	0.019		10	550	100	ナ	/2
27-28	15	80	5						071	002		20	160	بد	4	2
28-29	100								<i>0</i> 72	X		15	170	*	*	16
29-30	30	70	<1				,		073	ャ		15	/20	ャ	*	15
COMMEN	TS:						A 14/04 THE O								•	

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: M.D. WALTON

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE: 1/2
MACHINE:
WATER TABLE:
BASE OF OXIDATION: 1/15

0-1	ROCK KE SLST	GEOL	OGICA	L DE	SCRIF	TION		NATION: -(90°		тотд	AL DEI	PTH: <u></u>		ກ.
(m) GWM 0-1 1-2 2-3 3-4 4-5 9-6 6-7 7-8 8-9 9-10 10-11 9-10 11-12 100 12-13 100	KE SLS1 78 5	TYPE 7	/ <u>•</u>		SULPH	IDES %		SAMPLE	1						
0-1	KE SLS1 78 5	QTZ		PY	T		/ •			ASSA	41 KE	SULT	5		
1-2 2-3 3-4 4-5 9-6 6-7 7-8 8-9 9-10 10-11 11-12 100 12-13 100	5	2		 	1431.1	GAL	T	NUMBER	Au	Au(R)	Cu	Zn	As	Ag	РЬ
1-2 2-3 3-4 4-5 9-6 6-7 7-8 8-9 9-10 10-11 11-12 100 12-13 100	5							992074	0-611			├		×	10
3-4 9 4-5 90 5-6 80 6-7 60 7-8 8-9 9-10 10-11 9-10 10-11)							-							
3-4 9 4-5 90 5-6 80 6-7 60 7-8 8-9 9-10 10-11 9-10 10-11)	5						075	D.018		25	30	200	سد	25
4-5 90 5-6 80 6-7 60 7-8 8-9 9-10 10-11 94 11-12 100 12-13 100		3						,	0.019		35	· · · · · ·	400		25
5-6 80 6-7 60 7-8 8-9 9-10 10-11 9-1 11-12 100 12-13 100		10					<u> </u>	077	0.013		30		200		35
6-7 60 7-8 8-9 9-10 10-11 9-1 11-12 100 12-13 100		1	20						0.014		<u>30</u> 30	†··	200	+	80 80
7-8 8-9 9-10 10-11 9-11 11-12 100 12-13 100		30					trace	†	0.010		40		200		70
9-10 10-11 9= 11-12 100 12-13 100	68		30			,		 	0.017		40	t .	500	٠.	30
10-11 9 = 100 11-12 100 12-13 100	85		15					Cau			, -				30
11-12 100	85		15												
11-12 100			5												
	0														
13-14 60	2	<u> </u>	40												
14-15 60															
15-16 75		† · · · · · · · · · · · · · · · · · · ·													
16-17 36		1					trace								
17-18 /00	-														
18-19 30											,				
19-20 10															
20-21 /00	0														
21-22, 100	_														
22-23 100	2														
23-24 /00	2														
24-25 85	5 10	5					tace	081	×		35	30	180	+	5
25-26	20							082	×		25	30	100	+	×
26-27 /00	1								0.022		20	30	200	×	ャ
27-28	40	60					hace		0.014		55	50		*	75
28-29	7 -	40					trace		0.051		35	55	100	ャ	10
29-30 60	T _	1		\neg				086	×		20	85	100	7	~
COMMENTS:_	2 30	1/0		1		<u>.</u>		080				<u> </u>		^	

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: M.D. WALTON
DATE: 22.7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE: 2/2
MACHINE:
WATER TABLE:
BASE OF OXIDATION: 45M

INTERVAL		2065		OGICA	L DE	SCRIP		,	SAMPLE		ASSA	Y RE	SULTS	 S		
(m)	GWKE	1	TYPE *	OTHER	PY	ASPY	GAL		NUMBER	Au	Au (R)	Cu	Zn	As	Ag	Pb
30-1	75	5	20						Q92087	*		20	30	100	*	7
31 - 2	85	10	5						088	×		20	35	ナ	ン	×
32 - 33	65	35							089	7		30	570	*	*	7
33 - 4	90	10							090	0.05	×	25	65	*	*	>-
34 - 5	100								091	7		30	105	4	+	7
3 5 - 6	45	40	15						092	0.010		35	85	160	بد	6
36 - 7	25	45	30					tiace	093	0.010		35	85	100	4	10
37-8	15	25	<i>5</i> 5					2	094	0-012		30	100	200	*	6
38 - 9	55		45						095	0.010		10	70	100	*	10
3 9-40	45	10	45						096	×		10	55	100	ャ	15
40-41	80		20					2	097	0.045	·	10	45	200	*	5
41 -42	90		10						098	0008		10	50	400	+	15
42 -43	10		90					1	099	0.010		20	60	100	×	160
43-44	10	30	60					2	101	0.017		15	75	200	ン	2
44-45	10		90					tace	102	X		20	120	160	ょ	5:
45-46	100								103	×		10	150	100	4	10
46 -47	60	15	25						104	+		10	80	200	+	10
47-48	95	5							105	×		10	65	×	×	IC
48,-49	100			,					106	*		10	50		4	10
49-20	94	3	3						107	0.008	,	10	45	ナ	ャ	15
ହ୍ର-ଛା		15	70						108	*			130		×	9
₫ 1- ₫ 2•		799	< /						109	<u>بر</u>		25	_	100	ン	16
5 2- 5 3	1	>79	< /						110	ン		20	65	100	بد	2.0
5 3- 5 4	100															
24-25																
25-26			<u> </u>													
26-27																
27-28 																-
29-30																
COMMEN	<u> </u>		L												-	

PROJECT: WAN DIE
PROSPECT: ASTON HILL
GEOLOGIST: M.D. WALTON

DATE: 23.7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE:
MACHINE:
WATER TABLE: Not reached
BASE OF OXIDATION: Not reached

	T		GEOL	OGICA	L DE	SCRIP	TION			<u> </u>				·····		
NTERVAL (m)			TYPE .	/ <u>•</u>		SULPH	IIDES °	/•	SAMPLE		ASS	AY RE	SULT	s T	ī	
	GWKE	SLST		CLAY	PY	ASPY	GAL,	FEOX	NUMBER	Au	Au (R)	Cu	Zn	As	Ag	Pb
0 - 1	6 PO		15	25									ļ [-
1 - 2	<u> </u>							<u> </u>	·							
2 - 3	50			50												
3-4	100															
4 - 5	794	5	<1						192111	ょ	ャ	20	105	100	-بد	5
5 - 6	85		15					trane	112	0.009		50	65	200	4	5
6 - 7	95		5					trace	113	*		10	40	100	بد	10
7-8	100															_
8 - 9	99			1												
9 - 10	100															<u> </u>
10-11	100															
11 - 12	100								L							
12 - 13	80		20						1/4	*		25	120	100	ヤ	5
13-14	65	15	20				·		115	ェ		55	60	२००	*	5
14-15	55	40	5					•	116	*		55	45	100	+	10
15-16	30	30	10	30					117	0025		30	25	200	*	5
16-17	95		5					hace	118	0.008		40	25	200	<u>۲-</u>	*
17-18	85		15					trace	119	ょ		40	25	200	*	4
18-19	25		75					2	120	*		80	40	300	ャ	57
19-20	43	30	25	1				1	121	*		40	35	200	4	15
20-21	10	30	60					2	122	4		55	40	२००	*	30
21-22•	95		5						123	0.028		8	25	100	¥	5
22-23	80		20					1	124	X		20	20	100	¥	5
23-24	80		20	<1				2	125	سد		20	15	100	4	7
24-25	90		10	</td <td></td> <td></td> <td></td> <td></td> <td>126</td> <td>بد</td> <td></td> <td>20</td> <td>20</td> <td>200</td> <td>7</td> <td>15</td>					126	بد		20	20	200	7	15
25-26	98		2	<u>~</u> /					127	0.00g		15	15	100	¥	15
26-27	70	30														<u></u>
27-28	100															<u> </u>
28-29	100												. <u>.</u>			
29-30	100															
COMMEN	rs:															

PROJECT: WAN DIE
PROSPECT: ASTON HILL
GEOLOGIST: M.D. WALTON
DATE: 23.7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

MACHINE: WATSON PAGE: 1/2
MACHINE:
WATER TABLE: Not reached
BASE OF OXIDATION: Not reached

HOLE NUMBER AH45 AZIMUTH: 040 INCLINATION: -60° TOTAL DEPTH: 36m GEOLOGICAL DESCRIPTION SAMPLE INTERVAL ASSAY RESULTS ROCK TYPE % SULPHIDES % (m) PEOX NUMBER GWKE SLST OTZ CLAY ASPY GAL PY Αu Au (R) Cu РЬ Αs Αg 35 0 - 1 ,50 15 100|82128 25 130 × 4 35 1 - 2 2 - 3 40 50 0.009 0.015 15 10 129 120 ¥ 25 3 - 4 100 4 - 5 100 5 - 6 100 6 - 7 100 100 7-8 8 - 9 60 40 tace 130 0.008 80 100 30 20 7 30 9 - 10 face 131 ~ 70 \star 70 20 ہد 25 10-11 5 132 10 85 200 30 20 40 -ہد 100 11 - 12100 12 - 1313-14 trace 133 65 45 20 45 200 ¥ 10 7 134 25 14-15 75 سبد 45 100 بذ 30 15 15-16 5 135 45 50 30 200 15 ょ 15 16-17 70|30 17 - 1870 30 18-19 40 40/20 136 85 100 4 20 ¥ 15 19-20 94 5 137 120 100 ~ 30 X 50 20-21 99 138 105 <u>60</u> ہد 100 21-224 100 22-23 100 23-24 100 24-25 100 25-26 100 26-27 98 30 80 100 4 25 2 139 60 27-28 90 140 4 4 15 ۍد 20 10 28-29 80 0.016 20 trace 141 **3**0 95 70 200 200 29-30 45 <u>65</u> 75 142 COMMENTS:

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: M.D. WALTON

DATE: 23.7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER J. Watson PAGE: 1/2
MACHINE:
WATER TABLE: Not reached
BASE OF OXIDATION: Not reached

0-1 1-2 2-3 3-4	JU)	SLST	_	CLAY				/•	SAMPLE	1						
2-3 ()		6-		PY	ASPY	GAL		NUMBER	Au	Au (R)	Cu	Zn	As	Ag	Pb
2-3)		ยร	25					P92146	0.102	•	20	40	λ	ہد	25
3-4																
	10		90						147	0-011		25	85	100	4	20
4-5	15		85				·	hace		0-0z3			125		>	28
	25		75						149	×		25	125	*	\star	20
5-6)	5		85						15)	7	⋆	25	155	*	+	20
6-7 2	20		80						152	7		20	135	100	4	25
7-8	70		30					1	153	810.0		25	180	100	4	35
8-9	95		5					3	154	0.008		20	165	100	4	30
9-10	100															<u> </u>
10-11 /	100															
11 - 12 /	100			-												<u> </u>
12-13	00															
13-14 /	00															
14-15 /	100			,											;	
15-16	00															ļ
16-17	00															
17-18	100		٠,													
	100															
	100			,												
	100															
21-22.	100															
	90		10					1								
	10		10					2								
24.00	100															
25-26	40	60														
	100															
27-28	99		-1													
	100															_
29-30	70	25	5													

PROJECT: WAN DIE PROSPECT: ASTON HILL GEOLOGIST: M.D. WALTON DATE: 23.7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. Watson PAGE: 2/2
MACHINE:
WATER TABLE: Not reached
BASE OF OXIDATION: Not reached

HOLE NUM			GEOL	OGICA		SCRIP			SAMPLE		ASS/	AY RE	SULT	s		
(m)	GWKE		TYPE %	OTHER	PY	ASPY	GAL		NUMBER	Au	Au (R)		Žn	As	Ag	Pt
30 - 1	20		860					FEOX			7.0			200	\vdash	+
31 - 2	70	15					. ,.		144	*				100		40
3 2-3 3									145	×			1	200		60
<u>3</u> 3 - 4	100								· / TJ				1 -			
34-5	100															
3 5 - 6	100															
6 - 7							·									
7-8																_
8-9																
9 - 10						:										
10-11	<u> </u>															
11 - 12																
12-13																
13-14																L
14-15																
15-16																
16-17									-							Ĺ
17-18										,						
18-19												*****				
19-20								<u> </u>								
20-21	<u> </u>															
21-22'																
22-23	·													ļ		_
23-24																
24-25																<u> </u>
25-26																
26-27														<u> </u>		_
27- 28													ļ <u> </u>			_
28-29										_						<u> </u>
29-30													<u> </u>			
COMMEN.	rs:		·													

PROJECT: WAN DIE
PROSPECT: ASTON HILL
GEOLOGIST: M.D. WALTON
DATE: 23.7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. W ATSON PAGE 2/2 MACHINE: WATER TABLE: NOT HEACHED BASE OF OXIDATION: NOT HEACHED

HOLE NUMBER AH46 AZIMUTH: 040 TOTAL DEPTH:33 m. INCLINATION: -60° GEOLOGICAL DESCRIPTION SAMPLE ASSAY RESULTS INTERVAL SULPHIDES % ROCK TYPE % (m) OTHER NUMBER GWKE SLST. QTZ OTHER ASPY Αu Au(R) Cu Zη As Αg Рb FEOX 90 30-1 10 799 < 1 31-2 32-33 100 3 - 4 4 - 5 5 - 6 6 - 7 7-8 8 - 9 9 - 10 10-11 11 - 12 12 -13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23 23-24 24-25 25-26 26-27 27-28 28-29 29-30 COMMENTS: ___

PROJECT: WAN DIE
PROSPECT: ASTON HILL
GEOLOGIST: M. D. WALTON
DATE: 23. 7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE: 1/2
MACHINE:
WATER TABLE: Not reached
BASE OF OXIDATION: Not reached

			GEOL	OGICA	L DF	SCRIF	TION									
NTERVAL (m)			TYPE %	<u>i </u>		SULPH	IDES *	1	SAMPLE NUMBER				SULTS	3		1
	GWKE	SLST	1	OTHER CIA Y	PY	ASPY	GAL.	W		Au	Au(R)		Zn .	As	Ag	Pb
0-1	(10	60	25	CAY		ļ			Q92155	<i>→</i>		45	65	200	ャ	45
1 - 2)											-				
2 - 3	20	65	15						156	0.014		30	70	200	٨	30
3 - 4	15	3	82					3	157	*		20	70	500	X	53
4-5	15		85					2	158	0.008	*	25	75	30 <i>0</i>	ン	4
5-6	20		80					Hace	159	7		35	70	300	ナ	5
6 - 7	20		80						160	~د		30	55	200	ン	20
7-8	40		60					hace	161	0.008	}	30	45	200	۲-	10
8 - 9	15	S	80						162	<i>></i>		30	60	100	+	50
9 - 10	3		9)					1	163	0.07	<u> </u>	25	45	100	*	3€
10-11	5		95					hace	164	7		35	65	200	ャ	20
11 - 12	15		85					1	165	4		80	50	100	×	2:
12 - 13	7	3	90					1	166	~		40	82	100	*	3
13-14	10	20	70					Hace		0.00	7	30	80	100	4	15
14-15	5	5	90					1	7	D.036	,	55	160	3 ∞	بذ	zz
15-16	5		95	WOOD 10%				hace	, , ,	メ		45	150	200	7	29
16-17	60		40						170	<i>ب</i> د	4	30	90	SOS	*	30
17-18	20		80					1	101	4		25	70	SOO	ナ	5
18-19	40		bo					trace	172	7		30	145	4	4	5
19-20	bo	40							/ -							
20-21	60	40								<u> </u>						
21-221	70	30								<u> </u>						
22-23	40	,														
23-24	65															
24-25	1	55														
25-26	 	85														
26-27		 	25					trace	173	7		40	160	200	سد	8
27-28	 	100								<u> </u>						
28-29	85	·				 										
29-30			75					1	174	7		30	50	100	4	1
	1.:	L'	1,,,	1	I	1			. ,,		1	,	_		I	

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: M.D. WALTON

DATE: 237.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSO N PAGE 2) &
MACHINE:
WATER TABLE: Not reached
BASE OF OXIDATION: Not reached

69/107

	1		GEOL	OGICA	L DE	SCRIF	TION	,	SAMPLE					•		
NTERVAL (m)			TYPE */	i		SULPE	IDES	/•	1 '				SULTS			
	GWKE			OTHER	PY	ASPY		· · · · · · · · · · · · · · · · · · ·	NUMBER	Au	Au (R)		Zn	As	Ag	Pt
30 - 1	30		60					trace	992175	7		30	80	200	~	9
31 - 2	86	5	15					hace	176	٦-		25	95	100	+	15
32-33	97		2					trace	רכו	0.009		20	70	100	×	S
33-4	100															
34 - 5	100															
35 - 6	20	80														
6 - 7																
7-8																
8-9																
9 - 10																
10-11																
11 - 12																
12-13																
13-14																
14-15																
15-16																
16-17																
17-18	,															
18-19																
19-20																
20-21					,						·					
21-224																
22-23																
23-24																
24-25																
25-26																
26-27																
27- 28																
28-29																
29-30							1									
COMMEN	rs:															
							-4-9-11									

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: M.D. WALTON
DATE: 23.7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE: 1/2
MACHINE:
WATER TABLE: Not reached
BASE OF OXIDATION: Not reached

TOTAL DEPTH:33m HOLE NUMBER AHLE AZIMUTH: 220 INCLINATION: -60° GEOLOGICAL DESCRIPTION SAMPLE ASSAY RESULTS INTERVAL ROCK TYPE % SULPHIDES % NUMBER GWKE SLST OTZ OTHER FEOY Αu Au (R) Cu Ζn Pb As Αg 495 5 0-1 1 - 2 2 - 3 100 80 3 - 4 20 4 - 5 100 100 6 - 7 100 100 8 - 9 100 9 - 10 100 10-11 100 85 15 11 - 12 2 992178 0.8370.806 70 100 400 5 65 30 12 - 13 150 100 13-14 100 14-15 15-16 100 16~17 100 17-18 100 18-19 100 19-20 100 20-21 100 21-22+ 100 22-23 100 23-24 40 4 60 179 53 200 Ю 0.010 15 24-25 60 60 180 200 40 nace 0.013 ہد 20 199 25-26 </ 26-27 100 27-28 100 28-29 100 29-30 85 15 COMMENTS: __

PROJECT: WAN DIE
PROSPECT: ASTON HILL
GEOLOGIST: M.D. WALTON
DATE: 23.7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE 2/2
MACHINE:
WATER TABLE: NOT reached
BASE OF OXIDATION: NOT reached

HOLE NUM	MBER /	AH4X	3 AZ	IMUT	4: 2	20		INCLI	NATION: -	60.		TOTA	L DE	≥тн:З	3 m),		
INTERVAL			GEOL	OGICA	L DE		TION		SAMPLE		ASS	AY RE	SULT					
(m)	GWKF	1		OTHER	PY	ASPY	GΛL	OTHER	NUMBER	Au	Au (R)	Cu	Zn	As	Ag	Pb		
30-1	100																	
31 - 2	100																	
30-1 31-2 32-33	97		3															
3-4					·						· · · · · · · · · · · · · · · · · · ·							
4 - 5																		
5-6																		
6 - 7																		
7-8																		
8-9																		
9 - 10									,									
10-11																		
11 - 12			,															
12-13																		
13-14																		
14-15															'			
15-16																		
16-17																		
17-18																		
18-19																		
19-20																		
20-21																		
21-224																		
22-23																		
23-24																		
24-25																		
25-26																		
26-27																		
27- 28																		
28-29																		
29-30			l															
COMMENT	3'																	
				 														
												<u></u>						

PROJECT: WAND DE PROSPECT: ASTON HILL GEOLOGIST: 11.15. WALTON DATE: 23.7.88

RGC EXPLORATION
PTY LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSO N PAGE:
MACHINE:
WATER TABLE:
BASE OF OXIDATION:

	T		GEOL	OGICA	L DE	SCRIP	TION		C 4 4 5 : -			<u> </u>				
NTERVAL (m)		ROOK	TYPE %				IIDES .	/•	SAMPLE	ļ	ASS	AY RE	SULT	s 		
	GN.KE	GLST	QTZ	OTHER	PΥ	ASPY	GVF	FEOX	NUMBER	Au	Au(R)	Cu	Zn	As	Ag	Р
0 - 1	<u>}5</u>	35	10						,			.				
I - 2) _															
2 - 3	2.()	80														
3 - 4	20	80														T
4 - 5	100															
5 - 6	40	60														
6 - 7	15	85														
7-8	95	5														T
8 - 9	10	90														
9 - 10	40	60														
10-11	40	60														
11 - 12		70	30					trace	992181	0.030	_	65	175	100	×	S
12-13	7.5		15						182.	4	· .		275		+	1
13-14	65	5	30						183	*			200		4	
14-15	85		15						184	ン		10	155	-	4	2
15-16	80		20						•	0.013		10		100	4-	2
16-17	25		75						186	×			220		7	8
17-18	80		20							0.008			3/5	<u> </u>	4	9
18-19	40		60						188	7			355			16
19-20	20								189	4			530			†
20-21	45									0.013			640			3; 32
21-22•	50		50							ر. بد			350		<u>. </u>	2
22-23	70		٥٠				,		191	`					·	+
23-24	30												-			
24-25	15		-	\dashv												\dagger
25-26	10															
26-27 .	65															T
27- 28	5															\vdash
28-29	40											· · · · · · · · · · · · · · · · · · ·				<u> </u>
29-30	55															-
COMMEN			I	L		1					1		L			<u> </u>

PROJECT: WATHOUS
PROSPECT ASTON HALL
GEOLOGIST: HO. O. WALTON
DATE: 20.77 00

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE: 1/2
MACHINE:
WATER TABLE: NOT REACHED
BASE OF OXIDATION: NOT PERSON

//:	700.1.	GEOL TYPE %	OGICA OTHER	L DE	SULPI	PTION		SAMPLE	600	466			PTH: (36 m	7.
//:	3.5 3.5	OTZ	/ <u>•</u>		SULPI	HIDES "		SAMPLE		ACC	^				
// :	¥.5	į	OTHER	PY	ASPY	FEOX		1 '	1	A33/	AT RE	SULT	S		
		5				1 -07	OTHER	NUMBER	Au	Au(R)	Cu	Zn	As	Ag	P
			1					092192	0.116		95	630	200	4	35
		į											<u> </u>		
1		70						193	0.066	0.062	115	615	200	*	2
1	20	70						194	0.094			555	1	×	2
		30							0.053			1			٤
	30	50				trace		196	0.053			1250		٠,	-
	40	60				trace		197	0.062			1150	1	*	4
	30	:55						198	0-303		115	420	200	*	3
	60	40		 		trace		199	0412	0.370	95	540	3 <i>6</i> 0	*	4
	50	30				Hace		201	0:143		65	1500	500	4	10
	35	65						202	0.114		130	1050	200	0.5	5
	55	15				2		203	0.066	0.077	100	950	300	*	2
	SU	50				Hace		204	p.065	0 033	185	1050	300	4	9
	10	90	!			Hace		502	0.046		225	5 30	SBO	0.5	16
363		70						206	0.031		255	5/5	200	4-	12
,	2_	70						20)	0.024		ıbs	400	100	بد	12
25	E	55		<)			ox	SOS	0.010		150	<i>30</i> 0	100	+	6
25	15	60		<)			0×	209	0.021		120	385	100	4	8
0		2.0						210	0.109		65	630	100	+	12
ें	3	2					·	211	0-073	į	20	695	4	4	Ø
0	89	1						212	0.042		20	680	100	+	31
<u> </u>	75							213	0.051		40	560	200	4	6
9)						214	0.009	,	/5	540	<u>ب</u>	4	18
	99	</td <td></td> <td></td> <td></td> <td></td> <td></td> <td>215</td> <td>*</td> <td></td> <td>60</td> <td>900</td> <td>100</td> <td>+</td> <td>44</td>						215	*		60	900	100	+	44
26)								216	*		20	S35	+	4	12
						hace		21)	0.017		20	350	+	٠,	5
								218	0.029		25	<i>350</i>	*	ャ	8
									1					+	ਓ
	ь	15						220	*		/5	/75	100	+	7
;					***************************************										
		60 6 50 8 50 8 50 8 10 8 10 8 10 8 10 8 10 9 7 7 9 7 9 9 7 9 9 9 7 9 9 7 9 9 7 9 9 7 9 9 7 9 9 7 9 9 7 9 9 7 9 9 7	60 40 30 35 55 55 55 55 55 70 55 50 55 50 55 55	60 40 60 60 60 60 60 60				bo 40	60 40 Hace 199 50 30 Hace 201 36 65 202 55 15 2 2 203 50 20 Hace 204 10 90 Hace 205 50 30 Hace 204 10 90 Hace 205 50 30 Hace 204 10 90 Hace 205 50 30 20 20 51 30 20 210 51 30 211 51 30 215 50 40 Hace 217 51 30 218 51 40 20 Hace 217 52 10 55 218 51 40 20 Hace 217 52 10 55 218 51 40 20 Hace 217 51 40 20 Hace 219 51 51 51 51 51 51 51 51 51 51 51 51 51	60 40 Hace 199 0412 50 30 Hace 201 0.443 36 65 202 0.114 85 15 2 203 0.066 80 20 Hace 204 0.065 10 90 Hace 205 0.046 10 90 Hace 205 0.046 5 10 55 1 0 0 208 0.010 5 15 60 2 1 0 0 208 0.010 5 3 2 2 1 0.003 6 89 1 212 0.004 70 213 0.005 70 215 215 220 216 220		60 40 Hace 199 0412 0370 95 60 30 Hace 201 0.143 65 36 65 202 0.114 130 50 20 Hace 204 0.05 0.031 185 10 90 Hace 205 0.046 225 10 90 Hace 205 0.046 225 10 55 10 0x 208 0.010 150 51 5 60 21 0x 208 0.010 150 52 5 3 2 210 0.09 65 53 8 2 211 0.073 20 54 90 1 212 0.009 15 55 95 213 0.051 40 50 20 40 Hace 217 0.017 20 51 5 20 218 0.029 25 10 55 218 0.029 25 10 55 218 0.029 25 10 55 219 0.035 10 51 5 220 x 15 51 5 20 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10 40	60 40 Hace 199 042 0370 95 540 300 100 300	10 40

PROJECT: WANDIE
PROSPECT: ASTON HALL
GEOLOGIST M.D. WALTON
DATE: 24.7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE: 2/2
MACHINE:
WATER TABLE: Not reached
BASE OF OXIDATION Not reached

INTERVAL				OGICA	L DE				SAMPLE		ASSA	AY RE	SULTS	3		٦.
(m)	GWKE	SLST		OTHER	PY .		GAL		NUMBER	Αu	Au (R)		Zn	As	Ag	Pb
30 - 1	20	70	10					+	Qq2221				90	 	<u>۸-</u>	4:
31-2	20	75	S						222				85		*	25
32 - 33	10	90														
33-4		100														
34 - 5	15	85											-			
3 5-6	25	75	<1													
6 - 7																
7-8												•				
8 - 9																
9 - 10																
10-11																
11 - 12																
12-13																
13-14	·															
14-15															; -	
15-16																
16-17		-												-		
17-18			:													
18-19	,	•	,													
19-20																
20-21																
21-22:																
22-23																
23-24					,									<u>. , , , ,</u>		
24-25																
25-26		-				•								<u> </u>		
26-27										·						_
27-28													-			
28-29																
29-30							· · · · · · · · · · · · · · · · · · ·						-			
COMMENT	гs:	1	I			<u> </u>			<u></u>							

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: M.D. WALTON
DATE: 24.7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER & WATSON PAGE:
MACHINE:
WATER TABLE:
BASE OF OXIDATION:

INTERVAL		ROCK	GEOL	OGICA	L DE	TION		SAMPLE		ASS	AY RE	SULT	s		
(m)	GWKE	T	OTZ	OTHER	PY	 		NUMBER	Au	Au(R)	Cu	Zn	As	Ag	Pt
0 - 1	7														
1-2	>	85	15					Q92223	~		25	100	200	*	10
2 - 3														•	
3-4		05	35			trace		224	1		35	140	200	4	ر
4 - 5,		30	70			hace	OX	225	0009		55	185	300	¥	30
5-6		75	25					226	0.013		25	130	200	+	Je
6 - 7		80	20					227	0.125		15	100	100	x -	75
7-8		98	2					228	0.008		25	125	*	×	15
8 - 9		10	90					229	*		3 <i>s</i>	200	+	×	5
9 - 10		95	5					230	7		4.0	165	1009	+	10
10-11		100						231	0.022		50	310	200	+	20
11 - 12		70	30			trace		232	ン		20	165	200	ナ	S
12 - 13		100			,			233	0.037		30	200	100	*	6
13-14		60	40					234	O.Ou		15	150	200	4	ع
14-15	ļ	100						235	0.009		10	205	200	\	5
15-16		85	15					236	0.020	0 032	35	220	100	+	35
16-17		40	60	<u>.</u>	hace	 tace		237	ャ		5	200	200	+	¥
17-18		799	</td <td></td> <td></td> <td></td> <td></td> <td>238</td> <td>*</td> <td></td> <td>10</td> <td>245</td> <td>100</td> <td>ہد</td> <td>10</td>					238	*		10	245	100	ہد	10
18-19		100						239	*		15	390	200	*	10
19-20	<u></u>	80	20			trace		240	O-OZ		40	335	100	*	15
20-21		97	3					241	ン		65	235	*	4	43
21-221	2	18	80			trace		242	*		15	195	*	4	5
22-23	-	299	د ا				0X	243	0.012		25	150	100	*	ی
23-24		100				 									_
24-25		100			<u> </u>	 									
25-26		100				 									_
26-27		100	<u>.</u>												_
27-28		100													-
28-29		100													ļ
29-30 COMMEN		100													

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: M.D. WATSON
DATE: 24.7.88

RGC EXPLORATION
PTY LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE:
MACHINE:
WATER TABLE: Not reached

WATER TABLE: Not reached
BASE OF OXIDATION: Not reached

HOLE NUMBER AHS2 | AZIMUTH: 040 -60° TOTAL DEPTH: 30m INCLINATION: GEOLOGICAL DESCRIPTION SAMPLE INTERVAL ASSAY RESULTS TYPE % SULPHIDES % (m) OTHER NUMBER GWKE SLST OTZ OTHER Au(R) Cu Αu ΡЬ Ζn Αs Αg 799×1 0 - 1 1 - 2 99 100 4 - 5 100 100 5-6 100 95 255 200 4 30 7-8 70 115 8 - 9 35 240 300 20 199 < 1 9 - 10 10-11 96 100 12 - 13100 13-14 100 14-15 100 15-16 100 16-17 100 17-18 100 18-19 100 19-20 100 20-21 90 21-224 80 20 22-23 100 95 23-24 5 24-25 85 15 25-26 100 99<1 26-27 27-28 100 28-29 29-30 COMMENTS:

PROJECT: WAN DIE PROSPECT: ASTON HILL GEOLOGIST: M.D. WALTON DATE: 24.7.88

RGC EXPLORATION
PTY LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER J. WATSON PAGE:1/2 MACHINE: WATER TABLE: Not reached BASE OF OXIDATION: Not reached

NTERVAL	<u> </u>	ROCK	GEOL	OGICA	L DE	SCRIF	TION	,	SAMPLE		ASS	AY RE	SULTS	3		
(m)		SLST		OTHER	PY	ASPY			NUMBER	Au	Au(R)	Си	Zn	As	Ag	РЬ
0-1	2,	100			··•= ···											
1 - 2	(
2 - 3		100			-											
3-4	10	80	o		٠				99224b	0025	0.039	45	240	200	4	3)5
4-5	20	40	40						· •	0.166			390	ł	1	58
5-6	10	15	75		4			hace	248	4400	5.300	85	300	200	1.0	1050
6 - 7	20	25	<u>SS</u>					trace	249	0.126		70	300	3∞	+	85
7-8		75	25			?			251	0.obs			200		 	
8 - 9		30	70							0281		202	335	SOO	0.5	160
9 - 10	5		95					hace		0.041		215		Seo	+	135
10-11	10		90		د ا		?	Hace		0.023			ļ <u>.</u>	100	*	אכנ
11 - 12	30		ဢ					trace	255	0.022			100			390
12-13		30	70		<u> </u>				256	Þ <i>0</i> 23			145		·····	42
13-14	10	20	70					-		0.029		30	.	200		345
14-15		30	70	<u></u>				trace		0.043			175			615
15-16		799								0-009		35		100		165
16-17		299								0.023		··	- '	200	7	153
17-18		30						<u> </u>	1	0.032		-	,	100	٢	116
18-19		40	4						1	0.021			120		+	110
20-21		199	۲/						263	*		45	120	100	+	26
21-221		100														
22-23	10	30			:				<u>,</u>							
23-24		100							0/-11	0.034		100	, , , , , , , , , , , , , , , , , , ,	100	ــــــــــــــــــــــــــــــــــــــ	,,,
24-25	20	50								0.024			145 520			15
25-26	90	9	25						265 266	0.008			270			70
26-27	+	7						-	 	0.013			250	ļ	*	x
27- 28	99		1				-		268	*		10	170		4	7
28-29	70		30		</td <td></td> <td></td> <td>trace</td> <td></td> <td>7</td> <td></td> <td>10</td> <td>155</td> <td></td> <td>٠</td> <td>7</td>			trace		7		10	155		٠	7
29-30	100		30		•		,		270	*		ID	110		ャ	5
COMMEN	<u> </u>			L	l			<u> </u>		<u> </u>						·

PROJECT: WANDIE

PROSPECT: ASTON HILL GEOLOGIST: M. D. WALTON

DATE: 24.7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: 5.WATSON PAGE:2)2

MACHINE:

WATER TABLE: Not reached
BASE OF OXIDATION: Not reached

30-1 10 55 35 972271 x 40 175 100 x 14 31-2 90 10 272 x 20 110 x x 5	HOLE NUM	T T	11155				1			-60			L DE		50 <i>p</i>	<u> </u>
SWE SIST OTZ OTHER PY ASPY OLD OTHER NUMBER Au Au Au RI Cu Zn Aa Aa Aa RI RI Aa Aa Aa RI RI Aa Aa Aa RI RI Aa Aa Aa RI RI Aa Aa Aa Aa RI RI Aa Aa Aa Aa Aa Aa RI Aa Aa Aa Aa Aa Aa Aa A	INTERVAL (m)		госк			SULPH	lidės =	/•	i '		ASS	AY RE	SULT	3		
\$1-2		GWKE	SLST		 PY	ASPY	GV┌	+		Au	Au(R)	Cu	Zn	As	Ag	Pb
32-33	30-1	10	55	35					992271	7		40	175	100	*	140
33-4	31-2		90	10					272	×		20	110	*	*	5
31.5 \qq \qq \qq \qq \qq \qq \qq \qq \qq \q	32 - 33	25	60	15					273	×	<u> </u>	15	75	*	×	4
35-6 IOO	33-4	100		İ			<u></u> .				1					
6 - 7	34 - 5	799	•	1												
7-8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	35-6	100														
8 - 9 9 - 10 10 - 11 11 - 12 12 - 13 13 - 14 14 - 15 15 - 16 16 - 17 17 - 18 18 - 19 19 - 20 20 - 21 21 - 22 - 22 22 - 23 23 - 24 24 - 25 25 - 26 26 - 27 27 - 28 28 - 29 29 - 30 COMMENTS:	6-7				 											
9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23 23-24 24-25 25-26 26-27 27-28 29-30 COMMENTS:	7-8															
10-11	8 - 9				 											
11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 19-20 19-20 121-22 122-23 123-24 124-25 125-26 125-2	9 - 10															
12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22- 22-23 23-24 24-25 25-26 26-27 27-28 28-29 29-30 COMMENTS:	10-11															
13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22-1 21-22-3 23-24 24-25 25-26 25-26 26-27 27-28 29-30 COMMENTS:	11 - 12															
14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22-1 21-22-1 22-23 23-24 24-25 25-26 26-27 27-28 28-29 29-30 COMMENTS:	12-13															
14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22-1 22-23 23-24 24-25 25-26 26-27 27-28 29-30 COMMENTS:	13-14															
16-17 17-18 18-19 19-20 20-21 21-22-1 21-22-1 22-23 23-24 24-25 25-26 26-27 27-28 29-30 COMMENTS:	14-15															
17-18 18-19 19-20 20-21 21-22. 21-22. 22-23 23-24 24-25 25-26 26-27 27-28 28-29 29-30 COMMENTS:	15-16									•						
19-20	16-17															
19-20 20-21 21-22. 21-22. 22-23 23-24 24-25 25-26 26-27 27-28 28-29 29-30 COMMENTS:	17-18															
20-21 21-22-1 22-23 23-24 24-25 25-26 26-27 27-28 28-29 29-30 COMMENTS:	18-19															
21-22·	19-20		<u></u>													
22-23	20-21														L	
23-24	21-22.															
24-25	22-23															
25-26	23-24															
26-27	24-25															
27-28	25-26															
28-29 29-30 COMMENTS:	26-27															
29-30 COMMENTS:	27-28														<u> </u>	
COMMENTS:	,	ļ		`	 											
	29-30	<u> </u>			******											
		rs:			 											

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: M.D. WALTON
DATE: 25.7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WAJSON PAGE 1/2
MACHINE:
WATER TABLE: Not reached
BASE OF OXIDATION: Not reached

HOLE NUMBERAHSY | AZIMUTH: 040 INCLINATION: -600 TOTAL DEPTH: 36m GEOLOGICAL DESCRIPTION SAMPLE ASSAY RESULTS INTERVAL ROCK TYPE % SULPHIDES (m) OTHER NUMBER SLST GWKE OTZ OTHER ASPY Au (R) Ζn Λs Рb Αq 0 - 1 $||\infty|$ 1 - 2 99/1 2 - 3 3 - 4 100 4 - 5 100 100 6 ~ 7 100 30 7 - 8 70 8 - 9 ВO 20 9 - 10 15 85 80 10-11 20 799 < 1 11 - 1212 - 13 100 FEOY 95 5 13-14 trace 5 y 95 14-15 100 15-16 16-17 100 17-18 100 90 18-19 10 19-20 100 FEOX 9 92274 0.010 30 290 100 20-21 4 15 75 10 21-22: 275 0.181 95 360 100 60 40 115 22-23 84 15) 23-24 24-25 100 26 25-26 50 350 200 x 690 6.033 5 Hace hace 26-27 0.5 615 200 90 0-024 35 235 10 700 100 0.016 140 27-28 90 25 10 100 28-29 ኍ 70 30 15 550 80 279 Y FEOX Vace 29-30 280 405 100 115 35 65

PROJECT: WANDIE PROSPECT: ASTON HILL GEOLOGIST: M. D. WALTON

DATE: 25.7.88

RGC EXPLORATION PTY. LIMITED REVERSE CIRCULATION PERCUSSION HOLE LOG DRILLER: J. WATSON MACHINE:

WATER TABLE NOT reached BASE OF OXIDATION: Not reaches

HOLE NUM			<u> </u>	OGICA		SCRIF	TION		0.4451.5			TOTAL DEPTH: 36m					
		Į	TYPE *	<u>'</u>	SULPI		HIDES 1	/•	SAMPLE	<u> </u>	,			1		 	
	GWKE			OTHER	PY	ASPY	GAL.	 	NUMBER	Au	Au (R)		Zn	As	Ag	Pb	
30-1	5	80	15					OX	Q92281	7		85	540	200	<u>٢</u>	15:	
31-2		15	10						282	75		20	470	ャ	×	20	
32 - 33	4	96															
33-4	40	60															
34 - 5	90	10															
35-6		25															
6-7																	
7-8															·		
8 - 9	i																
9 - 10																	
10-11																	
11 - 12																	
12 - 13																	
13-14						1				ļ	ļ						
14-15	 			-				ļ						· · · ·			
15-16	<u>-</u>									<u> </u>						-	
16-17			_														
17-18	<u> </u>						<u> </u>	i								 	
18-19								ļ		<u> </u>	-						
19-20								 								-	
20-21									<u> </u>								
21-22								ļ		ļ							
22-23								 		<u> </u>	<u> </u>					-	
23-24										ļ	 				<u></u>	-	
24-25																-	
•											-					-	
25-26													ļ <u>-</u>			-	
26-27				,							<u> </u>	<u> </u>				-	
27-28	ļ							-								-	
28-29								<u> </u>		 	-						
29-30	i	1	1	i l		1	1	1		ŀ	1	[.				- [

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: M.D. WALTON
DATE: 25.7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER S. WATSON PAGE 1/2

MACHINE:

WATER TABLE:

BASE OF OXIDATION:

HOLE NO	MBER AHSS AZIMUTH:								NATION: -	-00	TOTAL DEPTH: 48m						
INTERVAL (m)	 ,	ROCK	GEOL	OGICA	L DE		TION		SAMPLE	ASSAY RESULTS							
	GWKE	SLST	QTZ	OTHER	PY	ASPY	BAL	FECX	NUMBER	Au	Au(R)	Cu	Zn	As	Ag	Pb	
0-1)	95	5														
1 - 2	5																
2-3	90	10															
3 - 4	85	15															
4 - 5		100									i	·					
5 - 6		80		20													
6 - 7		100			***************************************												
7-8	25	75															
8 - 9	10	90															
9 - 10		100															
10-11		50	50					trace	P92283	0.051	0.047	70	200	200	>	100	
11 - 12	25	60	15						284	0.012		45	335	100	+	53	
12-13	97		3					hace		×	ン	20	420	100	4	7	
13-14	80		20						286	~		15	310	×	×	4	
14-15	30	10	60					,	287	*		20	360	4	X	×	
15-16	40	10	50					hace		0.037		15	240	ャ	ャ	7	
16-17	60		40					trace	289	4		15	285	> -	X	*	
17-18	65	20	15					tace	290	4		30	285	+	¥	lo	
18-19	20	80								0021			235		+	+	
19-20	20	10	70					trace	292	0.009		25	225	~	7	5	
20-21	100								293	7-		30	380	4	ナ	+	
21-22	20	65	15							0.019		25	400	> -	7-	15	
22-23	20	60	20						· · · · · · · · · · · · · · · · · · ·	0.01		25	530	100	ャ	25	
23-24	10	90							, L	0.008		35	450	+	ナ	4.	
24-25	35	65							297	7		30	485	100	ャ	6	
25-26	1	80	5							D-013		25	400	100	*	25	
26-27		25				-			299	×		15	295	100	۲-	10	
27-28	1	50	1						301	7		10	265	100	ャ	メ	
28-29	15	45	40	·					302	>-2		20	285	100	<u>۲-</u>	40	
29-30		70	30						303	7		20	240	100	*	35	
COMMEN	TS:																

PROJECT: WAN DIE
PROSPECT: ASTON HILL
GEOLOGIST: M. D. WALTON
DATE: 25-7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE 2/2

WATER TABLE: Not reached BASE OF OXIDATION: 45m

HOLE NUMBER AHSS AZIMUTH: 220 -60° TOTAL DEPTH: 48m INCLINATION: GEOLOGICAL DESCRIPTION SAMPLE ASSAY RESULTS INTERVAL SULPHIDES % TYPE % NUMBER GWKE SLST OTZ OTHER ASPY GÁL Au(R) Cu As Αg Рb 60 265 30 - 1 40 trace 0923040.010 25 90 ٦ ~ 31 - 2 305 0.010 30 220 100 4 25 10 50 hace 32-33 145 40 bo 306 0.008 5 × 10 ャ 33-4 30 90 307 185 100 ٣ 10 20/165 X 308 34-5 90 X 40 10 4 45 45 hace 90 309 60 190 4 35-6 10 \prec 36 - 7 25 hace 310 25 140 4 35 95 5 37-8 75 25 38 - 9 hace 5 95 39-40 95 40.41 5 90 hace 10 41 -42 hace 2 98 316 hace 42 43 have 60 800 400 4 ン 175 trace trace trace 99 345 2100 4 13-44 230 317 40 × trace 100 385 20 318 1300 200 44.45 5 0-008 75 4 95 319 45-46 5 430 200 55 ہد 100 46-47 47-48 2) hace 18-19 19-20 20-21 21-221 22-23 23-24 24-25 25-26 26-27 27-28 28-29 29-30 COMMENTS:

82/107

PROJECT: WANDIE DRILLER J. WARON PAGE:12 RGC EXPLORATION PROSPECT: ASTO!) HILL PTY. LIMITED MACHINE: WATER TABLE: Not reached GEOLOGIST: M.D. WALTON REVERSE CIRCULATION DATE: 25.7.85 BASE OF OXIDATION Not reached PERCUSSION HOLE LOG HOLE NUMBER AH 56 AZIMUTH: INCLINATION: -600 TOTAL DEPTH: 33 m 220 GEOLOGICAL DESCRIPTION SAMPLE ASSAY RESULTS INTERVAL SULPHIDES % NUMBER GWKE SU'T OTZ OTHER ASPY GAL Au(R) Cu Ζn Αg ΡЬ 95 0 - 1 5 3 - 4 trace 4 - 5 hace 2 trace 5 - 6 97 6 - 7 100 100 7-8 955 8 - 9 Hace 9 - 10 100 pg2320 25 95 7 10-11 20 $\supset_{\mathcal{E}}$ ナ 5 321 0.00 95 7 * 40 11 - 12 tace 15 60 ャ hace 5 12 - 13 20 40 40 60 4 322 0.029 10 30 323 13 - 1470 0.172 5 100 4 -بد 50 60 40 324 70 20 100 4 14-15 0015 hace سر 15-16 hace 325 95 ¥ 20 100 + 5 90 4 85 326 15 X 16-17 85 100 110.0 20 17 - 1899 18-19 100 19-20 90 10 20-21 99 21-22 4 100 22-23 80 20 23-24 40 60 24-25 799 < 1 25-26 20 79 < 1 26-27 85 15

29-30 25 70 5 COMMENTS:

27-28

28-29

100

95

5

PROJECT: WANGIE
PROSPECT: ASTON HILL
GEOLOGIST: M.O. JACTON

DATE: 25-7.88

RGC EXPLORATION
PTY LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE: 2/2
MACHINE:
WATER TABLE: Not reached
BASE OF OXIDATION: Not reached

INCLINATION: 60° TOTAL DEPTH: 35m HOLE NUMBER AHS AZIMUTH: 220 GEOLOGICAL DESCRIPTION SAMPLE ASSAY RESULTS INTERVAL ROCK TYPE % SULPHIDES % (m) GAL OTHER NUMBER GWKE SEST OTZ OTHER ASPY Au (R) Cu Zπ Αg Рb 99 30-1 1 31-2 100 32 - 33 100 3 - 4 4-5 5 - 6 6 - 7 7-8 8 - 9 9 - 10 10 - 11 11 - 12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22+ 22-23 23-24 24-25 25-26 26-27 27-28 28-29 COMMENTS:_

PROJECT: WANDIE PROSPECT: ASTON HILL

GEOLOGIST: M.D. NALTON

DATE: 25.7.88

RGC EXPLORATION
PTY, LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER S. WATSON PAGE:
MACHINE:
WATER TABLE:
BASE OF OXIDATION:

HOLE NUMBER AHS AZIMUTH: 040 INCLINATION: -630 TOTAL DEPTH: 30m. GEOLOGICAL DESCRIPTION SAMPLE ASSAY RESULTS INTERVAL TYPE % SULPHIDES % ROCK NUMBER GWKE SUST OTZ OTHER GAL FEOX ASPY Au(R) РÞ PY Αu Cu Zn Αg 0 - 1 85 1 - 2 15 ₹. } 2 - 3 20 465 300 + 992327 3 - 4 90 10 OSd 10 95 4 - 5 30 20 50 D4010 25 245 200 328 15 98 SOO.6 15 300 80 5 - 6 2 <u> 329</u> 275 100 6 - 7 7-8 70 30 90 × 8 - 9 25 100 75 0.008 15 330 x 100 30 35 9 - 10 35 331 15 55 5 × 10-11 200 0.5 X 35 75 35 SO 45 35 332 100 30 60 ۲ \star 20 80 Hace 0-024 11 - 12 333 35 5 12 - 13334 115 100 80 10 10 4 ىد 85 100 × 13-14 10 30/10 335 D.OYO 25 7 799 < 1 336 125 100 ¥ 14-15 6.013 50 <u>3</u>37 15-16 X 30 170 200 4 10 25 96 338 425 400 85 20 ャ 16-17 2 0.028 2 trace 95 200 ャ മ 17-18 30 70 339 0.107 30 99 45 130 200 × 十 18-19 1 340 ٣ 4 19-20 125 200 ¥ 5 100 341 **ہد** 20-21 200 ٦ × 98 100 2. 15 342 \prec 21-22' 190 100 145 200 60 40 hace 343 × 99 10 22-23 45 145 200 c] 344 raa ィ 23-24 99 / 1 24-25 100 25-26 100 26-27 100 27-28 100 28-29 100 100 29-30 COMMENTS: ____

PROJECT: WANDIE

PROSPECT: ASTON HILL GEOLOGIST: M. D. WALTON

DATE: 25.7.88

RGC EXPLORATION PTY. LIMITED REVERSE CIRCULATION PERCUSSION HOLE LOG DRILLER: J. WATSON PAGE: MACHINE:

WATER TABLE : Not reached BASE OF OXIDATION: Not racked

NTERVAL		тоск	GEOL	OGICA	L DE	SCRIF	TION		SAMPLE		ASS	Y RE	SULTS	3		
(m)	GWKE	1		OTHER	PΥ	ASPY		T	NUMBER	Au	Au (R)	Cui	Žn	As	Ag	Pb
0 - 1																
1 - 2	}	15	85						992345	0046	,	30	90	200	¥	35
2 - 3																
3-4		65	35					trace	346	0.036	0.022	35	175	200	8	40
4-5		80	20		trace			hace		0.029		35	215	200	≻	16
5-6		95	5					haæ	347 348	0.040		25	165	200	¥	7
6 - 7		100							_	OIII		20	175	800	*	5
7-8		99	1					tace	351	0.016	,	20	145	200	ャ	10
8-9	го	70	10							0.012		20	165	२००	→	5
9 - 10	3	4	93					hace	353	0.285		30	160	200	×	۲
10-11	60	30	10					hace	354	0.119		15	160	100	*	20
11 - 12		90	10					hace	355	0.053		20	180	100	\star	5
12 - 13	100															
13-14	100															_
14-15	100															
15-16	90	10					<u>,</u>									
16-17	90	10											ļ			
17-18	90	10														
18-19	70	30												<u> </u>		
19-20	15	85														
20-21		100														
21-22	15	85														<u> </u>
22-23	70	30								ļ						ļ
23-24	70	30								ļ						-
24-25		100						<u> </u>					ļ			
25-26		100											ļ			-
26-27	ļ	100			,			ļ		<u> </u>						┼
27-28	 	100	<u> </u>											<u> </u>		-
28-29	ļ	100														-
29-30	1	100	<u></u>	<u> </u>			<u></u>	<u> </u>		<u>L</u>			<u></u>	<u> </u>		1_

PROJECT: WANDIE PROSPECT: ASTON HILL GEOLOGIST: M. D. WALTO N DATE: 267.88

RGC EXPLORATION PTY.LIMITED REVERSE CIRCULATION PERCUSSION HOLE LOG DRILLER: J. WATSON PAGE:

MACHINE:

WATER TABLE: Not reached BASE OF OXIDATION: Not reaches

	Π		GEOL	OGICA	L DE	SCRIP	TION	<u>. </u>	SAMPLE		A 6 6	AV DE	SULT			
INTERVAL (m)	GWKE	T	TYPE %	OTHER	PY		IDES		NUMBER	Au	Au(R)		I	1		Tal
0 - 1	\leftarrow		20	OTHER		ASPI	ML	 		 			Zn Zn	As	Ag	Pb
1-2	370	10.	20					ļ	992356	0.042		50	05	100	4	40
2-3	μ_	1.00														
3-4		100											<u> </u>			┼
4-5	ļ	100											<u> </u>			
5-6		100								<u> </u>						1
6-7	100									<u> </u>						1
7-8	40		bo		hace			hace	357	0020		35	115	300	*	10
8-9	35	20	45	·	Hace			trace		0.043				200	+	4.5
9 - 10	10	20	70					trace		0.086				400	+	330
10 - 11		5	95		trace			hace		0.021			155		¥	160
11 - 12		80	20							0.074	0.072	130	160	200	+	40
12-13		799	<1							0.031		130	210	200	+	75
13-14		90			Hace			trace		0.033		85	140	100	*	20
14-15		95	5					tace	7	0.020		65	115	200	*	15
15-16		99								0.016		30	70	100	+	20
16-17		100						,								
17-18		100														<u> </u>
18-19		100														
19-20	80	20														
20-21	30	70														<u> </u>
21-22	15	85														ļ
22-23	25	35	40						366	0-015		30	160	100	×	1/5
23-24	10	90		, i												ļ
24-25	<u> </u>	100														
25-26	20	80	ļ													<u> </u>
26-27		100														1
27- 28		100										· · · · · · · · · · · · · · · · · · ·	ļ			<u> </u>
28-29		100	<1							ļ						ļ
29-30		100		ļ. <u> </u>						<u> </u>			<u> </u>	,		
COMMEN	тs:															···········

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: M.D. WALTON
DATE: 26.7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE: R. MACHINE: WATER TABLE: Not reached BASE OF OXIDATION: 41 m.

NTERVAL		2004		OGICA	L DE	SCRIP			SAMPLE		ASS	AY RE	SULT	 S		
· (m)		SLST	TYPE %	OTHER	PY	ASPY	GAL		NUMBER	Au	Au (R)	Cu	Zn	As	Ag	Pb
0-1	1,90	10					·									
1-2)															
2-3	60	40					_									
3 - 4	1	30														
4 - 5		95														
5 - 6		97	3						992367	0.033		35	1200	200	*	8
6 - 7	1	30	70						368	0.100		80	500	300	*	58
7-8	10	75	15						369	0131		90	325	200	0.5	36
8 - 9		20	80					trace	370	D-138	0.179	95	525	3 0℃	05	615
9 - 10	10	40	50						371	0.045		80	500	300	0.5	15
10-11		40	60	<u> </u>				trace	372	0.093		95	475	200	1.0	380
11 - 12		40	60			trace		hace	373	0.042	<u>.</u>	85	930	200	1.0	140
12-13	199		< 1					trace	374	0.008		25	680	100	0.5	23
13-14	199		<						375	0.009		15	490	+	05	22
14-15	60		40						376	0.008		15	355 355	200	0.5	23
15-16	30		70						377	0010		25	590	100	o.s	21
16-17	100					,			378	ャ		15	7/5	¥	5	5
17-18	60		40						379	0.034		35	450	200	0.5	6
18-19	70		30						,	0.011		32	3>0	100	0.5	24
19-20	21	,	99							0016		40	180	100	0.5	2
20-21	20	40	40							0.093		85	180	100	05	7
21-221	10	40	50	- 1						0.103		50	225	*	ंड	15
22-23		60	40							0.090		<u>55</u>	175	200	4	10
23-24	10		90				•	trace	•	0.031		70	120	100	4	15
24-25	1		99						386	0.020		45	150	100	4	3
25-26	35		65						387	0.049		45	215	200	*	٨
26-27	1		99					hace	388	0.032		65	180	100	+	5
27- 28	3		97							0.026			330		+	25
28-29	30	5	65					trace	390	0.016		20	290	100	*	^
29-30	25	15	60					trace	391	4		32	250	4	0.5	40
COMMENT	rs:							**	•							

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: M.D. WALTON

DATE: 26.7.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE: 2/2
MACHINE:
WATER TABLE: Not reached
BASE OF OXIDATION: 41 m

89/107

MTES: "		-1- w	GEOL(OGICA	L DE	SCRIF			SAMPLE		Δ88/	7A BE	SULTS	3		
NTERVAL (m)	GWKE	SLST	TYPE */	OTHER	PΥ	SULPH	IDES %	FEOX	NUMBER	Аu	Au(R)		Zn	As	Ag	Pb
3 0 - I	80		20				<u> </u>	hace		×	, , , , ,	10	150	×	0.5	*
31-2	60		40				 	trace		×		15	180	×	0.5	*
32 - 33	10		90		Hace			trace		0.0009		45	165	ン	0.5	15
33 - 4	45		55		trace			trace		٠,		5	170	+	o.5	*
34 - 5	100									0016		15	200	100	0.5	5
35-6	30		70					hace	397	0.055		90	150	*	*	20
3 6 - 7	2		98					Hace	398	0.057	0.038	5 5	265	100	*	25
37-8	40		60					Hace	899	*		10	20	*	0.5	<u>ہ</u> د
38 - 9	60	20	20					trace	401	0.014		15	225	100	0.5	×
39-4 0	2		98					hace	402	×		35	160	٠,	0.5	10
40-41	10		90						403	0.038		45	265	100	0.5	15
41-42	99		1						404	7100		20	300	200	0.5	۲
42 -43	65		35		hace		trace	trace	405	×		15	90	+	0.5	*
43-44	35	65	<1						406	0.010		bo	100	*	0.5	4
44.45	90	10	د						407	0.009		5	30	*	2	7
45-46	90	10	</td <td></td> <td></td> <td></td> <td></td> <td></td> <td>408</td> <td>*</td> <td></td> <td>5</td> <td>35</td> <td>100</td> <td>0.5</td> <td>5</td>						408	*		5	35	100	0.5	5
46-47	100				:				409	0.010		15	45	100	0.5	5
47-48	40	10	50						410	0.033		25	95	*	*	*
4 8-49	30	70	41					trace								
49- 5 0	15	85	i													
5 0- 5 i	90	10														
21-22'				i												
22-23																
23-24																<u> </u>
24-25																_
25-26																<u> </u>
26-27																_
27-28										<u> </u>					<u> </u>	
28-29										ļ <u>.</u>	<u> </u>			ļ		_
29-30							<u> </u>			<u></u>	<u> </u>	<u></u>	<u> </u>			
COMMEN	TS:															
																

PROJECT: WANDIE PROSPECT: ASTON HILL GEOLOGIST: M.D. WALTON DATE: 26.7.88

RGC EXPLORATION PTY.LIMITED REVERSE CIRCULATION PERCUSSION HOLE LOG

DRILLER: S.WATSON PAGE:
MACHINE:
WATER TABLE: NOT reached
BASE OF OXIDATION: NOT reached

90/107

NTERVAL	<u>.</u>			OGICA	L DE				SAMPLE		I	•	AL DE			
(m)	GWKE		TYPE %	OTHER	PY		IDES *		NUMBER	Au	Au(R)		T	As	Ag	Pt
0-1)			OTHER	PT	ASPT	GAL	reox		Au	Au(K)		Zn	AS	Ay	
1-2	7	90	10						1							
2-3	۲_															
3 - 4	30	90											 			1
4 - 5	60	40	40								1					
5-6	10		90					hace					1		 	
6 - 7	30		70					trace							-	-
7-8	50		50													\dagger
8-9	60		40					 		<u> </u>						-
9 - 10	15		85			<u> </u>		<1			<u> </u>		-	-		1
10-11	5	5	80					trac							<u> </u>	
11 - 12	5		95		hace	trace		hace	 				<u> </u>	 		
12-13	5		95		7,743-5	11-2-		hace					 	 		
13-14	5		95		box	tace		hace	 	 						
14-15	1	ļ	99			Hace		hace	 							
15-16	5		95		1446	7.04.0	<u> </u>	trace	 		 		 		1	
16-17	10		90				-	hace		 				1		
17-18	8	2	90					trace	 				1		· · · · · ·	
18-19	10	_	90					Hace								-
19-20	30	50	50					Hace	 							
20-21	5	20	75					hace	 							
21-22'		1	99	T	~ 1			trace								
22-23	10	60	30		 '		-	trace								
23-24	10	80	10	-				trace	>							
24-25	1															
25-26					<u> </u>											
26-27																
27-28			1		 			1								
28-29			1													
29-30											-					
COMMEN	TS:	<u> </u>	<u> </u>		J											
	·															

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: K. DENWER
DATE: 6-8.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE:
MACHINE: INVESTIGATOR
WATER TABLE: NOT reached
BASE OF OXIDATION: Not reached

HOLE NU	vioeu :(91/1		IMUTI					NATION: C	60		IUIA	- VE	тн: 2	~W	า —
NTERVAL	F	ROCK	GEOL	OGICA	L DE	SCRIF	TION		SAMPLE		ASSA	AY RE	SULTS	3		
(m)	GWKE	SLST	QTZ	OTHER	ÞΥ	ASPY	GAL		NUMBER	Au	Au(R)	Cu	Zn	As	Ag	P
0-1	400														<u> </u>	_
1 - 2	<u> </u>		-													
2-3		100														
3-4		100														
4 - 5	10	90														<u> </u>
5 - 6		98	2					2	991096	7		25	55	200	+	1.
6 - 7		80	20				·	2	097	0.047		45	100	200	4	4
7-8		90	10					3	098	0.040		85	110	100	×	4
8-9	2	3	95		hace	trace	<u> </u>	3	099	0.008	; 	40	65	100	*	5
9 - 10	75		25					2	101	0.027		30	75	×	4	1
10-11	13	2	85					2	102	2017		40	70	200	×	2
11 - 12	2		98		trace	trace		1	103	0.135		60	115	100	×	K
12 -13	2		98		trace			1	104	0150		60	85	4	4	3
13-14	2	۷1	98		hace			2	105	0.171		250	140	100	¥	3
14-15	20		80		pace)	106	0.053		80	90	100	¥	s
15-16	3		97		trace			5	107	0-037		75	100	×	4	17
16-17	35		65					2	108	0017		105	190	100	×	4
17-18	10		90					2	109	0.050)	75	100	*	>	Z
18-19	2		98						110	0.031		35	55	×	4	4
19-20	1		99						171	0.019		55	70	7	سد	1.
20-21																
21-22																
22-23																
23-24																
24-25																_
25-26																_
26-27																\perp
27- 28																
28-29																
29-30																
COMMEN	~~.	•	•	•		-										

PROJECT: WANDIE

PROSPECT: ASTON HILL

GEOLOGIST: M.D. WALTON

DATE: 3.8.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE:
MACHINE:
WATER TABLE: NOT REACHED
BASE OF OXIDATION: NOT REACHED

0-1 1-2 2-3 3-4 4-5 2	,85 ,20	SLST	30 -1 2	отнёл	PY	SULPH ASPY	GAL	FEOX	SAMPLE NUMBER Q9 24/2	Au 0.019	Au(R)	Cu	zn 55	As 200	Ag ×	Pb S O
0-1 1-2 2-3 3-4 4-5 2 5-6 6-7 7-8	,85	5 70 79 78 58	30 <1 2	OTHER	PY	ASPY	GAL	1.20			Au(R)			-		
1-2 2-3 3-4 4-5 2 5-6 6-7 7-8	20	70 299 78 58	30 <1 2						992412	0.019	' -	25	55	200	~	50
2-3 3-4 4-5 2 5-6 6-7 7-8	20	799 78 58	<u> </u>							1 !				,)		ı
3-4 4-5 2 5-6 6-7 7-8	20	799 78 58	<u> </u>													ļ
4-5 2 5-6 4 6-7 7-8	20	78 58	2_						413	0.008		10	25	100	ャ	15
5-6 (6-7 7-8	-	58							414	0019		15	35	100	ャ	25
6 - 7 7 - 8	fo	7	~ I						415	*		20	60	200	ャ	15
7-8		60						trace	416	<i>≻</i>	بد	20	40	200	×	20
	l	00	40					hace	417	0.025		30	60	200	×	15
8 - 9		60	40			trace		trace	418	0.019		30	70	100	ャ	15
		30	70					trace	419	0.026	1	35	85	200	ャ	13
9 - 10		50	50					trace		0.062		<u>35</u>	135	200	05	30
10-11		30	70					Hace	421	0.046			572	400	*	355
11 - 12	1	4	95		trace			trace	422	0.086		45	165	300	*	165
12 - 13		60	40						423	0-017		35	130	300	*	50
13-14	ļ	85	15					trace	424	0.009		35	120	200	ン	10
14-15		98	2						425	×		3⊊	100	100	4	5
15-16		96	4						426	>		30	70	200	0.5	30
16-17		100	,						427	4		30	65	100	4	25
17-18		100							428	0.02	2	40	120	100	0.5	20
18-19		100							429	0.020	>	45	525	x	0.5	20
19-20 /	15	85							430	×		35	105	100	4	10
		40	10			Hace		have	F '	0.009		25	80	100	4	10
21-22'	90	10		,				İ								
		20														
		30														_
		25														
		95														
26-27		299	c /													<u> </u>
27- 28		100														<u> </u>
28-29	-	99	</td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u></u></td> <td><u> </u></td>												<u></u>	<u> </u>
29-30		100														
COMMENTS	s:								,							

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: M.D. WALTON

DATE: 3.8.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSO N PAGE:

MACHINE:

WATER TABLE: Not reached
BASE OF OXIDATION: 27 m

NTERVAL				OGIÇA	L DE	SCRIF			SAMPLE		ASS	AY RE	SULTS	3		
(m)	GWKE	SLST	TYPE %	OTHER	PY	ASPY	GAL.	/ <u>•</u>	NUMBER	Au	Au (R)	Cú	Zn	As	Ag	Pb
0 - 1	68		2						QQ 2432			25	105		0.5	20
1 - 2	5								4-1-42-							
2 - 3	100								433	0.010		20	סוו	+	ャ	Ż
3-4	80	20							434	ہد		20	125	x	¥	20
4-5	100								434 435 436	0.015		15	100	*	*	16
5-6	797	2.	< 1		<u>.</u>				436	х _		25	130	100	*	10
6 - 7	70	30						_	437	0.008		25	95	200	*	20
7-8	<u> </u>		100					trace	-7-20	0-013		10		100	+	5
8 - 9	50	30	20					-	439	0.008		15	95		+	5
9 - 10			90			<u> </u>		1.	77-	0.031		15	105	*	+	5
10-11	20		50					trace	7	0.013		20	155		1	15
11 - 12	-	25	7 <u>5</u>					trace	7 1	0.045		30		200 300	*	35
12-13		30	70					trace	· · · · · · · · · · · · · · · · · · ·	0.041		35	7.55		+	10
13-14		25	75					hace	/	0.024		30	165			
14-15		10	90					trace		3.9bo 0.05b	2.1 10				0.5 4	30
15-16 16-17		20	80						446	 			200 205		メ	15
17-18		00	40						447	0.035		25	260		イン	- 15
18-19	-	98	ļ						770			25	125		イナ	5
19-20		99	/						449	Ĺ					7	5
20-21	2	98						ļ	451	0.039		40	115	100	ィャ	5
21-22		799	1					ļ	452	メ		30 35		200	 	20
22-23	-	1	20	1					453	1		92	,,,,,		-	
23-24		100						ļ								
24-25	ļ	100				 							 			
25-26		100						1								
26-27	40	60														
27-28	100															
28-29	100													ļ		
29-30	100															_
COMMEN	TS:							-								

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: M.D.WALTON

DATE: 3-8.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE:
MACHINE:
WATER TABLE: NOT REACHED
BASE OF OXIDATION: NOT REACHED

NTERVAL		тоск	GEOL	OGICA	L DE		TION		SAMPLE		ASS	AY RE	SULTS	3		
(m)	GWKE	T		OTHER	PΥ	ASPY			NUMBER	Au	Au(R)	Cu	Zn	As	Ag	Pb
0-1	J25		75					2	992454	×		15	30	200	4	Je
1 - 2	1						_				-					
2-3	5		95					5	455	0.029		15	35	100	٦-	15
3-4	10	85	5					,								
4 - 5	96	2	2_													
5-6	95		5													
6 - 7	60	40														
7-8	85	12	3		·									:		<u> </u>
8-9	10	2	88					2	456	0.010	0.014	20	95	100	+	15
9 - 10	2		98					1	457	0-096		30	110	100	*	6
10-11	5	90	5					1/2	458	0-015		25	125	200	*	15
11 - 12		15	/					1	459	0.253			240		ャ	16.
12 -13		40	60					3	 	0.249	!		185		+	21
13-14		30	70					2	 7 - '	0.051		45	215	-	λ- :	b
14-15		95							462	०.०२५		3 <i>o</i>	135	100,	*	8
15-16		99	1						<u> </u>							1
16-17		799	i .			,			<u> </u>]						-
17-18		98	2.			hace		1					<u> </u>			}.
18-19		799	l													┼
19-20 20-21	<u> </u>	60	40		_	Have										
21-22	<u> </u>		c /							<u> </u>			<u> </u>	<u> </u>		╁
22-23		100		!		<u> </u>										-
23-24		100						<u> </u>		<u> </u>						+-
24-25		99	<i>- 1</i>													+
25-26		100	-/					-								+
26-27		100	5	roHec	1											\top
27- 28		100		онес					1							T
28-29		100														
29-30		100														
COMMEN	rs:						·									

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: M.D. WALTON

DATE: 4.8-88

RGC EXPLORATION
PTY LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE:
MACHINE:
WATER TABLE: No + reached
BASE OF OXIDATION: Not reached

<u> </u>													AIDATI	N.N	ot Ka	achee
HOLE NU	MBER	AHb						,	NATION: -	-60°		тот	AL DE	PTH:	30r	ກ.
INTERVAL		ROCK	GEOL TYPE	OGICA	L DE	SCRII	TION		SAMPLE		ASS	AY R	ESULT	s		
(11),	GWKE	SLST	отг	OTHER	PY	ASPY			NUMBER	Au	Au (R)	Cu	Zπ	As	Ag	Pb
0 - 1	185	10	5						992463	0.028		25	105	100	12	70
1 - 2																ľ
2 - 3	100		,												1	
3 - 4	100															
4-5	199		41													<u> </u>
5 - 6	100															
6 - 7	90	10														
7-8	60	 ` 														
8-9	80	20					-									
9 - 10	100	1														
10-11	90	10														
11 - 12	30	70														
12 - 13	30	70											<u></u>			
13-14	65															
14-15	10	90												ļ 		
16-17	30	70	-,,-						,							
17-18		75						2 hace	464 465	7		50	552		+	145
18-19	5	794						1	465	<i>X</i>			135	*	ャ	10
19-20	70	70	<u>ي ي</u>					hace		0.009			190		+	35
20-20-6		79 95	1 ,-					<1	467	<u>۲</u>			95		*	15
20 ⁶ 22 ·	40	60	ر ۲					-/	468	*		25	95	100	+	20
22-23		80	- -					hare								
23-24		100	_					ruce								
24-25		100			-											* ********
25-26	i	99			+											ř
26-27		100	- -					— 								
27-28	- 1	100	+													
28-29		100														
29-30		100						1								
COMMENT	s:		,,										[
			<u> </u>						-	~						

PROJECT: WAN DIE
PROSPECT: ASTON HILL
GEOLOGIST: M.D. WALTON

DATE: 4.8.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE:
MACHINE:
WATER TABLE: Not reached
BASE OF OXIDATION: not reached

HOLE NUMBERAHOO AZIMUTH: 040 TOTAL DEPTH: 30 m. inclination: -60° GEOLOGICAL DESCRIPTION SAMPLE ASSAY RESULTS INTERVAL SULPHIDES % TYPE % (m) GAL OTHER NUMBER SLST GWKE QTZ OTHER Au(R) ASPY Αu Cu As Αg Рb ay 60 0-1 20 20 992469 70 50 100 0.122 15 1 - 2 2-3 100 hemante 184 3 - 4 15 4 - 5 60 40 5 - 6 100 100 6 - 7 60 7-8 40 8 - 9 60 40 20 80 9 - 10 10 herratie *Fe*ox 65 100 10-11 90 30 ہد 20 470 $\boldsymbol{\gamma}$ 100 11-12 12 -13 100 13-14 100 14-15 100 15-16 100 hematile 16-17 100 bace 17 - 18100 18-19 100 19-20 100 20-21 100 21-22 100 60 60 95 22-23 40 23-24 5 24-25 60 25-26 100 26-27 100 27-28 40 160 28-29 50 50 29-30 90 10 COMMENTS:

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: K. DENWER

DATE: 4.8.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE:
MACHINE: INVESTIGATOR
WATER TABLE: NOT REACHED
BASE OF OXIDATION NOT REACHED

HOLE NU	1	Ino							NATION: -	-		1012	AL DE	-10.5	·Om	l
INTERVAL		ROCK	GEOL TYPE %	OGICA	L DE		IDES	/•	SAMPLE		ASS	AY RE	SULT	s		
· · · · · · · · · · · · · · · · · · ·	GWKE	SLST	отг	OTHER	PΥ	ASPY	GA∟	FEOX	NUMBER	Au	Au(R)	Cu	Zn	As	Ag	РЬ
0 - 1	59 3	5	2,								ļ					ļ
1-2			<u> </u>							ļ						
2 - 3	97		3													
3 - 4	100															
4 - 5	100															
5-6	10	90														
6 - 7		100														
7-8	6			CAY												
8-9	40	60														
9 - 10	10		90					3	Q92471	6.780	6.630	95	415	600	1.0	/25
10-11		60	40					2		1.551						15
11 - 12	97		3						473	0.126		30	1	200	l	25
12-13	90	?	10						474	0.025		35	125	200	×	20
13-14	95€	フ	5							0.013		45	140	100	*	20
14-15	990	₽	1						l ' .	000			170	I		5
15-16		100			-											
16-17	\	100														
17-18		100														
18-19		100														
19-20		100										•				
20-21	5	95														
21-22	100			/												
22-23	98	4	2											1		
23-24	100	,										,				
24-25	95	5														
25-26	100															
26-27	100															
27-28	100															
28-29	100															_
29-30	100															
COMMEN	rs:															
														·, ····		

PROJECT: WANDIE PROSPECT: ASTON HILL GEOLOGIST: K. DENWER.

DATE: 5.8.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE:
MACHINE: INVESTIGATOR
WATER TABLE: NOT REACHED
BASE OF OXIDATION: NOT REACHED

			GEOL	OGICA	!. DE	SCRIE	TION		SAMPLE	<u> </u>	٠			PTH: [
NTERVAL (m)		[TYPE %	,		SULP	IDES °	'/ 。			····		SULT	5 	i	_
	GWKE	 		OTHER	1 7	ASPY	GAL	 	NUMBER	Au	Au (R)		Zn	As	Ag	P
0-1	570		30					1	992477	004	2	25	45	200	*	15
1-2	<u> </u>															ļ
2-3	100															ļ
3-4	100			- <u>-</u>												1
4-5	100							<u> </u>								ļ
5-6	85		15			ļ		2	478	0.033		15	30	100	*	5
6 - 7	99		1_						479	x		15	30	100	+	10
7-8	97		3					2	480	4		10	50	100	ン	5
8-9	60	40														
9 - 10	40	ko	<u> </u>		584. CA4.CA											
10-11	60	40											<u> </u>			
11 - 12	37	60	3													
12 - 13	5	94	1													
13-14		100														
14-15		100	41													_
15-16		60	40		THE THE SHEET OF THE SECOND SE				481	O-031		25	165	200	¥	83
16-17		2.0	80		A A			2		oeby			175			16
17-18	2	3	95						-	0.019		20	l .	100	4	1
18-19	<u> </u>	80	i — —						•	0.014		30	175	300	*	2.5
19-20		99	1													
20-21	1	100														
21-22		95	5					3								
22-23		97	3				-	1								T
23-24	1				reservation											
24-25		100														
25-26		100														1
26-27	<u> </u>	100														
27-28		100														
28-29	1	100								1						-
29-30		100														
COMMEN	TC:		l	···!		1	L	·	·		·					

PROJECT: WANDIE PROSPECT: ASTON HILL GEOLOGIST: K. DENWER DATE: 5.8.88 RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE: 1/2
MACHINE: INVESTIGATOR
WATER TABLE: NOT REACHED
BASE OF OXIDATION: NOT REACHED

	· ·	4H 60	<u> </u>	TOME						600		, , , ,	AL DE		۰۰۰۰ ک 	
INTERVAL (m)		тоск	GEOL TYPE %	OGICA	L DE		TION	'/。	SAMPLE		ASS	AY RE	SULT	s		•
	GWKE	SLST	QTZ	OTHER	PΥ	ASPY	GAL	OTHER	NUMBER	Au	Au(R)	Cu	Zn	As	Ag	Pb
0 - 1																
1 - 2	7100															
2-3																
3-4	100				÷				<u> </u>							
4 - 5	70	30														
5-6	80	20	<1													
6 - 7	60	40														
7-8	20	80	<1													
8-9	2	98														
9 - 10		98	2													
10-11		100														
11 - 12		40	60				,		992485	0041		60	235	300	+	28
12 - 13		-	90		··				100/	h 222		\sim	120-	200	0 -	125
13-14			45						487 488 489	0037		45	245	200	ャ	46
14-15			55	clay					1188	0.322	0.302	70	255	300	٦-	14.
15-16				98					489	0.017		15	445	200	*	30
16-17		10		90					70 /				··			
17-18		10		45												
18-19		30		55												
19-20		60	,	40												-
20-21		73	2	25					490	بدا	0.018	30	220	100	ナ	5
21-22		80		10,					,	×			155	T		2
22-23		60		30				ļ	491	0.111		· · · · · · · · · · · · · · · · · · ·	280	···		q
23-24		70		30						0012			230			10
24-25	-		25	ا				 		1			135	1	1	5
25-26	10		i						495				185	T	*	2
26-27	23	2	75						496	3.770	3.040	7	110	1	*	13
27-28	100		<u> </u>							0.038			145		٠.	10
28-29	70		15						ı · • /	0.020			240		×	16
29-30	65		35							0.050		75	220	300	4	2.1
COMMEN			·				•		······································	.*				·		

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: K. DENWER
DATE: 5.888

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE 2/2
MACHINE: INVESTIGATOR
WATER TABLE: NOT REACHED
BASE OF OXIDATION: NOT REACHED

100/107

NTERVAL	ļ _F	ROCK	GEOL	OGICA	L DE	SCRIP	TION		SAMPLE		ASS	Y RE	SULTS	3		
(m)	GWKE		QTZ	OTHER	PY	ASPY	•		NUMBER	Αu	Au (R)	Cu	Zn	As	Ag	РЬ
30 - 1	<		25	рау .75					P91001	0196		50	150	200	0.5	14
31 - 2	•		1	85					002	0.054	,	bo	140	100	0.5	15
32 - 33	100	-		7		- "										
3 - 4																
4 - 5																
5 - 6																
6 - 7																
7-8												*******				
8 - 9																
9 - 10																
10-11											u = =					
11 - 12																
12-13																
13-14																
14-15														.*	:	
15-16																
16-17																
17-18																
18-19									<u> </u>							
19-20																
20-21																
21-22'				,												
22-23				'					-	-						
23-24						<u> </u>	 			1						
24-25				-												
25-26						ļ ———		 								
26-27							-	 		 						
27- 28							-		<u> </u>				<u> </u>			
28-29								 								
29-30																
COMMEN	TS:	L				I						,	1	l		

PROJECT: NANDIE
PROSPECT: ASTON HILL
GEOLOGIST: K. DEN WER
DATE: S.8.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER J. WATSON PAGE:
MACHINE: INVESTIGATOR
WATER TABLE: NOT REACHED
BASE OF OXIDATION NOT REACHED

HOLE NUMBER AHTO AZIMUTH: 040 TOTAL DEPTH: 30m. boo INCLINATION: GEOLOGICAL DESCRIPTION SAMPLE ASSAY RESULTS INTERVAL TYPE % SULPHIDES % GAL OTHER NUMBER GWKE SLST OTZ OTHER ASPY Au(R) Cu Рb Αu Ζn 99 0 - 1 1 - 2 2-3 100 Say 3 - 4 30 4 - 5 30 70 100 5 - 6 60 6 - 7 40 7-8 25 75 100 9 - 10 100 10-11 100 11 - 12 100 90 10 12-13 1995 13-14 14-15 100 15-16 100 16-17 100 17-18 100 18-19 100 19-20 100 20-21 100 21-22' 100 22-23 100 23-24 100 24-25 100 25-26 100 26-27 100 27-28 100 28-29 100 29-30 100 COMMENTS:

PROJECT: WAN DIE
PROSPECT: ASTON HILL
GEOLOGIST: K. DEN WER

DATE: 5-8.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE:
MACHINE: INVESTIGATOR
WATER TABLE: NOT reached
BASE OF OXIDATION: Not reached

	,	4471		IMUTI	·				NATION: 6	0				>тн: 3	3077	
NTERVAL	F	юск	GEOL	OGICA	L DE	SCRIF SULPF	IDES .	/•	SAMPLE		ASS	Y RE	SULTS	3		
(1117	GWKÉ	SLST	отг	OTHER	PY	ASPY	GAL.	FEOX	NUMBER	Au	Au (R)	Cu	Zn	As	Ag	РЬ
0 - 1	3 20	80														
1 - 2	5															
2-3	20	80														
3 - 4		100	,													
4-5		100														
5 - 6		100									·					
6 - 7		99	1						P91003	0718	0:748	55	370	100	*	8
7-8		25	75						004	1	0.814			1 .	0.5	92
8 - 9			100					2	005	3.670	1.271	120	110	200	0.5	22
9 - 10			100					2	006	1	1.564		130	<u>\$</u> ∞	*	60
10-11		2	98)	007	0.090		65	105	200	*	4.
11 - 12	70		30						800	0.072		70	160	200	*	58
12 - 13	98		2,						009	0.038		50	250	100	+	75
13-14	20		80					2	010	0.044		50	260	100	*	4
14-15	10		90					1	011	o.nb		30	260	100	بد	4
15-16	100		1 ,						012	0.008		20	290	100	ャ	5
16-17	95		5						013	0.017		15	2/5	*	*	4
17-18	100								014	0.027	0.032	10	230	*	4	5
18-19	70		30						015	0.021		40	410	*	ャ	50
19-20		70		clay 30												
20-21		100														
21-22		100		,												
22-23	5	75	20		,				016	0.106		20	190	100	بد	10
23-24	100	1			r.											
24-25	98		2													
25-26	1	85														
26-27		100														
27- 28	100															
28-29	100															<u> </u>
29-30	10	90														
COMMEN	TS:															

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: K DENWER

DATE: 6.8-88

RGC EXPLORATION
PTY LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J.WATSON PAGE: 1/2
MACHINE: INVESTIGATOR
WATER TABLE: Not reached
BASE OF OXIDATION: Not reached

NTERVAL			GEOL		L DE	SCRIF SULPH	IDES .	/o	SAMPLE		ASSA	Y RE	SULTS	3		
(m)	GWKE	SLST	otz	OTHER	PY	ASPY	GAL	FECY	NUMBER	Αu	Au(R)	Cu	Zn	As	Αg	Pb
0 - 1	7100								991017	0-023	×	30	840	100	> -	85
1 - 2									<u> </u>							
2-3	90	10	·						018	8		30	635	100	*	75
3 - 4	10	90				_			019	0.040		25	340	200	×	40
4-5		100	<1						020	0.024			575		<i>≻</i>	21
5-6		100						_	-021	0.009		35	690	200	* -	10
6 - 7		15	85						022	0018		35	630	200	7	77
7-8	10	20	70		trace	trace		1	023	710.0		40	· · · · · · ·	•	ャ	28
8-9		94	1						024	0.010		40	1200		ソ	30
9 - 10	4		2	Cay			•		025	0.012		30	460		ナ	37
10-11	ļ	85	15			trace			026	0.010		80	·	500	×	39
11 - 12	so	15	35					,	027	0.019		70	400		*	Sī
12 -13	5	95	·	·					028	*			360		*	70
13-14	10	90							029	×			480		*	2
14-15		100	· · · · · · · · · · · · · · · · · · ·					ļ	030	<i>></i>		20	330	· · · · · ·	بذ	2.
15-16	100								031	0.016			345		ン	15
16-17	100							-	032	0.044			250		ナ	5
17-18	80	<u> </u>	20						033	0.015			365		ا	10
18-19	100							-	034	+				100		5
19-20	30		70		<u> </u>			2	035	0.176			 	400		3:
20-21	25		75	<u></u>		ļ		2	036	01/2				200		4
21-22'	35		65	j		trace		1	037	D-045		<u> </u>	 	200		10
22-23	55	5	40					ļ	<i>©</i> 38	0.047				300		1
23-24	25		75	1	ļ <u>-</u>			-	039	0.046	 	<u> </u>		300		15
24-25	· · · · · · · · · · · · · · · · · · ·	10	85						040	0.117		 	+	300		30
25-26	1	45	1	_					041	0.193			 	300	 	3.
26-27	98	1	2	ļ		trace	1	-	042	0.043				200	ン ン	د ہد
27-28	1	20							043	X			260		*	5
28-29	$\overline{}$		40	<u> </u>			ļ		044	0.019	·		250	 	7	9
29-30 COMMEN		60	10	<u> </u>	<u> </u>		<u> </u>		045	0.042	i	150	<u>ال د د ا</u>	, co	L	<u></u>

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: K. DENWER
DATE: 6.8.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER J. WATSON PAGE: 2/2
MACHINE: INVESTIGATIOR
WATER TABLE: NOT REACHED
BASE OF OXIDATION: NOT REACHED

NTERVAL	<u> </u>	OCK .	GEOL	OGICA	L DE	SCRIP			SAMPLE		ASS	AY RE	SULTS	3		
(m)	GWKE			OTHER	PΥ	ASPY	GAL		NUMBER	Au	Au(R)	Cu	Zn	As	Ag	Pb
30 - 1	5	25	70					卢	Q9104b	0.055		95	e15	100	*	200
31-2	25	25	50						047	0.046	•	65	255	100	*	115
32 - 33	85		15			trace			048	0.009		40	370	100	+	5
33-4	35	20	45			trace	.		049	0015		20	420	*	ャ	5
34 - 5		40	60			trace			051	0.018	0.016	50	455	100	+	15
35 - 6	10	70	20						052	0.054		60	220	100	ャ	50
36 - 7	5	15	80	<u> </u>	支			3	053	0.064		40	215	100	*	20
37-8	35		65					5	054	X		15	180	<u> レ</u>	×	5
38 - 9	15		85					11	055	0.039		60	315	х _	ャ	75
39 - 40	25		75	ļ				3	056	×		40	295	100	*	25
40-41	35	ļ	65					2	057	0.018		20	230	7	*	15
41 -42	75		25						028	0.048		60	235	100	*	15
42 -43	90		10		hace	trace			059	0.021		40	160	*	*	5
43-44	100			-					060	7		10	80	<u>ب</u> د	7	5
44-45	100															
45-46	100		<1										ļ			<u> </u>
46 -47	100										<u> </u>					
47-48	100			<u> </u>												ļ
48-49																
1 9- ≨ 0		100								ļ		<u> </u>				
£⊙-§i	10	φ														
21-22	ļ			i	!										<u></u>	
22-23														<u> </u>		
23-24																<u> </u>
24-25															<u> </u>	_
25-26																
26-27																
27-28										<u> </u>			<u> </u>			
28-29																<u> </u>
29-30															<u> </u>	
COMMEN	TS:															

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: K. DEN WER

DATE: 6-8.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE:
MACHINE: INVESTIGATOR
WATER TABLE: Not reached
BASE OF OXIDATION: Not reached

NTERVAL				OGICA	L DE	SCRIF		,	SAMPLE		ASSA	Y RE	SULTS	3		
(m)	GWKE	SLST	TYPE */	OTHER	PΥ	ASPY	GAL	reoy	NUMBER	Au	Au(R)	Cú	Ζn	As	Ag	Pb
0 - 1	2		98)	991061	0411	0.392	50	40	300	*	55
1 - 2	\mathbb{D}_{-}													-		
2-3	,		99					2	062	3.574	3230	60	20	3 ∞	~	5 8
3-4	50		50					1	063	0.214		20	30	300	*	50
4-5	35		65					1	064	0.050		30	40	100	ャ	15
5-6	65		35					1	065	0.062		30	90	200	\	25
6 - 7	70		30)	066	0.031		20	80	*	7	20
7-8	20		80					1	067	0.012		20	50	\	<u>بر</u>	10
8 - 9	20		80					/	068	0.000		20	40	ナ	\times	10
9 - 10	25		75						069	0.012		20	50	≻	*	10
10-11		85	15						070	0013	0.022	55	95	200	*	20
11 - 12		75	25					1-5	170	0023		60	120	100	*	15
12-13		75	25					2	072	0.044		60	120	×	0.5	65
13-14		98	2						073	0.028		<u>55</u>	170	100	*	10
14-15	10	85	5						074	0.041		bs	80	200,	4	10
15-16	5	60	35					1	-075-	0.08	5	90	120	100	ــــــــــــــــــــــــــــــــــــــ	4:
16-17		40	60					1	076	0.265	0.239	150	170	100	7	7:
17-18		7	93					2	077	0.074		125	200	100	×	93
18-19		5	95					2	078	0.050		80	200	190	+	50
19-20	394	1	<1											<u></u>	<u> </u>	
20-21		100												ļ	<u> </u>	<u> </u>
21-22		100		i												<u> </u>
22-23		100									<u>.</u>			<u></u>		<u> </u>
23-24		100													ļ	
24-25		100													ļ	_
25-26	80	20					·							<u> </u>		
26-27	100												ļ	<u> </u>	<u> </u>	_
27-28		100									ļ			<u> </u>	<u> </u>	<u> </u>
28-29		100										<u></u>	ļ	ļ	ļ	_
29-30	80	20					,					,		<u> </u>		
COMME														. <u></u>		

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: K DENWER

DATE: 6.8.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE:
MACHINE: INVESTIGATOR
WATER TABLE: Not reached
BASE OF OXIDATION: Not reached

0-1	GWKE	SLST	TYPE */	I	_		IDES .	/a	SAMPLE	ı		Y RE				
1-2	25			OTHER	PY	ASPY			NUMBER	Au	Au (R)	Cú	Zn	As	Ag	Pb
2-3	\langle	95							991079	×		40	90	200	<i>ب</i> د	50
· · · · · · · · · · · · · · · · · · ·	ا ر															
3 - 4	20	30	50						080	×		60	160	3 <i>0</i> 0	×	4
	5	95							081	0.020		25	95	100	4	30
4-5		100	<u></u>						082	0.103		20	90	200	0.5	40
5-6	5	45	60					之	083	0.019		35	120	200	-بد	47
6 - 7		40	60		trace	Hace			084	0.015		30	80	+	*	ψC
7-8	90		10						085	*		20	50	100	ャ	15
8-9	30		70						086	0.011		25	90	100	0.5	2
9 - 10	69	30	1						087	0.012		25	75	ナ	0.5	20
10-11	10	90		**************************************					088	0.018		45	140	100	+	30
11 - 12	70		10					1	089	0.022		55	165	200	<u>۲</u>	141
12 - 13	5	15	80						090	0.152		60.	140	*	1.0	14:
13-14	80	5	15		 				091	0.130				200	-	25
14-15		85	15						092	0.084		80	500	100,	*	50
15-16)															
16~17		85	15						∞ 3	0.061		45	110	zcc	<i>≯</i>	60
17-18		95	5						094	0.074	0.078	90	225	100	ャ	4
18-19	;	100							<u>'</u>							ļ
19-20		100														<u> </u>
20-21		100									,					ļ
21-22		100		ĺ									ļ			<u> </u>
22-23		100						<u> </u>	·							<u> </u>
23-24	60	40											<u> </u>	<u> </u>		ļ
	50	50				·				<u> </u>					:	ļ
25-26		75			Hace		<u> </u>		095	0.025		35	300	7	*	30
26-27		97	3					<u> </u>							ļ <u> </u>	
27-28		93	7					2			<u> </u>			<u> </u>		
28-29	-	199	< /		trace								<u> </u>	ļ		_
29-30		99	1						<u> </u>							

PROJECT: WANDIE
PROSPECT: ASTON HILL
GEOLOGIST: K. DENWER
DATE: b. 8.88

RGC EXPLORATION
PTY.LIMITED
REVERSE CIRCULATION
PERCUSSION HOLE LOG

DRILLER: J. WATSON PAGE:
MACHINE:
WATER TABLE: Not reached

BASE OF OXIDATION: Not reached

107/107

			GEOL	OGICA	L DE	SCRIP	TION		SAMPLE		A C C	AV DE		·		
NTERVAL (m)		тоск	TYPE 1/	<u>'</u>		SULPH	T	T	1 '			·····	SULT	1 .	· I	F
	GWKE			OTHER	PY	ASPY	GAL	F	NUMBER	Au	Au (R)	ļ	Zn	As	Ag	Pb
0 - 1	7	80	20		,				991112	0.038		45	120	500	*	12:
1-2)															
2 - 3		75	25						113	0.027		40	135	300	*	145
3-4		95	5						114	0-011	0.016	35	155	300	*	30
4 - 5	799		<1													
5 - 6	100															
6 - 7	100															٠,
7-8	40	$b\overline{o}$														
8 - 9		100														
9 - 10	,	93	7						115	0-018		35	160	100	¥	25
10-11		100														
11 - 12		80	20						116	0.020		60	250	100	*	50
12 -13		98	2.						117	0.128		90	315	200	*	16
13-14		85	15						118	0.068		65	245			175
14-15	 	75	25					2	119	0-085		 	260		· · · ·	80
15-16		100	<u> </u>						 '''/							
16-17		99	,						<u> </u>	<u> </u>						
17-18		100	:							 						
18-19		97	3					 							 	
19-20		100	_													
20-21	10	90		,				+								†
21-22	1	100		7							<u></u>					1
22-23		100	<u> </u>	<u> </u>	· i									1		
23-24		 				<u> </u>				1						1 -
24-25	-	100								1					 	\top
25-26	-	100		 		ļ				1	<u> </u>			 		
26-27	1	100	ļ		ļ	<u> </u>	├		<u> </u>	1		 	-		<u> </u>	-
27- 28		100	-	-			\vdash	-	 	1			<u> </u>	 		-
28-29	┼	100		1			-	+-	-	1			1		 	+
29-30	 	100					 				<u> </u>		-			1
COMMEN	<u> </u>	100	<u> </u>	<u></u>	<u> </u>	<u> </u>	1		1	<u> </u>	<u> </u>	<u> </u>	1	1	!	

APPENDIX 3. ASSAY RESULTS FROM 1989 SEASON.

3.1 - 80# Stream Sediment Sampling.

PROJECT	Wandie		1	C l		0			
	T. K.P. Denwer	R G C EXPLORATION	N	54	'eam	sed.	men	X /::	_
DATE	May ; 1989.	PŢY. LIMITED		Dan	بدر/م	9 , L	V as	rdie	
SAMPLE	Vassived, EL	4.851. Walders#2 The Small copper show Low Seelened and 30 cm	D.A	As	Cu	Pb	Zn	S.R.	•
Q76601	just downstream from	~ Small copper show	0.15	27	815	30	25	A	
	well being auch no	hur sectionent up to 30 cm					İ		
602	well grussed 40 m	wide weathy incirred	0.2	٧-	30	10	10	C	
	drainage. Soily		,						
602	aumage 2004	, councily	0.2	-3	15	15	20	(
/	40 m as per 60	7		11	30	15	15		-
	15m as per 60		0.73	<u>'''</u>	25	10	15	R	
605	//	russed drainage, some	0.7	0		2		2.3	
		p to 3cm diameter	-	28	80	20	40	a	
606	Well defined neck	. Small (a? working	0.1	28	- 00			77	
(=	Sedement up to 30cm	, I mall (u' working		ļ ,,	70	35	40		
60 f	,	1.0 m wede abundant	10.2	14	70	30	40	17	<u> </u>
		mal working just upsheam.	 			ابر سر	1 -		
		red with grante sand.		15			65		
609	In wede well defin	ex ouch activesed up to Dea	0.1	53		i	85		
		red (incused) orcel, octive	0.3	27	85	60	110	A	
• • • · · · ·	sectioned up to 20) cou							,
611	1.5 m wide well de	fined creek, Sed up to 200	0.25	40	55		l .	A	
612	1.5m aspen 611		0.30	60	55	30	50	A	<u>-</u>
976613		well defined, sectiment up	0.15	30	40	45	85	A	
·	to In dear								
	Vaserved EL	4732 Vicinity of Silver Good	<u>, </u>				ļ		
QILLIN		leved week, sal ey to 10 cm.	0.3	10	20	225	55	A	
615		incresed him flathers and		4	20	/35	90	A	
616		5-1. On wiele poorly develope	10.15	2	15	50	35	<u>_</u>	
0/6	Svily creek did.	3 , very problem							
617	1. //	level about the coderist	0.2	10	20	30	30	A	
,	30 will all it	tuch abundant when sedement	0.15	2	15	-1	1	C	
618		getuted Catainage, some							
1.0	Soilly sectionent	I will defend chainne	0.1	10	30	35	30	B	
6/9	Som were grass	nd well defined chainage on diameter.						<u> </u>	
1	Jus Coment - 2				-			1	

PROJECT: Wandie		·			<u> </u>			
GEOLOGIST, K.P. Denwer	R G C EXPLORATION	1	_					
DATE: May; 1989.	PŢY. LIMITED	-	Damp	pling	, "	Na	rdie	٠.
SAMPLE Unserved EL 4	732 .	D.A	As	Cu	Pb	Zn	SR.	
& 76620 In wide well defined	mely sed up to 10 cm.	0.25	16	25	75	35	A	
621 15 wiche will defend	auch sed up to 30 am, ning of .	0.25	6	20	20	3≎	A	
622 2m wate well defined		0.40	41	20	10	25	A	
623 2m as per 622		0.2	.3	20	10	40	A	
624 0.5m wide well defined	rule minor quarte.	0.07	4_	20	5	45	A	
625 4.5m wiele defined 4	• • •	0.20	5	20	10	25	B	
up to som dear								
626 In will well def	-	01	2	20	5	30	A	
627 In wide well define	, ,	0.1	5			45		
abundant quest.						,		
628 2.4 mile increed	reel advantant 91- Most	0.1	2_	20	10	45	A	
sed up to 20 cm.								
629 In wide incressed on		0.15	4	20	5	30	A	
630. In will incised a				lo		20		
		. 1	15	25		100		
631 /m wich incised are	_	i i	4	_		40		
632 2m wide incised one	· · · · · · · · · · · · · · · · · · ·	0.40	14		10		A	
634 3m wide incissed of 634 3m as per 633.	null, sen up to sour.	0.2	8	30	5	35	A	
1		0.15	ь	15	5	35	A	
635 3m as per 653	1 51 + 60-	0.2	3	15	5	Зэ	A	
636 3m wide incirced or	,	0.2	3					•
Sampled below a	1	2	4	20	5	35	A	
637 4 wile mused	nech, Sed up to 30 cm.	0.5		10	5	25	A	
638 1-3 m wide crub,	Server of lat gly	0.15	4			<u> </u>	* *	
Vein 315/50 mpst	elan.			-				
<u></u>	S down the set	<u> </u>						
	Samples served through			-				
$\frac{\sim /mm}{0.7/4}$ Selve		1.26	6	15	165	40	A	
Q7639 2m wide incissed	creek sed to 20 cm, min of	0.33	12	20	215	 	A	
640 15 m wate incised	creek, seed to 15cm, mina gh	0.1	5	20	1-	55	ß	
64 /m wiche defined (not marred (rull,	10.1			-13			
sed to 15cm	•	1	l	1	Ц	L	 	

PROJECT: Wandle RGC EXPLORATION	INC	St	rcan	- S	ed 1	nend	
DATE: May, 1989 PTY. LIMITED		_	up/11				
SAMPLE Field Sieved To 1 = 1 mm, EL #732			Cu			,	
Q76642 10 m will well vegetated dramage	0.6		/5)	
Soil Son Come tops and	-	•	_		_		
501ly Sangel. Some topography.	0.15	9	20	90	35	3	
to locar.							
644 Sm wille poorly defined, I'm central area	0.15	41	20	(₅	55	\mathcal{B}	
with active sedement (sampled) just above Talled							
	•						
6x5 15m wide pooly defined dunage, soilly	0.1	41	15	25	35	<u>C</u>	
6x6 powile poorly defined drawage, some	0.15	- 41	20	20	55	<u>_</u>	
topography sampled a large little & active sed					٠		
647 20 m wiele drunge well graned soilly.	0.1	2	15	15	30	C	
648 20 m as per 647 large area of gt subusp stream	0.1	.2	30	40	ધ્ડ	\subset	
649 In wich incursed out sed eye to 10cm.	0.2	6	3°	60	80	A	
650 STD 6C4+		5	260	20	190		
016 651 0.5m well defined nich, active sed 420cm, min of	0.5	5	35	15	60	A	
	0.15	1 ,	35	125	50	A	
653 /m will incressed outh sed to 15cm.	0./	18	3=	65	55	A	
by 2m wide incressed ruly seel to 30cm, mino 9/4	0.1	7	ت3	(3ა	50	A	
	0.2	<u>6</u>	40	45	40	A	
656 0.5 m wide deeply maned week, sed & 15 cm.	0.2	16	55	10	20	A	
657 In wale incressed wich seet to our abades for see	0.35	17	20	220	25	Α	
658 In wile incissed with sed to 10cm.	0.15	1	25	60	3 ⊃	A	
659 was 658 but sed to 30cm	0.3	10	15	120	ت3	A	
660 0.5 m will incered nech, seel \$ 10cm,	0.1	6	30	40	65	A	
min gt.							
661 Im will incressed auch, Sed to 10 cm.	0.2	8	35	75	85	Α	
662 30cm wide incessed with sad to 10cm.	0.1	1	30	ت3	60	Α	
663 as per 661	0.3	7	35	20	55	A	
bly In wich incused week sed to 10 cm.	0.1	4	35	30	80	Α	
665 Integrated Damage 5m inche well graved of will		9	25	55	55		
	<u> </u>						

PROJECT: WANDIE . GEOLOGIST! K. P. DENWER .	R G C EXPLORATION PTY. LIMITED			am : hing	,			
DATE: MA 1 1989	TIT. ENVITED				WA	NOIE		
SAMPLE		D.A	λs	Cu	Pb	2n	5.8	
976666 Incined week 2m wide on m	inor active Sed Vegetarted	0.25	5	ت2	45	50	B	
667 20m wide grassed dain	ed silly	0.1	5	20	95	56	C	
too prized oeth no active		0.2	6	10	35	40	B	
669 20m Int dairage read	ated dabudant at in	0.1	4	io	40	40	ت	
over-my wer.						·		<u></u>
670 Invised creek Im wide	abundant atzsand	0.4	4	5	25	10	A	
fladed by the cretine	aus dathorn.							
671 20m wide integrated de	•	0.2	3	io	5	25	c	
672 In wide incresed were	•	015	9	15	35	40	A	<u> </u>
alandont arz in de						,		
677.2m wide incressed		25	h	20	50	30	A	
674 3m wide invised		0.6	7	5	5	20	И	
	d 913 sand difficult to get							
-80# seive ~5hg								
675 0 5m wide creek 5.5. up	to 200m mines of	015	10	5	30	25	A	
676 Now incressed creek local w		0.15	 	5	ట్	30	B	
	lant and size material.							
677 Reply initised orech 2	Ψ	01	15	10	195	65	Α	
678 In wide increed week	•	0.35	5	5	40	20	A	
	xele. Abundant sand size							
1								
679 2m vide Sed 25cm	alor don't Qta	015	6	5	25	20	A	
680 Im wide missed c		0.1	11	10	55	70	A	
•								
Qtz abandan + Sands		0.15	1,	10	80	35	B	
681 5m wide stream as			'	 	1			
not imined some a		0.25	- 4	5	100	35	c	
682 Integrated during	on more worsend thes		-					
53 Hell defined duringe	imped sed to low	0.3	8	5	45	20	B	
683 Hell defined arminge	. Sed to 30cm some QA	0.1	ь	5	50	20	A	
1 45 2	week any don't at both	0.1	1	5	35	40	A	
D.A.: Drainage Area: (km	2, black of oily blues.					_	•	

PROJECT WANDIE STREAM SEDIMENT R G C EXPLORATION GEOLOGIST: K.P. GENNER SAMPLING HANDIE. PTY. LIMITED DATE MAI 80 SAMPLE Q76686 3m wide inissed creek abandont Qtz sand Qtz to 0.3 15 687 acpty incissed creek 3m wide abandant achie Sed to 20 0.4 25 5 70 688 10m wide integrated during gursed silly Sed 30 45 689 3m width of actie Sed but not incissed vegetated 20 some ats 690 Jon wide graned & well defined daming 15 45 55 ے 0.1 silly redement. 691 20m wide integrated well defined drawings well 0 to 10 15 55 gand of silly 692 mired creek aroudant active sed to 34 m lots of 0.4 5 65 40 ats float alandent send. 693 Inwined well defined creek, veia Rts, Sed to 32m 0.7 1 50 10 40 2km West of Taldeland Sumpes sewed to -80# 55 694 5m Integrated armage garred, silly eary sumpling 0.1 30 Vill sure)? 695 20m wide avaninage trees + gran soily Sect 0.4 4 20 696 Variable creek, paket of inimed creek & wandom t aghire sed to Sum (A hya) Integrated gramed damang lon wide. A 697 deepty mined well defined such sed to low 04 0.1 8 15 618 20m wide integrated grassed soilly draming 65 95 699 com wide driving some billating like holes 0.1 sampled in a c'hype location 450 160 25 110 076700 STD 6C6.

D.A.: Drainage Area: (km²).

PROJECT WANDIE R G C EXPLORATION STREAM SEDIMENT GEOLOGIST K. P. DENWER. SAMPLINE WANDIE PTY. LIMITED DATE JUNE 89 SAMPLE ~ 5km Nest of Valdeland samples sound - 80# D.A As Q76701 loom wide during over with trees of vegetation 0.35 22 75 45 D quariand Biffulo like Sed eary to collect / it! 25 <u>_</u> 12 350 75 702 Well defined 5-10m wide week no active Sed willy. 0.1 0.5 25 20 703 Peoply inized ceek In wide active Sed to locar 15 0.1 22 40 90 4 704 missed orech In wide wandent sed up to 10cm 55 65 19 lo ß 0.1 705 5m wide dumance not incissed some sed to Sem ma be float. 15 55 0.1 25 120 ß 706 3m wide some of active Seil graned well defined orsch but not incirced. 25 | 80 160 01/27 701 As pe 706. 0.15 14 15 25 100 708 Inworld week 3m wide Sed to Lown inc 913 A 25 75 20 709 3m wide week active sed to sown vein Qt3. 0.5 45 35 710 Integrated damage (Type) with according with out 0.15 6 В (A) lamped A type Sed to 5cm local Qtz a trops 15 10 40 01/8 711 As per 710 712 Both A & Characteristics small creck (4) & major creck (c) 25 0.25 9 20 B but ab whop. 713 20m wide well defined during well granted 20 45 01 9 C (no Trees) No active Sed. 15 45 60 714 lon wide integrated damage well grassed No 0.1 15 Sed. 01/15 15 40 50 715 Inworld ouch sed to 15cm veins Qty. 716 2m wide imined week sed to soom Some Qty. 0.4 23 15 85 95 42 717 as per 716. 718 Im wide incined week sed to Sum abandont 40 160 01 at in drawing over 710 In wide deeply missed vech sed to 15cm 15 55 | So 02 10 15 100 720 15m wide Integrated damage well graned for Tiers 01 85 85 75 ß 15 721 Smuide daninge some sed to Som ا 5.0 70 45 722 In wide active incissed creek Sed to 15cm 0.25 10 inc abandant atz.

PROJECT! WANDIE.

GEOLOGISTI KPOENWER.

RGC EXPLORATION STREAM SEDIMENT

1	JUNE 89	PŢY. LIMITED	5	AM Phi	~)&	~AA.	10,€	•	
		eland Samples Seized-80#	D.A	As	Cu	Pb	Zn	5 R	
276723	As per 722		0.25	10			55		
1 .	3	seh sed to som Inc Qtz	03	11	15	ထ	70	A	
1	Ocephy incisad creak Sec		0.35	18	15	135	75		
726	Will developed week Se	d to boom Arandant Sand	0.8	5	5	15	20	A	
	3km hest of sive s	pain - 80# Samples.							
727	20m wide integrated de	ainage defined week no	0.15	5	20	50	70	C	
	Sad .								
728		inge no trees sampled	0 05	3	25	6s	80	ر	
	acros tach.	· ·							
729		ed creek Sed to 12 in but	0.1	2	ت3	د2	las	B	l v
	typically shale 24cm								
730	· -	d creek, shaley flat sed to low	0.2	4	30	25	85	A	
		to local lac Q13 abandont	0.1	2	35	80	105	A	
	Oty attrop in arina								
		lat shaley Sed to low	0-3	3	ვი	5	75	A	
		very verical sed gramed but	0.1	3_	30	15	60	c	
	no trees.								L
734		ye small o In will were	0.1	12	15	[bo	115	в	
	of achie Sed to S								
735		some sed to sem luc atz	94	10	15	70	145	ß	,
		A week Sed to locu Otz	0.(1 .	15	20	55	A	
•		daining at veris ortage	0.1	8	15	55	55	C	
	4	. was preferabilly sumpre						,	
738	5m wide incisect death	•	0.3	5	15	25	50	A	
1 20	fully due stream								
	Chadplain.	<u> </u>							
739		rech inc 9ty creek raisely	0.5	15	15	45	110	A	
	becomes a type.					_			
740	docate missed week	sed to low vein 013	0.3	29	15	85	135	A	
	sampled int dismote	an from Ag/Pb shows.		<u> </u>					

PROJECTI LANDIE

GEOLOGIST IZ P DENWER.

DATE JUNE 89

R G C EXPLORATION STREAM SEDIMENT PTY. LIMITED

SAMPHINE HANDIE.

	JUNE 89							
SAMPLE	3km West of Silve Spring samples Sweed - 80#	D.A	As	Cu	Pb	Zn	5 <i>R</i>	
Q76741	As pe 740 Sumpred 90m upstream from 740 to	0.3	19	15	80	145	A	
, ,	see what if any contribution from Ay 196 shows.							·
742	bur wide garsed daning minus sed.	0.1	15	10	65	105	С	
	-	0.1	191	io	65	125	A	
	O'E upstream Som							
744	Washout in C'type week Sed to Sen	0.2	14	15	65	80	ß	
	Im vide inited drawage. Sed to 10cm application	1	15		80	115	A	
	d'airane.							
	Invised each los of washarts sumpled up skern where	0.15	15	15	65	75	A	
	anstart invision Sed to 15cm					,		
	aboral James 15 15 Car							
	1. H winds In Ical Han Port - Port (n. C.)							
7.12	In the vicinities of the Last Hope Propert - 80# (504)	0.1	5	15	600	35		
	20 m wide integrated daining No Sed.	I	6			75		
	As pe 747	i	16			115		
	Sed to local line Qtz ove width of Im.		4500					
	STO 6C4.		<u> </u>			105		
. 751	low inde grand daining small lock deep	0.62	20	13	20	1-3		<u>.</u>
	draining channel & mins sediment was	-		<u> </u>				
<u>'</u>	sampled.							
752	2m wide Ini deep invised draining within	0.3	24	25	95	165	A	
	a floodplane sed to loca		ļ					7
753	Sm vide soilled of gransed armange	0.05	8	15	45	85	ب	
•	15 m wide drawing gursed no Sed.	0.1	8	20	30	80	۷.	
	as Re 754	0.1	6	25	35	75	د	
	In wide can of Sed to been within a drivinge	0:25	7	25	40	90	B	
	Su side.							
751	In wiche week Sed to 15 cm Sampled just down	G . 1	7	25	30	90	A	
	stream from aty vein In wide 110/75N.				<u> </u>			
758		0.5	13	30	85	120	A	-
	do 15cm.				<u> </u>			
1	2m wide deeply inised 3m week Silty Sed to 300	1	11	25	5	100	1	

PROJECT WANDLE

GEOLOGISTI R. P. PENWER.

PTY LIMITED

STREAM SEDIMENT SAMMINE WANDE.

DATE	Jue 89.	PŢY. LIMITED				12 JA 14			
SAMPLE	In Vicinity of Last Hop	& Prospect Sumples Serial - 80#	<u></u> <u>р.а</u>	As	Cu	Pb	Zn	\$¢£	
76760	lyined week I Sm wide Sed	to law but typically & zem		12	25	.2	80	A	
	washout sampled sed		0-1	20	25	. lo	Ü	В	
			025	17	35	30	100	A	
	Icm, unics of z.	0 9	, i						
	2m wide week with Sec	I to sem luc Qtz.	025	35	40	60	95	ß	
		:	0.15	1	20				·
		will In Sed, Sed to sem.	0.1		20	20	105	B	
	Sampled a washout . S.	-	0.1			30			
		Poem aty felate! upstream		2	15		55	1 1	
		occur 41 (from the production					,		
	In wide mired case	d c d L 16	0.2	. 9	20	50	65	A	
			0.2		1	95		1	
	low wide integrated a			. 14	1 _	145	t		
		Sed to 20cm inc Rtz 'Note'		177		1.75			
	1 .	but different sample type.		79	2.2	125	75	A	
	In wide mused ver	h sed to lace Inc lots of	0.1	1		123	-		_
-	Q13.		3.4	5 12	25	30	50	A	
	In wide washout of		1	 		.1	48		
		A, ashie Sed to Zocm		5 12			40	1	
774	3m wide deep washo	of heaps of Sed & Jean	0.3	7	15	30	40	77	
· 	chech beatise.		ļ		<u> </u>				
775	15m wide graned	danage saly.	0.	u	20		40	C	<u> </u>
776	7 m wide daming	ge sil, grun no Sed.	0.	1 4	10	65	20	C	-
	10 5m wide slightly in	issed creck Sed to Scin Inc	0.0	s U	10	22_	40	3	
	atzin abandance.				ļ		ļ	<u> </u>	
778	15m wide daming	sill small frees	0.0	5 8	to	30	50	<u>_</u>	
77	1 30cm wide very wee	thy mined week Sect to	0.	1 6	15	25	40	B	
	3cm.							ļ	
78		efined warings soil + Trees.	0	1 7	15	15	- I		<u> </u>
70	I ha wide weather inci	sed daining sed to low	0.	5 14	25	20	65	A	
<u></u>	ahundant Qtz.	<i>_</i>					ļ <u>-</u>	ļ	
ļ	A C	be daming silt bed to	0	1 7	20	15	600	A	

D.A.: Drainage Area: (km²). locm but frequelly < 2cm.

PROJECT! WANDLE R G C EXPLORATION STREAM SEDIMENT GEOLOGISTI K P DENWEL SAMPLINE WANDE, PTY. LIMITED DATE JUNE 89. SAMPLE In Vicinity of Last Hope Inspect - 80# D.A As 276783 In wide well developed missed wach sed to 0.1 10 25 45 80 784 Vactive Cach sed to 3rm in a harfels of brunte 75 150 Wandant Granita Sand in crech. 795 Im wide very active crech sed to your 40 110 780 Vactors creek Sed to your Redamnather hornfelo 015 28 85 light loss greins of gramit. 787 4m wide Vacture crech Sed to Ison med hornfels 06 45 35 silk minos granite Vicinity of cod of the hore - 20# 788 In wide damage weath mised sed to 15cm 0.15 61 25 Inc ats Silt hornfels. 789 0.5m wide daniage Sed to San and fyzically 4/40-1 20 790 0. Su wide weather mussed dumany sed to law 25 015 32 includes Otz some Ots in duringye wen. 791 That visible daning 05m wide Sed to San min Ot 015 19 | 25 | 792 OSm vide inised daring sed to 15cm med houfels 01 19 alt 30 40 95 A 793 Vactive creek, wornfels inc silt to 20cm. 0.5 14 3⊅ 794 B pc 793 So 310/905. 0.2 19 795 Ozephy missed duringer Sed to 15cm inc horfels 35 80 Α 20 015 12 gamile failt 0.05 SNR SNR SNR SHR 7960-2m wide well developed ouch Sed to 25cm 797 0.3m wide missed week hould sed to bein 25 40 40 A 798 mised vell developed each hornfels gate to 3am 20 50 01 799 well developed ouch hornfals sed of all share to your some A 0-4 25 ploble caryformente. 700 130 25 55 2761800 CPD.

PROJECT Wandie R G C EXPLORATION STREAM SEDIMENT GEOLOGISTIK PREMIER SAMPLINE, WANDIE. PTY. LIMITED DATE DNE 89 SAMPLE Vicinity of Crest of the wave - 80# Si Sampling D. A As 276801 1-2m wide invoed crech as pe 749. 2= 0.3 90 30 85 802 2m incored wach only min warse Sed to 2am typically 0 1 27 803 In wide weather missed crack abandont Sed to icem 0.4 4 25 45 35 Note! Sed not hornfels 804 20m wide drivage granted no trees silly Sed 01 30 25 105 805 20m as per 804. 0.1 25 50 ت 2 806 well developed I'm wide orech sed to 200 m Sed is houlds 0:4 2 S | 65 801 25m dainage graned wil 5 15 0.1 808 2m wide mired orech sed to locus but freezently 62cm 0.1 65 275 Compled in extensive anshart) not action of beating. 809 within 10m wide well defined daring Im wide Sed to 01 20 45 80 13 Scm. 810 Well developed week sed to exem abandon I howfels. 15 25 0.3 811 O. Sm mide well developed each sed to som. 35 10 ?c 812 Well developed ouch hanfels silt to 25cm fine material 0.4 25 75 13 not hunfelsed. 813 Im wide weathy incised wech sed to 25 cm humfals. 95 A 01 25 50 114 2m wide well developed week Sed to 20cm silt. 25 80 40 0.1 815 I'm wide wech Seat to See in granwache in clots (same but) 25 40 80 A 0.15 75 25 4 0.6 816 3m as per 815. 817 In wide mised ouch randed hyufels seed to 30cm 70 A 10 0.3 A 15 70 2თ Ø·3 818 Im as per 817. **C**_ 60 12 lo 40 819 20m 0.1 25 80 25 А 820 0 Sm wide really mixed weal hornfelocal (weath) generaled 0-1 821 /m wide os por 820. 25 A 15 70 0.1 10 65 20 25 A 05 14 822 3m aspc 820 15 70 A 823 In wide Namage Sed to 15cm Inc Q13. 0.5 lω

D.A.: Drainage Area: (km²).

PROJECT LANDIE STREAM SERMENT SAMPLINE R G C EXPLORATION GEOLOGISTIK. P. DENWER HANAE. PTY. LIMITED DATE JUNE 1989 SAMPLE S.W. Come of EL 4732 -80 H D.A As Cu 276824 In wide weakly doveloped which sampled a answert sed 0.1 24 25 25 80 to locus med silt. 85 825 lan wide damage vegetated only miner sed. 45 45 0.2 64 0.1 16 30 826 Im vide washast sed to 15cm med Qtz. B 60 5 75 35 821 10m wide siled damange 0.15 21 30 65 A/B 828 2. 5 wide damage silt minor of to 25 cm. 20 15 0.15 io 829 2 m wide as per 828. 15 20 60 0.25 14 830 Sm wide Chyre daining with mobile (Atype linking 01 B 35 95 40 Sed (which was sumpled) is It \$ abylining to Sum 831 20m wide soiled during 63 | 55 35 95 0.1 15 832 2m wide raky crack sed to 3 am typically agrey when 015 10 A 20 55 politice units with dots smiles to these deserved at 76815 minor aty. 833 15m as per 832 Qt3 (generale clotted flast) 15 5 A 0.1 45 15 5 834 0.5m as per 832. 0.05 10 35 | A 835 2m as pe 832 noclots in genracke Sed to 25cm 5 A 0.25 10 35 836 15m wide weathy missed creek sed to 25cm hunfels 15 35 A 015 dolling. 20 45 B 01 9 15 837 In wide ouch Sed to law only mins at 3 Au dep low downsteam, mething year with of this Gold Muse ?? 858 In wide veok pooly Sed to Sen mue abbled onle 0 1 41 40 45 55 35 A 015 39 839 In wide suchy creek sed to 20cm med hanfels mins adding. 25 Α 0.15 16 15 45 840 ND pe 839 16 15 40 841 as pe 839.

842 rocky creek Im wide guster + silt to 3 cm not haufelded 0.25 15

843 weathy incred drawing 0.5m wide within 5m during

844 As per 847 stroom sed are 2m upto 300 m chem

30

45

35

20

30

35

35

0.3

0.3

44

77

D.A.: Drainage Area: (km²).

Granite sand!

sed to locm.

PROJECT: WANDIE

GEOLOGIST: K. P. DENWER

DATE: 500 1989

R G C EXPLORATION PTY. LIMITED

STREAM SEDIMENT SAMPLIES WANDLE.

DATE	Sons 1989. PIY. LIMITED							
SAMPLE	Vicinity of the crest of the wave Propert - 80H	D.A	As	Cu	Pb	Zn	56	
Q7-845	O.Sm wide aby vech sed to Dean grande t	0.25	19	35_	15	40	A	
,	wenthered sillstone.							
846	I Sm wide week as je Bys more siltstone minor amounts	0.4	13	15	15	50	4	
·.	of 9/3.							
847	In wide rates orech as pe 845 grates to Zorn in worth	0.1	12	د2	5	35	A	
•	see notes for lousting							
848	0. Sm wide dringe missed V. ratey Qtz s. Ishme	0.1	8	20	15	40	A	
	miss quele to bem.			,				
	In wide rates during sidinal to Even is pedeminal	0.2	14	35	35	85	4	
	grelie minor dotting in garte as observed at 76815.					,		
850	STO PHH.		31	370	30	245		
	1 m as pe 849.	0.4	įo	20	د2	45	Α	
	Im as pc 849.		(0	30	30	60		
853		0.2	9	15	30	35	4	
854	0.9m wide during Sed to 20cm Sed in touche +	0.1	14	20	50	75	8	
	silt guche = police comey - 5-10/. Oty chit to Sum.							
855	I Sur wide ruly week ned to 30cm Wohin guele	0.1	10	20	20	50	A	,
	muis pelble gude - dots way be a weather effect				ļ <u> </u>		 	
856	2m as per 855 sed to 50cm.	1 .	7_	10	lo	30	4	
857	I Som wide rate daniang cause gucke with obtate	01	/2	.15	10	35	1	
	2am.							
SK-P	In wide very raden which cause grade to toom much of	015	18	25	10	25	A	
02.9	grate has a carbonate appearing with sufaces that look							
	Tile Stylites.							
	In m per 858 sed to Sam.	0.3	14	25	25	40	Λ	
	Im as pe 858 Sed to 20cm.		31		1	35	A	
	3m wide not developed week sed to boun		23	25			A	
1 321	nicholas guela, pettle of siltatare.							
SEZ	2.2m with week daming sad is deeply weetherd	01	15	10	15	20	A	
	queha minor Qty to 15cm.							
				1				

PROJECT' WANDLE. R G C EXPLORATION STREAM SEDIMENT SAMPLING GEOLOGISTI IZ PUENWER WANDLE. PTY. LIMITED DATE Source 89 SAMPLE In Vicinity of Cred of the Lane Propert - 80 H. Q76863 [5m wide mised daming with flows in such 2.5 29 30 50 separate channels bedomietely guetre to Sam. 25 18 25 15 70 864 Smide missed Med grake mins Qtz to 30cm. 0.6 23 45 45 865 3m wide raten crack sed to born ped con se grube minor of and siltstone. 25 15 45 0.6 45 866 2m ns per 805. 867 0.5 m Weathy missed damage Sed to Scm. 20 24 40 55 868 0.5m wide med weatherd shake miner aty + guicke. 45 25 869: 0. Su wide massed wech large unweathered gake 0.05 barbles to 20cm typically Sed < 5cm and treathered Guide . 870 0.3m wide weathly missed creck sed to Som 0.15 14 25 55 15 but hypically weathered Carche 62cm. 871 raty crech sed to 20cm perhaminathen gurche 01 with five material being weather! 25 1 0.15 6 15 55 872 as pe 871 Rty astrops within daininge. 25 70 0.25 20 873 as pc 871. 15 7*o* 814 0.5m wide weathy mised fresh grate, Q13. 25 0.15 11 25 35 875 Im with poly defined daring hears of sed 0.15 inveated oxide. 876 raken over fresh grache to 30cm Sed in undanged 0.1 4 35 45 A 10 35 ß 0.1 8 25 5 817 O. Sm wide creek as per 876. Æ 0.15 54 40 10 45 878 Im ruley veck sed to 30cm grahe mins, Qtz **3**0 15 40 B. 0.1 879 In as per 876. 25 90 880 Weakly missed rocky creck sed to 25cm med A 35 0-1 881 Hell developed creak mused with bunks Sed in 0.6 42 40 50 95 predominatley queche with miner Qtz. 0.1 42 45 90 165 882 O. Smide V wealth mised damage very sily landy minor Sed minor aty.

D.A.: Drainage Area: (km²).

PROJECT: WANDIE	R G C EXPLORATION		Sra=n					· .
BATE Sine 89	PŢY. LIMITED	אל.	JI CEM			T SAN	MPLIN	Ċ
				ト	ANDIE		-•	_
SAMPLE In Vicinity of Crest of Lan	re fuspect - 80#	1	Λs	Cu			54	
276883 priviled creek weathered on		0.2	50	50	35	170	A	-
15cm income mins					ļ			
884 0.5m vide weakly mai	sed week Sud to journ as	0.1	45	65	60	175	6	-
A 833.						<u> </u>		ļ
835 Im wide with dainan	-	0.1	37	35	40	150	B	ļ
Veining in damage						 		<u> </u>
896 weath mused week pr			26	40	1	120	1	<u> </u>
887 Im wide missed racky or		0-4	33	40	90	190	Λ	
Pty staturited silt, med	1 s. llstone 334 GON in						ļ	
silkslane bedding.					ļ			
888 10 com wide interpreted	daninge	0.1	44	45	65	150	C_	
889 5m wide nitegrated	I dringe soilly very	0.1	69	25	25	160	ح	
miss sed.				,				
890: 15m with wech incred	, Sed to 20cm Sed is silt	0.3	42	35	70	160	A	
guche and miner at	3-						ı.	
89, 2m as per 890	•	-1.2	63	50	100	230	A	
812 2m wide weathly incise	I creek sed to 15 cm in	0.6	47	25	130	170	A	•
med (oxidised?) quick								
893 In wide rachy creek		0.35	55	35	160	135	A	
gyche siltature mis 1	•							
894 0 Sm vide a pc 8936		0.15	44	25	165	140	A	
fighte (not observed a								
895 0 Sm wide oreck Qtz.		0.2	45	35	17.0	203	B	
2.	· •						•••	
his fats alw.	- sem ferare ve por							!
896 20m wide wheyated a	Variante Charleson has Pate la	0.2	j (,	20	75	120	<i>C</i>	
dyles) sil.	1 mour in pare		· · ·					
897 0 Sur wide dumang vi	1 cad all lone and a	0.05	48	25	60	125	B	
C'daman siltene 11		<u>~</u> _	, <u>, , , , , , , , , , , , , , , , , , </u>					
898 O. Sn wide Guille + Qtz		0.05	21	40	15	70	В	
899 In wide ruch used (0.4	24	40	15	60	Λ	

PROJECTI LIANDIE. STREAM SEDIMENT SAMPLING R G C EXPLORATION GEOLOGIST K. P. DENWER WANPIE. PTY. LIMITED JUNE 89. SAMPLE In vienity of Cest of ware Prospect 580 175 25 276900 STD 110 Bill lang. Midwen between God of wave of 8-1 25 Q 76901 Dm vide Tukewated duringe min 1 Qtz in bed lobindamang 21 35 70 55 55 902 In wide really mixed creek alt get to Sen some Qts. 25 0.1 44 **C** 903 km with sigly duringer suranding Sedoran Sthans 40 25 40 20 0.1 904 2m wide abandant Sed + Jam Inc Qt > filt Gwlow. 45 25 80 A 0.3 72 25 905 20m wide soled danner. 20 5 0.1 5 80 906 Weakly mised creek o Sur wide (samped just before it become 015.42 40 25 a Ctype Silblane & minor Qtz to 15cm. Cl 120/6250 907 0.5 iseaffy developed during within a flootbain abandont at, 015 28 40 35 85 В wikin daning acci-908 Com vide integrated dumange formatt Som long Sm wide 120 trely 0.1 35 (ge) 100 lo porpher at this local Vicinity of west Bulkert. - 80# Aream Sed. 909 muide ouch bed to low fracestly sit minor at & felick. 0:15 55 25 32 120 55 40 15 110 com vide integrated dairage - sinty. 0.1 30 111 Im wide week on shale bollow sed to Sun luc atzall febite 0.3 45 39 25 35 912 In wide week god to low althou line union atythetiste 45 0.3 38 0.11 53 35 90 413 02m wide weakly mired creck sed to lam Med sillstone mins at a felsite. 25 25 60 114. 3m wide washout sed to been med silf mins. 8/3. 0.15 29 80 Ø 25 65 915. Bin wide washoot will in San wide during Sed to Sam is pred 42 025 silblone with minor atz. 85 55 916 10 m x 3m vide wordsot in 10m vide flood plain sech to law he 34 20 0.1 care sized Rty tilt. 175 85 917 Smide soilly damage dandant aty rains, aly is bladfulike 20 0.1 with abundant Fe ore on surface. 20 55 7*o* | 0-1 20 918 10m Integrated during. 114 0.5m unde puty inised draining within low ande interpated 185 125 72 20 04 danisage sail to Sem pad owka min. at 3 filt

PROJECT Wandie R G C EXPLORATION STREMM SEDIMENT SAMKING GEOLOGISTIK. P. DEMIER PTY. LIMITED DATE: The 89 LANGE. SAMPLE In Vicinity of West Bellist - 80 # 58 D.A As Рb Q 76920 In wide well developed week Sed to semfine creke flots of 0.3 44 15 80 921 Sm vide ouch sed / Sun pedanicalley aty miner carela 0.1 50 95 50 20 4 922 2m wide usch sed to 5cm inc sinche of sill (min) 0..7 15 80 15 923 Im wide orech sed to law inc about of Enclee + kess oft 52 60 0.1 A 25 924 1.5m wide wech sed to law in med silt mino 0/3. 85 A 025 20 925 Im wide damage Sed to Sun luc shale Atz of Gucke 30 0.25 41 15 926 In wide weather defined creck like of washart ned to locur is at 0.3 15 35 26 I buche. 921 your wide intropoled duringer 0.1 16 25 928 In wide washat within low damage sill to Seen falymin. 45. 0.05 20 20 45 929 lam wide soilly drawing one 0.2m with wer of Sect. 0.05 50 930 muche damage silly sed to Sen 25 85 0.2 A 17 Vicinity of two Sister - 80# 931 o Sm wide mixed week shaken Sed Ridge to East of his is well 0.05 65 25 25 15 At veried 132 In wiche med shales Sed to law miss P/3. 2.5 40 25 80 04 27 75 933 Im wide mixed excell sedwiented week sed to Som is med silt but miner shale + ats. 934 by wide mised viamany sed to low he had silt of mise aty 015 73 80 15 35 935. O Su unde washout within 3m down ange seed to 2cm heed silt and hairs 105 ato A 65 136 Omwide week sed to bem mis Otylin fact have sumpled on 0.5 21 15 25 little side wish repeated main orect on 958) 937 bu vide invised veck sed to Sem 91, +50/. Grache + silt 5 0.5 25 60 938 O. Shr wide incised oreck about at to Sen miner bucket silt 0.5 18 25 30 65 939 ISm wide maised week sed to law in siltstone bucke + 20 90 0.15 min of the Guche. 55 25 15 Α 0.25 36 940 lm as per 939 however most city

D.A.: Drainage Area: (km²).

PROJECT	I' WANDIE.						-		
GEOLOGI	STI K. P. CENWER.	R G C EXPLORATION	DN .	STREM	M.				
DATE: -	Jue 89	PTY LIMITED		€an				.	
	In Vicinity of two Siste	1 - 80 H		As	W41	1	1.	500	1
Q76941	3m wide week sed to low	is predominather aty will some	i	12		Pb 25		SA	1
	all fanke.	15 25 25 25 25 25 25 25 25 25 25 25 25 25					<u></u>	"	
l l	_	2	0.05	17	20	10	75	c	
	Iom wide integrated daring		١.	l	25	1	50	8	
I .	· · · · · · · · · · · · · · · · · · ·	wide Hovelphin very 1. the consessed	0.05			1	40	B	
'17	3m wide washout with 10m	som age see to you me	0.03	1 ~ 3_	~ ' -			 	
900	Guelce + Atj.		<i>a</i> .	7	11		7	مر	
		damang sed to Sem sill + cache		30		Ι'''''	70	1	
146		woohout 2am wicke abandont fine	0.2	23	25	-	93	13	
4.5	Sed to 3 in is predominable					,			
	2m wide mired week Guch			26	20	30	55	A	
		ne becció bache				·			1
	3m as pe 147 atz is a		025	16	200	10	70	A	
949	3m washart within lom as	amonge sell to low large	6.15	29	15	Co	45	4	
	at ac aty make dish	buchefoilt.		ļ					
. 950	STD			/too	340	35	80		
951	Im wide rocky cech sill	Shone bod sed to Journ abandont	0.1	40	25	15	50	4	
1 1	ab silt lesse buche.								
952	2 m wide daning sed to	lam in hyridly siltotone	0.4	34	25	ان	65	A	
	with miner atz (mapey) no								}
		y futher up the ridge whated							
	I samples.	31 - 1							•
953	Zin wide maised week wa	under to sell be 15 cm line als	0.4	20	25	5	60	4	.:
	•	·							
160	buche &	by ho boun in week + s. 11stie	0.15	jo	15	5	45	Α	
1		.,	0.4	6	15	25			
	_	bed sed to lown is ped sill-	~ 4					-4	\dashv
200	muis at		0.5	5	25	5	50	A	
	, ,	isch sed to Exm large metail		<u>.</u>			-	~	
	at five silt/Gwele	1.11. 1.16. 0.1.11	1.2	13	20	25	50	A	
		in but fine material is ped it	0.3	10	lo	35	20	B	
457	3m wide worker frew june		J J	`					
L	15-30m flasplain same Qtz	- com per rend.	L	L	J	L	· · · 		

PROJECT NAMOJE	D.O.O. EVDLODIE			·				
GEOLOGISTI K.P. CENNER	R G C EXPLORATION	$ M _{2}$	KENW	(DEO.	wen.	ا کیارہ	المالم	£
DATE! JUNE 89	PŢY. LIMITED			LJA	NOIE			_
SAMPLE In Vicinity of two Sust	es - 80 H	D.A	λs	Cu	Pb	zn	56	
Q 76959 Jon wide integrated	daning.	D·1	7	lo	100	50	C	
900 Steam wish of a sever		0.1	20	15	.245	35	ß	
unterial Pty smaller sil								
	21 to 15 cm fine makeril silt	0.1	62	20	30	30	6	
962 15m wide integrated a	-	0.1	9	15	25	25	(
963 lan as pc 962.	0	0.1	4	15	25	30	د	
	Som me Otz grade + 3.1htan	0.1	41	30	lo	30	A	
965 2m wide weathy misco		0.3	23	15	5	55	A	
common, miner ats.								
	h had to sample bronk very iller	0.3	5	5	10	15	1	
	,							-
Sed predomiller suns	_	04	8	10	15	20	A	
167 weathy missed sounding	ver m lange fluid phin mindy	4					-	
Sed no couse insterior			0.0			,	A	
468 In wide usek sed to	San inc abudant Rty, Eretre \$	0.1	23	15	50	60	A	
<u> 7.tf.</u>					<u> </u>	7200		
161 weather incomed week se		0.1	24.	lo	15	35	B	
970 Weately inited week In	wide sed to San is off tometie.	0.15		10	35	20	B	
971 Sm wide soilly down an	e weakly mined as po 970	0.1	19	15	125	50	C .	
Easlen educ of e	EL 4752 - 80#		ļ	ļ	-	ļ <u> </u>		
972 Im wide week sed to 15		0.1	12	15	140	100	A	
verned on the + atz.				ļ		ļ		
1 1:	week sed to Sum pred corre	0.05	11	15	30	35	B	,
	• •							
guele but also Qty	3/.	0.1	5	15	70	50	ے	
974 15m wide danning	1		5	10	45	1 .	e	
	al sampled just before it house	2			 	\ <u>'</u>		
a C'. sed to 2 cm inc		0.15	17	15	120	100	A	
976 Im wide rating week		0.1	2	lo	30	1	c	
177 Jon wide integrated	daniage	 ·	 	15	35	 	A	
	to locur Otz + oxicke & 313/50	0.1	9	15	15	1	B	
179 /m wide steam soils	sed only.	1	7	15		· -	A	
980 mined week need to la	an guelee with w/ of lo/silblu	40.1	_l		l	٠	+,,,	

D.A.: Drainage Area: (km²).

PROJECT	WANDIE.		ے						
GEOLOGIS	ITIK.P. DENWEIR.	R G C EXPLORATIO	M 3	REAM			-Sm	YWINE	ı
DATE	Jul 89.	PŢY. LIMITED		ŀ	Maria	Ξ.			
	In vicinity of the Two	Sixtes - 80#	р.д	λs	Cu	Pb	Zn	56	
		in is pred sittstine mine	<u>c' ·(</u>	4	15	5	20	A	
	Qtz weed how a hour .								
4			0.7	8	15	15	20	A	
1			0.3	12	25	20	50	Α	
,		<u> </u>	0.15	19	15	lo	33	A	
	Ym wide mined week sed	· · · · · · · · · · · · · · · · · · ·	0.7		5	45	5	1	
	mins at anyweate in						,		
986	-	n Feore similed quicking ped	0.3	۷۱	25 .	2	45	A	
	Ots sand.	.							
	-	idea bed sed to law large	0.2	2	15	25	30	A	
	practical Obj five meterial				-				
938	0.5m wide week shales		01	3	15	25	45	A	
	- - -	sed to law pied silt but	0.15				30	1	
1	Δ.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
	some Of . 2m wide ordencede onene	bed sed to law the cooks	0.2	3	5	(0	(0	A	
i :		ed is send sized QD. Confined	2_						
B i	O'L'as dearibed seriously								
		gts to law pred of sand (had	0.2	1	5	25	5	A	
	to sample bank)	73							
gaz	l' ;	of 'C'+ A'charekaishes sed to lan	0.1	2	15	10	20	B	
1	,	*			· · · · · · · · ·				
	pred at minifuse materia	I gracke to Sew (some caysement	0.25	7	15	45	25	A	
443	·								
1 44 4 1	ostrops between 992-99.	· /	0.3	2	5	15	10	4	
9	3m wide sandy creek sh	_		5	20	10	40	A	
		silt sed to Em So 305/16 su	0.1	2	15	15	25	c.	
1.	15m integrated draining		01	<u> </u>	15	15	35	B	
	O. Sm wide week C+Ache	,	0.15	8	15	25	25	A	
l l		A to 2cm sumpled at washingt	0 15	4_	/ 3 —			-1	
l l	below two 'c' type armin		0.1	 ,	10	5	20	15	
1	3m wide workert and lo	15cm ped gale min Qt3	'	800	135	25	55		
77000				1	ــــــــــــــــــــــــــــــــــــــ	1	1		

PROJECT	' WANDIG		10						
	ST'KPOENNEK.	R G C EXPLORATION	DM s.	TVZEJ\N	A SEON	NGJ	SAM	ALLIE	3
DATE	JULY 89.	PŢY. LIMITED			ì-	JUNDI	Ξ,	*	
	Whee Rd corres usel.	A Sander Rex - 80#	D.A	Λs	Cu	Pb	Zn	SA	l
	D. 3 m wide wen of sad		0.1			1	55	1	
	min Otz small workings								
104	2m wide wach ned to So		0.1	24	25	60	40	A	
	Steepty inised rates or	2,	01	26	25	5.	45	A	
,	3m wide only week new	1.	0.1	26	15	50	60	A	
	Gulie / Otz.								,
101	5m wide missed week sed	to law alendant were oft?	1.5	25	15	25	40	1	
	line unterest silt & a	- · · · · · · · · · · · · · · · · · · ·							
	3m as pe 107.		0.5	/3	15	25	40		
	15m × 3m washart sed to	20m sill of some of.	0.05	24	20	5	7.0	B	
	· · · · · · · · · · · · · · · · · · ·	rampied a SONSin silt to a	0.2	lo	20	10	50	B	
	Sear, min otz.	organica ex or a sur y a v							
iu	As per 710 ped to	15 march of all	0.2	(0	lo	50	35	5	
			-	-	*	<u> </u>			
	Vicinity of Ron		015	3	20	15	3≎	C	
		e is of water hales and washing	0 /3				-		
	willing son wich draw			8	22	2.~	45	B	
. N; S	/ /	sed to locus absordant of fine	0.05		20	30	73		<u> </u>
	muterial sitt/ opka.	//		,_	10	2/	35	A/0	<u>.</u>
	Im wide mixed creek so	./	0.25		15	35		1/0	
us	Im wide mised reck out	e bed sed to Sun typically	0.25	4	10	20	25	H	
	guha /mmos of.			<u> </u>		<u> </u>			.:
u	Smuide damage very p	ori, pape bestorde soils.	0.1	2_	15	35	45	D	
นา	Sampled a lon X3m w	rdout within Som wide flud	0.25	12	5	15	20	С	
	dain set to low 043			ļ					
	lang what, at to you		0.2	u	15	35	50	B	
119	Som inde integrated soith	dimage.	0.2	(5	15	20	D	
	Ban wide nitegrated dre		0.15	3	10	20	40	N	
/21	week Im wide desversion	n within 30 m wide floodplin do	, l	į.	15	50	45	<u></u>	
	In vide ouch aly to lo	cur fine makerial 42cm	0.11		25	25	45	B	
	ob falt.	7							
							l	<u> </u>	

D.A.: Drainage Area: (km²).

PROJECT! WANDIE	R G C EXPLORATION	N 5	TREAM	 √ S≥\	imen.		main	<u> </u>
GEOLOGISTI K. P. DENNER	PŢY. LIMITED	114				_		
DATE: JULY 1989.	<u> </u>		_	MANIE	×€ .	-	 	1
SAMPLE Viant of Romford B	Making -80#	D.A			Pb	Zn	50	
27/23 Series of very lange		02	2	5	5	5	6	ļ
wishouts sed to sum p	red at first abudat				·			
sund rize publis					_			
124. 3m wide guke bed a	to to law fine makins	0.2	3	10	5.	15	5	
9/3 & gwhe.						·		
125. Junide week sed to So	in pred of of gule.	0.15	3	5	5	5	B	
126. low wide soilly dan	aye.	€ن. ص	9	lo	30	10	c_ 1	<u> </u>
127. Sm wide slights depart	med darinaye will 30m	0.2	54	20	30	15	ر 4	<u> </u>
damage + sil.								
129 2m wide sed to lown	sed hyprically gales, ab tilt.	0.4	54	20	30	15	A	ļ
129 Am wide our of Sed to			32	25	35	30	В	
min atz.								
130 Im wide raky orach ned	to 30am pred horfls quite	0.25	57	30	35	15	A	
1 th - miss of of gran	•							
131 0.5m wide sed to 2cm p		0 15	26	25	25	10	A	
So 304/745W.								
132 Im wide useh fine sed u	riol aty 1-3cm.	0.05	130	780	30	15	A	-
Mand Diamard a				ļ.,				
133 /Sm wide soiling inter	· ·	0.1	7	25	20	<i>45</i>	С.	
134 0.5m non missed damage	-	0.15	23	25	(0	15	B	
guille								
135 In wide slight depres	aon within low dumance	0.1	SNE	SNR	SNR	SNR	ے	
136 Im wide rocky creek		0.3	28	25	5	5	4	
honfels quite min a								
137 In wide mined why	~ ~	0.2	36	55	(0	(0	A	
microcars gule of less	•	1						
138 Im wide stream sed to 15.		0.2	21	25	35	30	Α	
granite fine material :	• •							
137 Im wide really mused.		0.21	10	40	110	25	B	
Wood In wide mined week	ganite and mir abof gute	01	ių	25	80	15	A	
to locus.	910							

PROJECT: WANDIE GEOLOGIST: R. P. RENNER	R G C EXPLORATION)N S	IREAN	n Sæ/	Dinver	r-5,	MAIN	——— 16.
DATE SINE 89.	PŢY. LIMITED			ındi				
SAMPLE Where Road week at Su	under Ruch80#.	D.A	As	Cu	Pb	Zn	Sec	
28762 Sust willing allevial work			41	l .	1	1	1	
1 · · · · · · · · · · · · · · · · · · ·	Otz with remand							
guilze, quilze + 1,11.								
063 2m minde missed vacl	shale bed sed to 5cm	0.15	21	15	15	50	A	
pred silt miner atz.								
064 1. Sm wide week ged to	law is seed of the makerial	0.2	6	20	10	170	A	
silt day	4.5							
065 2m mide week silt bed , se	ed to 15 cm abandant at line =	0.9	80	15	55	50	4	
rilt & guke.								
066 20m wide integrated soil	dan	0.1	5	lo	5	25	D	
067 3m wide vech silf bed	_	1.3	32	15	25		A	
1	e just downstream from area						,	
of allural mulaings.	2 July accommend from area							
1	<i>[.,,,]</i>	0.1	21	15	10	35	ے	
068 5m wide integrated dein		i	35		40			-
009 week counists of a seis	•		٠,٠	/3	90			
15 cm aty fine material.		3	19	15	25	35	Δ	· · · ·
010 2pm wide rech course must	resal to Sun is Otz frie	3	7.1	/3				
		2		1	3 -	35	A	
071 2m as p 070.		3	18	15	2.5			
072 20m x ym washat will		0.1	16	15	30	40	c_ 	
073 creek consists of sois of	worsharts, silt bed sed to lam	0.35	/3	15	15	45	В	
ats , air silt fats				,			0	*
014 large washart sed to locan	pred grate of sollahare so	0.25	17	15	30	50	B	
330/80 NE.		ļ <u></u>					A.	
075 2m wide ouch carse sed	otz him guku frilt so stophen	0-25	ll .	15	15	35	A	
Interported gule/silt.				ļ <u>-</u>				
076 Sm vida week sed to les	n 9/3 frand rised putches	01	4	15	5.	25	A	
017 20m wide interpreted so	Tilly damage	01	3	15	5	25	0	
018 20m wide soil nitagrat	ed daniage	0.1	T	15	10	25	7	
024 3m wide dumage of	3 gate of sill to sem	061	1	20	20	60	B	
080 rein of workouts ned to See	m pied alt of gushe.	0.35	14	15	30	50	B	

PROJECT	WANDIE TI HO A	R G C EXPLORATIO	N ·	Stren	 M 5,∋	Ome	NT S	mp _h i	J.E
DATE	TIKP REMIER. June 89.	PTY. LIMITED			Winne	ر سرخ	,	٠	
		at Samues Rush - 80tt	D.A	As		, 	Zn	3 R	1
	Jom wide interpated so		0.1		1 .		1		. ,
	15m wide integrated		0 - 1	13	10	40	1	c	
	You wide sills o		0.1	4	10	5	20	B	
1	Iom wide integrated a		0.1	43	lo	X	20	ے	
085	Som wide soiled dan	in aux			10		15	D	
		Lika Som damage "so!"	0.5	230	645	30	30	d.	
	20m side soilly integrated		0.1	0	lo	lo	15	A	
	30m inde solly drain	• •	01	(#	10	10	15	ف	
	15m wide integrated so	,	0.1	B	10	lo	15	P	
	Em wide incised draining	· · · · · · · · · · · · · · · · · · ·	0-4	17	25	25	95	A	
1 1	Qt all & gale.	,							
	series of wishest - sed	1	1.5	21	20	40	60	B	
1	· ·	bed, sed to sun silhlowe.	0.1	13	25	20	55	4	
	Iom wide integrated dani		805		20	-	40	c	
	•	age with commentate of it			,		-		
	in dainage.		0.4	23	35	70	70	A	
	2m wide week abandont or	1 lo and office		34	1		100	i i	·
045		id to wen file this guille	0.0		<u> </u>			- 7 4	
	miss atz		0.20	22	25	75	120	A	
096		um 2m wide veeks red to 3am	0.25					`	
	wandant of of guile.				2.0		155	A	
1 1	,	a to 25cm lue aboundant at 3	0.15	76	35	125	/33	M	
	Otz verned gule.				,,,				
		ed sed to lown pred guster	0.35	12	15	65	55	4	
· .	silt mine Otz.							A -	
099	2m as pc 098	some fecite.	0.3	16	10	5	20	A.	
87100	STO GC10.		ļ	1600	320	45			
101	10m x 2m undert felsi	be gashe min of to	0.25	20	20	25	35	R	
	locus.	-	ļ <u>.</u>				 		
	, ,	ats In wide deeply world	0.1	19	20	45	uo		
	sed to low he silt	Gelle of min alz.							
1.			1	<u> </u>		<u> </u>	<u> </u>		

	WANDIE.	R G C EXPLORATION	N :	STREMU	1 SEO	iNEN	T SA	UPKIM	દ
	TIK, P. DENWER. JULY 89.	PŢY. LIMITED		WA	VÄE.				
I	East of Saundes Ruch	-80 H	D.A	As	Cu	Pb	Zn_	56	AU
1 1	30m wide solly into	_	0.1	2	lo	85		D	
	50m wide floodplain		0-4	2	lo	.60	0	D	
182	2m wide week aske	hed sed to lum ped gute	0.2	5	15	75	15	B.	<u>.</u>
	minor at sever of		, 				•		
		1 + 1 am pred offin makers	0.15	4	10	55	10	B	_
r i	quire failt.	, ,,,							
		gales to Seen but ped sand	0.2	3	10	lo	lo	1	
185	In wide sandy vech	guilee bed, guilee to lam	0.2	1	5	15	5	A	ļ <u>.</u>
	but predvinmatter same					l			
186.		87105 horacount Oty from		13000	1100	0.85	145		0.175
	old wirneys				 				
187	o	+ reincol granite.	i	1300	50	1250	145		6.00
1		2 Q 76952 haven -		5200	950	185	395		0.63
7,00	comb Fe-stare from								
1 139	i '	(along fractures!) phylite.		180	155	15	15		(0.00
190		Q76837 Sty will included		530	140	5	180		(0.00
	1	4 100 5 1 140 140 140 140 140 140 140 140 140 1							
	nature.	-							
							ļ 		
	;								
,									
		A STATE OF THE STA	1						
								ļ	ļ
							<u> </u>	<u> </u>	
								_	

D.A.: Drainage Area: (km²).

PROJECT! WANDIE GEOLOGIST! K. P. DENWER.	R G C EXPLORATIO	N S	TKON M	SE0.,	NENT	- SA*	nphini	<u>۔</u>
DATE SINE SIN 89	PTY. LIMITED			WAN	ıøï€.			
SAMPLE Easten edge of EL 41	32 - 80:#	D . A	As	Cu	Pb	Zn	SR	
287001 3m wide radout sed to 30	/ 1	0.1				50		
002 20m wide integrated of	- 1	0.1		15		45	i —	
as Im wide week next to s	- / / /	0.25	8	10	20	20	Λ	
004 Im wide week applie to 1		0.1	9	15	35	45	ß	
005 20m Dyan wadoot mins	,	0.25	5	15	35	30	B	
East of Samueles								
oob 2m wide week quite	!	0.2	6	15	25	45	A	
sed gtz make guke	•							
007 15m vide wack ned to		0.2	16	15	30	40	4	
008 · 2 m wide week sed to	(16	20	10	30	4	
009 3m wide rolling week s	•		12	15	45	25	A	
abundant of float in								
010 You wide aramage sed	•	04	3	10	5	30	A	
OII Im wide wech sild	<i>"</i>	0.2	2	15	25	15	A	
.012 4m wide week sed to 3ou		0.6	2	15.	25	20	A	
kessen sill								
013 10m x 2m wishout sed to	15cm pred at miner subtrue.	0.15	3	20	5	25	B	
014 2m wide silts week no		0.15	2	15	25	15	4	
015 2m as pe 014		0.2	2	15	25	15	A	
016 low wide interpoled	deinene	0.1	2	10	5	20	C	
017 Im wide washingt at m		0.1	Is	IS_	IS	IS	B	
large material Q1-3 fine	41							
018 3m wide incred creek of	silt bed sed to I Sem were makerial	0.1	3	20	20	35	A	
pred aty fine material a								
019 10m × 2m workert rad h		0.1	3	15	15	35	B	<u> </u>
020 lox 2. Sur wahout sillslone		0.1	3	25	5	25	B	
mis al7	- F							<u></u>
	un in sillstine + gulee Su 320/1250	0.3	4	#5	30	25	A	
022 0 Sm wide week wealth in	ised sell to sam luc guilee, Q/z	0.15	6	15	80	30	1	ļ
1 julhhure.							<u> </u>	
		<u> </u>				<u> </u>	<u> </u>	

PROJECT WANDE	D 0 0		- C- A					
GEOLOGIST & P. DENNER.	R G C EXPLORATION	DN				MTS	MMPL	ine
DATE SUNE/SLY 89	PŢY. LIMITED			MAN	Pis .		,	
SAMPLE Fast of Saundes Re	· - 80 年	D.A	As	Cu	Pb	Zn	SK.	
087023 3m N/m washest gake b	ed sed to 5 cm > yeke.	0.15	4	15	120	35	6	
024 Hashoot In vide oxiles to		0.45	12	20	.325	40	C	
025 15m wide integrated a		0.1		10	3ა	30	C	
026 Healthy incised 0 1m wide		0.01	6_	15	135	25	Ø	
li .	335 shiling golena with			,		·		
ah ven.		<u> </u>	-,,,					
027 lom & 3m washout sendy	ned minor atz Clam	0.2	4	10	30	20	В	
028 As fer 027 damage is	T •	0.15	3	(0	25	15	B	
029 lan wide integrated du	•	0.1				35		
030 20 x 2m washout Sed to	-	011	4	15	55	25	4	
. Clan is pred substance.					-			
031 In wide week god to 50		0.15	5	15	15	30	A	
032 4m wide ceek gts to 2		0.6		10	15	15	A	
033: 20m NSm washart sed	 -	1 1			i	(0	ß	
ine gule & atz.								
034 Lan X2m washest wars		0.25	6	15	20	15	ß	
is que + 9/3 sum								
035 large water soil 2		0.25	3	10	60	6	Ø	
036 15m X3m washart ware	•	0-1	5	15	25	35	B	
Otz silbben.	,							
037 Son wide willy inter	when oranimous.	0.15	2	lo	5	200	0	
038 2m x lom (elongate) was	,	0.15	6	15	45	35	B	
fine material silt.	W							
	o Sen Live March D. Bla	0.1	4	15	25	40	B	
034 loom X5m washout qualy	- m momenman				1		,	
sillstone.		0.15	5	10	45	10	D	
040 35m wide integrated de	•	0.15	,	15	35	† 	4	
041 25m wide integrated		0.25		15	70	30	Λ	
042 3m wide veek, 9tz to 3	my my mand the day							
043 25m vide integrated soil	duinave	0.2	4	10	20	20	D	
044 15m wide integrated 20		0.1	2_	15	5	15	د	

D.A.: Drainage Area: (km²).

l .	WANDIE.	R G C EXPLORATIO	N S	пеели	650	inen	T SAN	uaine	 5
DATE	27WE 84	PŢY. LIMITED		l	~J:An	άē.		•	
SAMPLE	Forst of Samuels Rush	-80#.	D.Λ	As	Cu	Pb	Zn	5 R	
	• *	:	0.3		15	'5	30	5	
	atz vein 310/6554.	017							
	Vienits of Rango	d Hill -80#							
046	30m NSm washout coarse		0 25	2-	15	10	45	6	
	A pe 046.		6.15	4	25	5	15	В	
048	15m x4m washart sed to 30	in is pied Odz fine makerial	0.15	2	lo	5	20	ß	
l • 1	sand sized.								
		t, sol within a your fludgain.	0.2	2_	15	5	25	<u>_</u>	
1	STD CPD.			750	130	10	55		
051	30m wide silly daina		0.1	8	10	45	15	Ø	
l t	Eloughed wishert - 00:	Q	0.15	ı	lo	10	lo	0	
t t	•	shale bed sed to loan pred	0 · 3	2	15	25	30	И	
	silblare min- ats.								
052	In wide sundy crede	min and to 15cm is gtz	1	4	10	20	20	A	
	hie meteral sand.								
055		sed to sun pred silt mis.	0.3	7	10	85	25	A	
	Q _D								
	Sampled just downst	ream from the Grid #2							
	wokings.								<u> </u>
io St	1 1	do 30cm sed inc at	0.25	44	15	90	65	A	
	Veined	and rilt							
057	•	at within Sun wide floodfamin,	0.4	12	10	5	30	В	,
	aty to sun pred fine in								
258	. •	Sem ped at 3 him metail silt	0.4	10	10	25	45	a	
	A contract of the contract of	Rd vones creek at							
	Samoles			ļ <u>.</u>	_			<u></u>	
059	Um wide roday week or	ed qtz to 15 cm minis silt type	0-1	260	25	105	140	A	
060	0:2m wide rech, sed to	3cm pred gustos / sill mins Ot)	0.2	22	15		60	A	<u> </u>
061	Sm x 2m washart course .	nateral silt fine guike & silt	C.15	27	15	35	50	ß	-
B .	dain gid I prospect.							ļ	<u> </u>
				1				<u>L</u>	

PROJECT WANDIE

GEOLOGISTIK P. DENLIER

R G C EXPLORATION STEERING SEGMENT SAMPLINE PŢY. LIMITED

	Sun 89.	PȚY. LIMITED			NZI	NOIC			
SAMPLE	Mount Diamond area.	-80#			Cu	Pb	Zn	SB	
281141	O. Sm wide mised week	ped Of sand large elets to	0.1	<u>i5</u>	3⇒	40	25	A	
		I mine of , light samples.							
142	0.5 wide weatern sed de	pession with low durings,	0 - 1	12	25	65	lo	В	-
		nite for + mini guske.							
143	In wide weathly missed	week seed to 15 am pred on the	0.15	30	65	55	25	A	
(misor granite of ats.								
	2m wide week sed to 300	in pied offe mino city	0.5	75	45	35	lo	A	
	2m ista week onle foil		0.35	130	70.	30	15	A	
		iverge ned to loan predgrice	0-1	56	40	30	15	A	
	min Ob.						•		
147	J	ed to 3am pred hanfels guilea	v·3	53	35	70	40	A	
	min olz.								
148	you wide integrated s	oilly exchange	0.1	16	20	40	5	c	
		15 cm pred grike inior self		65	40	45	15	A	
	1 atz.						•		
	5TD 6C6			530	180	20	95		
	•	law in goke, sill and	0.25	90	30	65		A	
	min als.								
, ,	Ion wide soil integrated	drainer	0.1	16	20	15	45	c	
		2 som pred guize min olz	0.6	60	40	30	15	A	
154		ed draining, gentre of mines	0.25	34	30	35	30	B	
	silt ho sem	3 - 1					,		
	i '	locur ine gurke failt minor	0.7	240	655	35	10	A	
, ,	gh.	7-111							
10.		damang ged 21cm pred	5.1	19	ت 12	30	5	B	
13.8.		Committee Committee Committee							
/57	Januar at	cominge whening grather Ald	0 (23	ت 12	45	10	C.	
/31	here	amont Dremits it 140 mt							
ia	lon wide integrated o	ila Nomena	0 (34	35	10	5	c	
154	o. Sin wide soily drainer	or sed to locus	0.1	20	50	15	(0	Λ	
	guike miner Git	of alt.		<u> </u>				<u> </u>	
		- ,							

1	· HANOIE .	R G C EXPLORATIO	NI S	STREAM	M 330		T 54	mpin	·
	Sout 89.	PŢY. LIMITED				NPIE			~
	Marst Diamard area	- 8D #	D.A	7		ι	zn_	SB	
a.	15m vide solly integer	•	0. (i I	lo	j	C-	
		dain anye loxation intratain	0.1				35	C-	
, ,	Vicinity of Mant								
162	10	ganite to 20cm most of och	0.35	130	lis	155	85	A	
	is grante and.	years a second second second							
	Creek that dums sut	hend of All Paris, osm	0.1	320	370	65	25	A	
	wide sed to law (ganit								
164	- ·	granite bacters to In dia	25	350	353	195	190	A	
	kne at alandart apro	·/ .							
165		sed to law ridge Sam upst	0.1	540	950	340	450	A	
	small workings, sample								
	Mb awies as too difu	· · · · · · · · · · · · · · · · · · ·							
	25 x 5 randy washart.		0.15	22	15	40	(3	B	
	<u> </u>	Sandart sund size makerial		Zi	15	50	35	C	
		d to sun pred sill miner of	ļ	30	35 ′	75	45	И	
	1 coulee								
. 169	In will rocken week so	d to 20cm pred horafels; H	0.2	٦ (40	55	45	А	
i e	Jayles min gts.					ļ			
		con typically weathered girler	01	27	50	30	८०	A	
1	silt mines hunfelsed of								
	2m wide mixed week or	•	0.35	80	55	د، با	دے2	A	
1 .	min atz.				<u> </u>		,		
· .	2m as pe 171.		0.2	39	60	40	20	Α	
		to Sam peal guster minus at	0-1	23	45	25	20	A	
	5m wide interpolated		0.15	29	50	40	20		
		ed to Sam pred grize and only			20	50	20	A ^	
	Som wide integrated a		0.2	1	10	50	15	0	
	30m wide integrated		0.2	2	10	20	20	D	
178	20m vide nitegrated	damane.	0.15	2	10	15	1	D	
179,	large workert week sed	to local pred at five unless	0.2	11	10	20	15	B	
	silt Janke	, <i>y</i> ,		<u> </u>		1	ļ		

D.A.: Drainage Area: (km²).

APPENDIX 3. ASSAY RESULTS FROM 1989 SEASON.

3.2 BLEG Results.

Laboratory Services PTY. 32 Shand Street, Stafford, Q. 4053 Phone: (07) 352 5577. Fix: (07) 352 5109. Perth Laboratory CONSULTING ANALYTICAL CHEMISTS Briabane Head Office and Laboratory 32 Shand Street, Stafford, Q. 4053 Phone: (07) 352 5577. Fix: (07) 352 5109. Perth Laboratory 1.01 197 Victoria Road, Malaga, WA, 6062. Phone: (09) 249 2088. Fax: (09) 249 2988. Fax: (09) 249 2988.

RENISON GOLDFIELDS CONSOLIDATED LTD

F FITZGERALD

LABORATORY REPORT

Townsville Laboratory 21 Hombida Street, Carbuit, Ct. 4814. Phone: (077) 79 9155. Fax: (077) 799 729.

Charters . owers Labo : 0 , 18 Drew Street, Charters Towers, O. 4820 Phone: (077) 87 4155. Fax (077) 87 4220. Bendigo Laborstory 127A Victoria Street, Englehawk, Vic. 35f Phone: (054) 46 1390. Fax: (054) 46 1389

Orange Laboratory 10 Leewood Drive, Orange, N.S.W. 2800. Phone: (063) 631-722. Fax: (063) 631-180

BUGS WANDIE

Page 2 of

P 0 BOX 1090 DARWIN QLD:

MR

0800

Batch Number: J111

No. of Samples:

54

'n

Date Received:

13/09/89

SEDIMENT	Date Completed:	19/09/8
----------	-----------------	---------

rNo. N2712 3261		Sample Type:	STREAM SEDIMENT	Date Received: Date Completed:	19/09/89
SAMPLE NUMBER	Element: Unit	Au	S::₩*		
SAMPLE NOMBELL	Method	PM216	Кд		
Q87531		100	4.38		
087532		〈50	4.35		
Q87533		50	4.35		
Q87534		250	4 93		
Q87535		₹50	3.61		
087536		50	4.73		
Q87537		< 5 0	4.30		
Q87538		150	5.39		
Q87539		50	4.79		
Q87541		50	4.14		
087542		150	4.16		
Q87543		450	4.49		
Q87544		< 5 O	4.39		
1087545		750	4.01 FRO	M SAME AREA.	
Q87546		350	4.62		
		1750	3.91		
087548		150	4.96		. 100
Q87549		150	7.06		
Q87550		₹50	4.84		1000
Q87551		<50	4.38		
Q87552		450	5.27	and the second s	
Q87553		450	6.02		1.44
_ Q87554		50	6.17		
087555		150	6.29		
					<u> </u>
	·				
ection Limit:		50			
-					

Proceedings of the control of the second

or nents:

FORM ALS O1(

Australian Laboratory Services
PTY. 32 Shand Street, Stafford, Q. 4053
Phone: (07) 352 5577,
Fax: (07) 352 5577.
Fax: (07) 352 5577.
Fax: (07) 352 5577.
Fax: (09) 249 2988. Fax: (09) 249 2942

Townsville Laboratory
18 Drew Street, Charlers Towers, Q. 48:
Phone: (07) 352 5577.
Fax: (07) 352 5577.
Fax: (09) 249 2988. Fax: (09) 249 2942

Townsville Laboratory
10 Leewood Drive, Orange, N.S.W. 280
Phone: (063) 631 722. Fax: (063) 631 11

Townsville Laboratory 21 Hombalu Street, Obsbutt, O. 4814. Phone: (077) 79 9155, Fax: (077) 799 729.

WANDIE BLEGS

Page

2

RENISON GOLDFIELDS CONSOLIDATED LID

P 0 B0X 1090

DARWIN

QLD

MR

0800

Batch Number: J111

54

of

F FITZGERALD

No. of Samples: 13/09/89 Date Received:

der No. N2712 3261		Sample Type:	STREAM	SEDIMENT	Date Completed:	.19/09/89
The second section of the second seco	Element	Au	-S-W+-	a makan manaka pinangan kanagan atau sana atau sana misa da ka		
SAMPLE NUMBER	Unit Method	ppt PM216	Kg			
Q87501		8650	4.71			
Q87502		5, 0	4.70			·
■ Q87503		! 0 0	5 31			
Q87504		Ξ 0	5.81			
Q37505		5.0	5 97			
<u> </u>		100	4.83			
Q87507		150	4.77			
087508		100	4.43			
087509		5.0	5.15			
Q87510		50	4.99			
087511		(50	4.88			
Q87512		<u> 550</u>	5.08			
Q87513		100	4.45			
Q87514		50	4.37			
Q87515		100	5.22			
Q87516		5.0	4.88			
Q87517		500	5.03			
Q87518		800	4.60			
Q87519		350	4.62			
■ Q87520		500	4.32			
Q87521		200	4.87			The second secon
087522		200	4 48			
087523		100	5.31			
087524		150	4.91			
Q87525		450	5 07			
Q87526	-	150	4.08		·	· · · · · · · · · · · · · · · · · · ·
Q87527		100	4.08			
Q87528		150	3.80			
<u>a87529</u>		50	5.19			
Q87530		Ę, ()	4 78		,	
etection Limit:		S 0				

Comments:

Signed: J. Alum

FORM ALS O

APPENDIX 3.

ASSAY RESULTS FROM 1989 SEASON.

3.3 Rock Chip Samples - Double Anti Prospect.

PROJECT: WANDIE (DOUBLE AMADE) DATE: au = 189 Gold Fields Exploration GEOLOGIST: G STEINERT DESCRIPTION SAMPLE Αu $C_{\mathbf{u}}$ 440 Zn 5 m wide of vein, white, oily, weal Fesx, adjacent to large deliste? introduce Q91656 0.01 55 Im wide of stockworked gurke, weak Febx Q91657 87 0.07 250 ₹ 0 " 25m exoterly from @ 91657, Q91658 0.0 / 3/0 **20** 50.01 60 632 382 O. Smiride of stockworked gube, Trend 335, gorsanous, Q87385 at pale grew rile intense Mr Ox & Fe Ox alter reins fellow beldin 0.02 65 8080 590 0.5 minde go stockworked gule, trend 335', 95 vein to 0.3 m where, (0.01 go pale gray, vily, weak Mn0x & Fe 0x
93 stockworked guke, go white, milky, individual veinstrend Q87386 482 65 433 287387 50.01 601 169 237 3.5 maide of stockworked goods, 95 ney, vily, week felx, 0.08 470 100 36/ I'm wide of stockworld guke, trand 330°, of white to grey, oily (0.01 40 166 I mivide very week 9to stockworked grobe, trend 340, 9t white Co.0/ **3**3 5/00 90 50.01 10 287392 week Frox, brugates go 50.01 35 0.3 m wite 95 stockworked gurly, 95 white, crystalline, mggg (0.0/ ₹3 962 435 470 I minde gt stockworked gunde, tund 350, gt white, cupstable 287394 week FEOX, breagted gurks <0.0/ 40 2.3 m wide of vein, trend 340, 95 white, slightly vily, hompship 2.02 30 **37** 0.5 m wide of vein, trend 330°, of white, slightly vily Q87396 20.01 1100 30 66 987397 KD.0/ **</100** 20 377 25 Q87398 (0.01 35 5 C100 24 of rein float, white to pale gray oily gog, weak FE 0x & MAOX Q87399 (0.01 (0.01 50 295 36 Standard 2.47 2.45 1343 3051 101

DOUBLE AUNTIE REGIONAL

PROJECT: WANDIE GEOLOGIST: G STEINERT	R G C EXPLORATION PTY. LIMITED			DATE	A	UG/	89		
SAMPLE	DESCRIPTION	Αυ	Au _R			РЪ		Ag	
087400 85 vein, white sligs	Itly oily of	<0.0		1/00	35	190	66	/	
<u></u>	trend 305°, go white slightly vily	(0.0/			i	2590			
	, trend 348°, of white slightly only	<0_0/				7곡		İ	
	trend 315°, gz whole slightly vily	<0.51		i		75	ļ	- 1	
Q87406 Fe Ox, Mn Ox and	trend 356°-20°E, gg white vily, weak	<0.01		l i		126	į	į	
Q87407 GEOX & MAOX	tiend 356°-25°E, go white vily, weak Albrite attenation trend 325°, go alite slightly vily, weak rend 325°, go white to pele grey, slightly vily	(0.01				87		-	
287408 0. Smarida gg min, t	rend 325°, of white to pele quy, olightly vily	<0.01		1 !		159		`	
987409 crystalline	orked geobe, trend 5°, yo white, milky to	0.05		1 1	1	98		. i	
2 m. 1. 27 steel	les gwole, Tune 320, 85 white, week to	Co.01		 	1	/73		!	
287411 FEBX, trace galan	and 310° - 65°5 w, go whate, crystalline, week	Ta.01			ĺ	1161	- !	1	
987412 slightly oils	trend 350°?, 93 white to minor pale grey,	Ko.01			i	/33	!		
287413 0.3 minde go vein, t	trend 360°? 95 white slightly isly, week feex	(0,0)		i I	į	146			
0.3 mardo 25 men, 1	mand 316 - 90", granite to pale gray, olightly man 76"?, granite, slightly oily	٥.٥٤				125	1		
087415 0. 5 m wide 85 min 1)	trong 76°?, go white, slightly oily	0.01		1		25			
287411 95 swelworked gwke	, of white; moderate to ox	0.04	خ ٥.٥	1		70	1		
287417 weak Fe 0x	true 60° - 45°5, gg white, slightly vily,	2.05		1 1	- 1	192	1		
Q87448 Breceites garke	& 315 " steep dip, go white, slightly oily,	<0.01		1 1		399			
287449 to pale you shightly to	ly, in bedded grade-octatione trend 350°-50 W	<0.0/		1 1	1	83	- 1	J	
					. 1	153		$\sqrt{}$	
Q87451 Fe 0x brown a after	whe, vein trand 20°-45°E, 95 grey, oily, week sulphidea, to -19, ap?	<0.01		/30	70	<i>2</i> 67	373		
0.3m chip sample ceros	whe, ventrand 20°-45°E, 95 grey, oily, week sulphides, to -1% ago; vein trands 350°-75°	ים הכ			17410		015		

PROJECT: WANDIE GEOLOGIST: G. STEINERT.	R G C EXPLORATION PTY. LIMITED			DATE	: A	46/	89		
SAMPLE	DESCRIPTION	Αu	Aug	As	Cu	РЬ	Zn	Ag	
987453 93 white slighth o	line vein in gwke, vein trends 332°-40°5W, il, , crab Fe Ox	<0.0	(CO.01)	260	71	74	90	2	
287454 328°-70°5W, gt white	depth week 95 - tournaline reins over / m, trend	0.01		-280	253	336	366		
go vein outerop over	10 sq. m crea, 95 white to mine pale grey,	<0.0,		<100	42	196	/33		
287456 Tundo 340 - steep digs	gy white, slightly tile, selectione hadded 320-40 h cup over 5 ag m., strend 2 320°, gg white,	10.01	1	5/00	39	25	57		
101737 sughtly oily was	- moderate re x	<0.0		İ		35	ļ į	1	
10 cm wide go trumel	ne vain, trank 320° - 70°W, grante, slightly	10.67			İ	33/		·	
487459 moderate 42 0x	line vein, trand 325°-55°5W, 95 white, milly	(00)			37	131	57		
287460	aline vein, trend 335°-80°5W, weak Fe O,	<0.0/	<0.01	420	26	96	198		
287461 gg white, mille man	lie feel gube - altative	0./7	0.19	02</td <td>39</td> <td>51</td> <td>18</td> <td></td> <td></td>	39	51	18		
987462 gt white, milky	liei fied grobe - altation. Limited grobe, gove trands 330° - 80°5W,	0.02		180	52	૩ ૨	//		
087463 milky weak Fe Dx.	grate silicifed	0.35		390	38	154	32		
087464 milky, week FED	ch of stockworking in seltatore) of white;	0.02		ļ		126	;		
487465 vily week to 0x - 1	end 352°, go white to mine pale gray, milky to alightly	(0.0/				66	i	-	
70.700	15 m west of major felato dys. nd 305 - 85 NE, 95 white, milly	50.01		800	68	/ ২ §a	190		
201781 WELL FE UX	gt stockinking in seltatore, gt white, milky,	0.01		340	64	3510	680	v	
487468 monders to Fe Ox	icified goomnous guste-seltative, trend 340-6538	2.01		340	61	<i>35</i> 60	670		
70/701 340 - 70 97 W.FM	le zone in genke-altatone sequence, trend to, milky, weak Le Dx	81.0		<i>i3</i> 0	43	110	42	,	
43/4/0 milker	Red gurle, trand 310° - steep dip, 95 white;	0.06				<i>15</i> 2	_		
190/9/11 00 Water miller	who - sellation, vein trends 330 - 85 ° 5 W,	0.08		280	40	386	40	`.	
987472 week fe 0x & epid	Red gurke, zone trendo 330°, gg white, melky,	0.01		450	185	<i>16</i> 70	520	N	
Q87473 Standard: CPL		0.46	0.43	i I		₹ 6			

APPENDIX 3. ASSAY RESULTS FROM 1989 SEASON.

3.4 Drill Logs and Assays - RC Drilling - Kim Prospect.

PROJECT: WANDIE PROSPECT: KIM GEOLOGIST: G.L.S. DATE: 23 9 89

RGC EXPLORATION PTY.LIMITED REVERSE CIRCULATION

DRILLER: EAST WEST. PAGE MACHINE: H13 . WATER TABLE:

BASE OF OXIDATION:

PERCUSSION HOLE LOG HOLE NUMBER : K I AZIMUTH: 3052 INCLINATION: TOTAL DEPTH: 30m - 600 GEOLOGICAL DESCRIPTION SAMPLE INTERVAL ASSAY RESULTS ROCK TYPE % SULPHIDES % (m) ASPY GAL OTHER NUMBER GWKE SLST OTZ OTHER Aц Au(R) Cu Ζn Αs Pb Αg 0-1 85 15 Q40220 1-2 (D-01 los 0 16 110 20 <1 39 2-3 w 35 3-4 ت7 GOL21 80 4 - 5 20 110 120 < 1 38 18 0.17 0.17 5 - 6 دصا 6 - 7 100 7-8 (co) 8-9 100 9 - 10 100 10-11 100 11 - 12(00 12-13 100 13-14 bo 14-15 100 15-16 00 16-17 los 17-18 20 80 Q90222 | 6001 18-19 210 240 < 1 86 2b loo19-20 Los 20-21 99 1 ()40223 21-22 97 (0.01 28 < 1 15 23 5% 3 22-23 loo 23-24 1,00 24-25 . lso25-26 30 70 26-27 100 27-28 60 28-29 ြော 29-30 COMMENTS: Collared at 1015TN (0000E Im 0-2m 10%. Recovery. 2- U 30 % 11-25 20% 25-30

PROJECT: WA~ DIE . RGC EXPLORATION DRILLER: EAST いざて、 PAGE: 1/1 PROSPECT: kim PTY.LIMITED MACHINE: H13. GEOLOGIST: G. L. S. REVERSE CIRCULATION WATER TABLE: DATE: 23.9.89 PERCUSSION HOLE LOG BASE OF OXIDATION: AZIMUTH: 1250 HOLE NUMBER: 2 INCLINATION: - 60 TOTAL DEPTH: 30m GEOLOGICAL DESCRIPTION SAMPLE INTERVAL ASSAY RESULTS SULPHIDES % (m) PY ASPY GAL OTHER NUMBER AU GWKE SLST OTZ OTHER Au(R) Cu Ζn Αś Αg Рb 0-1 70 30 Q90224 (0.01 1 - 2 14 < \ <u>3</u>2_ 100 51 76 2-3 30 70 3-4 99 1 Q90225 (3.01 4-5 COS 11 45 82 <1 2 5 - 6 w 6 - 7 100 7-8 100 8-9 (03 9 - 10 los 10-11 30 11 - 12 $\iota \omega$ 12-13 50 50 13-14 loo 26. 14-15 80 15-16 100 16-17 100 17-18 100 18-19 10 19-20 100 20-21 No 21-22 98 2 ()90226 22-23 38 10.00 13 53 21 <1 تحا 23-24 600 24-25 . 600 25-26 97 3 Q40227 94 59 26-27 6.01 27 <1 32 No 27-28 28-29 60 29-30 COMMENTS: Collered at aggoe 10153N Im of asing. 0-1m 10% RELOVER 1 12-18 30/ RELOVER 1. 18-19 20% " 1-2m 20%

19-20 30/. 4

20-29 201/ 11

2-10m 30%.

10-12

PROJECT: WANDLE PROSPECT: A

GEOLOGIST: G.L.S.

DATE: 23/24 . 9.89

RGC EXPLORATION PTY.LIMITED REVERSE CIRCULATION

PERCUSSION HOLE LOG

DRILLER: FAT LEST MACHINE: HIS.

BASE OF OXIDATION:

PAGE: //

WATER TABLE:

HOLE NUMBER: K3	AZIMUTH: 125	INCLINATION:	· (-, c >	TOTAL DEPTH: 30m.
GI	EOLOGICAL DESCRIP	TION		<u> </u>

HOLE NU	MBER	:K3	A2	ZIMUT	H: 13	25 -2		INCLI	NATION:	، لی ده		TOTA	AL DE	PTH:	3>~	. .
INTERVAL		ROCK	GEOL	OGICA	L DE	SULP	TION		SAMPLE		ASS	AY RE	SULT	s		
(m)	GWKE		QTZ	OTHER	PY	ASPY	1	OTHER	NUMBER	Au	Au(R)		Zn	As	Ag	Pb
0 - 1	95		5						56 20	1						
1-2	100	•							Q90228	0.04		<u>5</u> 0	190	89	<1	100
2-3	lvo							 		† <u>'</u>			10	- 1		
3-4	100							<u> </u>								
4-5	30	70											 	-	<u>.</u>	
5 - 6	95		5						CV1-2 16							
6-7	95	5					1		(290229	0.01		30	81	52	<1	26
7-8	50		50						m /2- 10	1		_				
8-9	20		80			,			Q90230	0.02		13	110	60	<1	44
9-10	98		2				•		100-221							
10-11	loo			,					Q40231	(0.01		9	84	37	ح ١	र्व
11 - 12	100			` `												
12 -13	70	30														
13-14	lo	90														·
14-15	los															
15-16	وحا													= =		
16-17	97		3						MG-777				,			
17-18	80		25	,				-	Q90232	0.54		23	120	120	۷١	25
18-19	20	20							(40233							
19-20	25	5	70						4 10233	0.01		16	140	830	٧	44
20-21	lo	80	0	, .					(70-021							
21-22	60	37	3	190					Q90234	0.05	O.053	13	190	Tr00	<u>۲</u>	61
22-23	50	ಉ				,			Q 90235							
23-24	20	જી							4 70233	60,01		18	100	74	<u>۱</u>	24
24-25		100														
25-26		(∞)														
26-27		w														
27-28		<i>(5</i> 0														
28-29	·	600														
29-30		ا میں														
COMMENT	s:_ <i>G</i>		<u>d a</u> 60%	A Cen	7 <i>0</i> 170 SUZU 4	0€ , . ^ .	10/5	3N	/m	of an	ing.					
	2-1	8m	33			<u>ن</u>										
	<u>18-2</u> 24	29 m	20 30	/	<u>н</u> Й								· · · · · · · · · · · · · · · · · · ·			

PROJECT: WANDIE.

PROSPECT: Kim

The state of the s

DATE: 24.9.89.

RGC EXPLORATION PTY.LIMITED

REVERSE CIRCULATION

PERCUSSION HOLE LOG

DRILLER: EAST WEST

MACHINE: HI3 GEMCO.

PAGE:

WATER TABLE:

BASE OF OXIDATION:

HOLE NU	MBER:	124		IMUT			!		NATION:	- 6c	<i>ن</i>	тоти	AL DE	PTH:-	30 .	
INTERVAL (m)		ROCK	GEOL	OGICA	L DE		TION		SAMPLE		ASS	AY RE	SULT	s		
(1017	GWKE	SLST	orz	OTHER	PY	ASPY	GAL	OTHER	NUMBER	Au	Au(R)	Cu	Zn	As	Ag	Pb
0 - 1	100						•									
1-2	loo															
2 - 3	loo															
3 - 4	80		20						00001							
4-5	loo								Q 90236	0.01		15	W	28	41	1
5-6	las															-
6 - 7	lo	90														
7-8	los															
8-9	70	30														
9 - 10	ws															
10-11	90	10		,												
11 - 12	70	30														
12-13		loo														
13-14	99		/						()							
14-15		90	10						90237	(v. v)	0.01	24	140	63	< \	LLI
15-16	lo	90							Q90238	-					· ·	
16-17	90	10							Ψ 1023 δ	(0.01		23	67	35	41	15
17-18		100													,	
18-19		600														
19-20		loo														".
20-21		100														
21-22	,	100														
22-23	loo															
23-24	loo															
24-25	wo															
25-26	(00															
26-27	loo															
	60															
28-29	hu															
29-30	[כס															
COMMENT	s: <u>(</u> 0·3r 2-5r	yllar	ed :	a4 Reca	602°	15N,	600	we E	. 0.6	m C	i	•				
	<u> </u>	<u>~ 2</u>	? /:- o /:	11	<u></u>											

PROJECT: HANDLE.

PROSPECT: Kim

GEOLOGIST: GLS.

DATE: 24.9.89.

RGC EXPLORATION PTY LIMITED REVERSE CIRCULATION PERCUSSION HOLE LOG

DRILLER: € /w , MACHINE: H 13 G , PAGE: 1/1

WATER TABLE:

BASE OF OXIDATION:

HOLE NUMBER: K5 AZIMUTH: 355° TOTAL DEPTH: 35m INCLINATION: -- らっっっ GEOLOGICAL DESCRIPTION INTERVAL SAMPLE ASSAY RESULTS SULPHIDES % ROCK TYPE % (m) OTZ OTHER GWKE SLST OTHER NUMBER ASPY GAL Au(R) Cu Z٥ Αş Pb Αg 0 - 1 90 (0 Q 90239 1-2 20 ĺ۵ 14 74 35 <1 0.01 15 2 - 3 60 40 3 - 4 30 70 0.32 0.32 24 210 130 41 25 4 - 5 99 5 - 6 los 19 160 39 41 200 6 - 7 lo 90 5 7-8 95 56 0.06 11 50 < 1 45 8 - 9 50 50 9 - 10 90 19 60 19 40/<1 12 10-11 90 10 95 5 11 - 1262 19 93 < 1 12 - 1350 50 13-14 99 ub 110 <1 38 6XI 14-15 99 1 15-16 70 6.01 30 120 781 21 < 1 25 16-17 95 5 17-18 دديا 21/120 12 45 18-19 100 19-20 70 30 20-21 40 60 21-22 99 73 370 < 1 16 22-23 90 bo 23-24 CICI 15 ble 170/4 11 0.01 22 24-25 د0/ 25-26 75 25 26-27 99 13 **5**u 41 18 271 27-28 97 3 28-29 95 5 11 60 26 41 22 29-30 35 110 570 0.01 2_0 COMMENTS: Collared at LOZATN - 9980E 0-1m 250/2 leway. 1-4m 1501 4-30m

PROJECT: LIANDIE.

PROSPECT: KIM

GEOLOGIST: G.L.S

DATE: 24/25 . 9.89.

RGC EXPLORATION PTY. LIMITED

REVERSE CIRCULATION

PERCUSSION HOLE LOG

DRILLER: E/W.
MACHINE: H13 G.

WATER TABLE: BASE OF OXIDATION:

PAGE: 1/1

HOLE NU	MBER	KE				25°		INCLI	NATION:	· (20.	•	тот	AL DE	PTH:	3 0,,	
INTERVAL		ROCK	GEOL	OGICA	L. DE	SCRIF	TION		SAMPLE		ASS	 -	SULT	W-72		
(m)	GWKE	SLST	T	OTHER	PΥ	ASPY	1		NUMBER	Au	Au (R)	Cu	Zn	As	Ag	РЬ
0 - 1	40		60						1001-201							
1-2	40		60						993254	0.02		16	150	11	<1	18
2-3	99		1						100-005							
3 - 4	68	30	2						G90255	(0.01		51	150	93	41	17
4-5	60	39	1						Q 40256							
5 - 6	100								4 10230	0.0(16	110	13	۷1	17
6 - 7	100	 														
. 7-8	60															
8 - 9	600															
9-10	100		_							!						
10-11	30		२०						Q90257							
11 - 12	75	,	25							0.36	0.40	Ц3	150	91	<u> </u>	55
13-14	50		50						Q90258						•	
14-15	&	35 50	5							0.03		35	110	48	< 1	18
15-16	డం	32	5						Q90259	6.31						·
16-17	(O3									0.31		14	99	17	۷ ۱	22
17-18	60															
18-19		· · · · · · · · · · · · · · · · · · ·														
19-20	600 50			_												
20-21	30	55 75														
21-22	30	70														
22-23	600	-														
23-24	loo															
24-25	رددا															
25-26	ιo	90														
26-27		60														
27-28	50	ეზ														
28-29	bo							[
29-30	دحا															
COMMENT	ˈs:_ <i>_(</i>	-0110	m 25	A-	103	2 79A	1,9	2709	0.3	m Co	<u> caine</u>	3:				
	16	30 n	_ 3:	//.	<i>(</i> 1											
												·				

PROJECT: WANDIE.

PROSPECT: KIM

GEOLOGIST: G. L. S.

DATE: 25.4.89.

RGC EXPLORATION PTY. LIMITED

DRILLER: €/~ . MACHINE: HU36 .

PAGE:(//

REVERSE CIRCULATION WATER TABLE:

PERCUSSION HOLE LOG BASE OF OXIDATION:

INTERVAL			GEOL	OGICA	L DE	SCRIF	TION		SAMPLE	1			AL DE			<u> </u>
INTERVAL (m)		ł	TYPE .	'i		SULPI	IIDES •	/-	1 '		ASS	AY R	ESULT	S		
	GWKE	SLST	QTZ	OTHER	PY	ASPY	GAL	OTHER	NUMBER	Ац	Au(R)	Cu	Zn	As	Ag	Pt
0-1	(20°									-				ļ		ļ
1 - 2	80	20								.						
2-3	<u> </u>	100			<u></u>											
3 - 4		bu	 											<u>.</u>		
4 - 5	50	50														
5-6	20	.કુ <i>૦</i>			·											
6 - 7		loo														
7-8		టు												,		
8-9	40	60														
9 - 10	حصا															\top
10-11	40		60						09.21	1						
11 - 12	99		1						Q90260	3.0	3.2	41	140	49	<1	15
12-13	50	50										• • •				
13-14	90	(0				-										
14-15	100															
15-16	(23															
16-17	80	20							· · · ·			•			 	_
17-18	100			.		j		\dashv		, , ,						
18-19	99		1						D 90261					-		-
19-20	100								(√7026 1	0.04		11	61	35	۷١	2
20-21	(33									1		''	-	د د		-
21-22	دور											• • •				
22-23		اددا										<u>.</u>				
23-24	lus															
24-25	98		z			1		\dashv								<u> </u>
25-26	90		6		+	\rightarrow		\dashv	Q90262	6.01		16	130	110	1	58
26-27	98	$\neg \dagger$	2					······································				1	JV		-1	٥
27-28	99		7					 	090263	(ó·Q)		14	52	32	۷١	2
28-29	bo			+				-	<u> </u>			`+	۔۔ا	-	-	_
29-30	دما			•	\dashv											
COMMENT	s: Co	Maje	d a	$\frac{A}{b}$	 	7	99	30€								

PROJECT: WANDIE. RGC EXPLORATION DRILLER: ⊌ /__ PAGE: PROSPECT: KIM PTY.LIMITED MACHINE: HI 3 GEOLOGIST: G-LS REVERSE CIRCULATION WATER TABLE: DATE: 25.9.89 PERCUSSION HOLE LOG BASE OF OXIDATION: HOLE NUMBER : 28 AZIMUTH: 3050 INCLINATION: -(-c-TOTAL DEPTH: 30 ... GEOLOGICAL DESCRIPTION SAMPLE INTERVAL ASSAY RESULTS ROCK TYPE % SULPHIDES % (m) OTHER NUMBER GWKE SLST QTZ OTHER ASPY GAL Au (R) Cu Zη Αs Αg Pb 0 - 1 70 30 Q90264 (0.01) 1 - 2 99 1 36 48 K 1 25 14 2-3 lo 90 3-4 5 95 22 36 160 21 4 - 5 99 5 - 6 loo 79 34 20 24 ۷ ۱ 6 - 7 100 95 Q90217 10.01 7-8 5 8 - 9 W9 70 30 17 180 41 58 9 - 10 95 5 Q90268 0.01 10-11 los 8 68 44 22 < 1 90 11-12 lo 12-13 98 2 Ci90 269 13-14 50 50 15 811 < \ 23 0.05 27 80 14-15 20 ©40270 15-16 99 叼 220 45 < 1 46 0.06 16-17 bo 17-18 100 18-19 100 19-20 حدا 20-21 wo 21-22 600 22-23 60 50 23-24 دما 24-25 los 25-26 97 3 890271 6.01 26-27 160 67 19 < 1 45 90 6 27-28 75 25 28-29 80 20 29-30 ω COMMENTS: Collard at 10447N, 9945E 0.3m Carma. 30 / recovers. 0.6m . 6-7 ... 50 - 8 m 30 / 20

PROJECT: WANDIE

PROSPECT: Kin GEOLOGIST: 6 L S.

DATE: 25/26 . 9 . 89 .

RGC EXPLORATION PTY.LIMITED

REVERSE CIRCULATION PERCUSSION HOLE LOG

WATER TABLE:

PAGE: 1//

DRILLER: EAST WEST MACHINE: H1:3

BASE OF OXIDATION:

HOLE NUM	1			IMUTI			1		NATION:		,	, , , ,	021	PTH: 7	ಕಲ್ಗ್ಗ	
NTERVAL (m)		ROCK	TYPE *	OGICA	L. DE		TION		SAMPLE	İ	ASS	AY RE	SULT	s		
	GWKE	SLST	отг	OTHER	PY	ASPY	GAL	OTHER	NUMBER	Au	Au(R)	Cu	Zn	As	Ag	PI
0 - 1	80		20						0) Qn 2 22	100						
1-2	95		5						990272	10.01		کی	7	32	41	1
2 - 3	95		5						06.007	İ						
3 - 4	98		2						Q40213	0.01		10	66	33	<1	11
4 - 5	15		85						Q90274							
5-6	99		1						102/9	10.0>	(0.01	91	74	45	<1	2
6 - 7	80		د2						09.275				•			
7-8	50		50						Q90275	1.20		95	210	190	<1	18
8 - 9	99		1						100.221							
9 - 10	los								Q90276	(७.७।	(0.01	24	76	% 0	<1	2
10-11	50		50						090277						! ;	
11 - 12	99		-						W POETT	७.०५	÷.	140	140	730	41	5
12-13	100															
13-14	(00															
14-15	وفا															
15-16	దం															
16-17	(2)															
17-18	(2)			,												
18-19	50		5U						09277							
19-20	. 3					-			090278	10.0		てり	40	290	<1	١
20-21	los									ï						
21-22	loo.															
22-23	lso															
23-24	اه درا.								-							
24-25	bo												-			
25-26	دد)															
26-27		90														
27-28	لېم															_
28-29	los															
29-30	lus															
COMMENT	s:_ <u>C</u>	<u>оЦаг</u> 9 2	0 a 5%	A (Reca	12/4 12/4	<u> </u>	<u> 90</u>	<u>1656</u>	0.	3m C	. ۱۰۰۰ ورس	~>:-	4 1			
	61-1	2 (<u>ار جار</u>	h			.									

APPENDIX 3.

ASSAY RESULTS FROM 1989 SEASON.

3.5 Trenching - Kim Prospect.

PROJECT : GEOLOGIST :	RGC EXPLORATION PTY. LIMITED				DATE: July 1989							
SAMPLE		DESCRIPTION	Au	Au _R	As	ü	Pb ^c	Zn	Ag			
	Kim Prospect	, Geechemical trench lines (1)				. ,				-		
	TRENCH 1 LINE	10450N ,		-								
Q8222U	9915E - 9920E	allewium,	0'02		337	24	20	74				
225	- 992TE	Seitstone	0.02		253	20	20	87				
226	- 9930€	ii.	0.03		160	16	30	137				
277	- 99 <i>35E</i>	1/	10.01		27/	22	40	157				
328	- yquoE	setatore fallunion,	1.90	2.10	249	14	30	53				
229	-9945E	gaywache Thin 3im 9th viein	001		214	24	15	23/				
230	-4950E	greyn achi	0.01		219	26	25	87				
231	-9455E		0.95		315	16	20	63				
232	-9960E	thin substone unit / greenvacing	0.10	0.09	516	16	20	352				
á33	-9965É	Min sutstone unit / greenvains greywache	0.04		281	32	20	278				
234	-4270€	/ / ij	001		203	18	15	58				
235	-9975E	I _I	0.01		237	18	15	50				
236	-9980E	11	0.01		206	18	20	45				
237	- 4985E		001		130	14	15	50				
238	-9990E	11	0.07		178	20	20	54				
239	- 9995É	11	20.01		186		20					
840	STD GC4+		1.56	1.58	4380	•		20	5			
श्रम।	9995E - 10,000E	И	002		161	<u>38</u>	15	43				
Q87262	-10005E	n .	0.01		208	_		67				

PROJECT : GEOLOGIST :		R G C EXPLORATION PTY. LIMITED):		DATE	:	Ja	ly ,	1989	
SAMPLE		DESCRIPTION	. Au	Au _R	As	Cu	Pb 6	Zn	Ag `	
	Kim Pros	pect, Geochemical Trench Lines (2)								
	Trench	1, 10 450~								
08772	10005 - 10010E	Cognache	001		/83	14	20	44		
244	- 1001SE	· · · · · · · · · · · · · · · · · · ·	0.01		353	<i>1</i> 6_	20	40		
245	-10020E	decomposed beginsche / collevium	0.01		232	<i>1</i> 7	45	40		
246	-10025E		004		330	17	35	30		
2717	-10030 <i>E</i>	<i>(1)</i>	0.03		280	18	30	42		
,248	-1003SE	it	005		226	/7	30	37		
249	-10040E	//	40.01	2001	164	15	30	34		
250	-10045E	allurin	10:01		339	/7	30	27		
251	-10050E	11	100		254	15	25	32		
352	-10055E	,1	006	008	341	16	25	29		
253	-100loE	. //	2001	-	332		† · · · · ·	37		
254	-10cf5É	"	0.01		281		25	36		
255	- 100706	allwan I deeply weathered grayworks	400	1	/86	/4	20	44		
256	-10075E	- P	100		224	<i>1</i> 7	40	54		
इडभ	-10080E	li	0.0				40			
258	-100k5E	В	0.02		2/4	i	20	1		
259	-10090E	alleveum	0.04	4	377	19	40	:		
260	-10095€	п	000		291	/7	1	32		
Q87261	100955-101005	/:	L001		198	//	20	24		

PROJECT: WANDIE GEOLOGST: GLS		R G C EXPLORATION PTY. LI	R G C EXPLORATION PTY. LIMITED			
SAMPLE		DESCRIPTION	(3) Au Au _R	As Cu Pb	/989 Zn Ag	
	Kim Prospect, Gen	hemical Trench Line 2, Line 1	03con			
Q87262	9950 - 9955E	Selvitore / greguraine	20.01	256 17 20 1	18	
263	-9960 E	greywach	2001	229 18 25 9	74	
264	-9965E	/ / n	1001/00	305 14 30 1	29	
265	-5970E	griggovache /minis selbstone	002	275 14 30 1.	57	
266	-9975E	1 7 Com quan	tvein 0.03	265 20 25 /	144	
262	- 9405	weathy quarty stochworked grayer		226 / 3 20 /	74	
263	-9985E	11	0,02	172 14 20 0	70	
2/5	- 440 E	11	0.02	306 19 20 8	3	
३७०	-9995E	Cocywale	2001	202 20 20 /	15	
321	-106avE	I u	(0.01	178 16 20 9	73	
2,25	- 10005€	11	(0.0)	205 18 25 1	19	
223	7.0010E	Sillerine	0.01	195 23 30 6	51	
224	-10015E	Sellytone / greywach	40-01	195 16 70 6	3/	
्रेस्	-loose=	11 / /	20.01	192 15 25 1	45	
27/2	-10025E	Craywache weathy got vened	1 cm 3 cm 6001	207 19 25 6	9	
237	-106306	(required / 3cm of ven.	10.01/001	242 15 20 5	2	
રૠ	-10035E	/ 17	20.01	154 12 20 4	40	
क्षेत्रद	-10040E	'n	20.01	216 21 25 3	7	
250	STD		.64 .71	I/S	-	
28।	10040E - 10045E	brezwache / allyvum	20.01	254 18 40 4	45.	

PROJECT : GEOLOGIST	WANDIE : GLS	R G C EXPLORATION PTY. LIMITED	D :	DATE: July 1983
SAMPLE		DESCRIPTION (4)	Au Au _R	As Cu Pb Zn Ag
	Kim Prospect 6	eochemical Trench 2, Line 10300N		
(187.82	10045-10050€	Crywache	4001	147 10 30 36
. 253	-100 <i>55E</i>		10.01	187 14 25 39
250	-10060€	И	4001	191 12 20 40
255	-10065É	allurum + granvache	10.01	439 23 20 44
286	-10070€	il 10	005.004	253 16 20 40
282	-10075E	1/	4001	208 13 25 36
258	-100805	"	20.01 Lo.01	224 11 20 39
25.4	-10085E	weakly gt stockworked graywaite	4001	140 10 15 49
2,0	-1000€	Silhone	4001	164 14 15 61
291	-10095E	weally 9th Vened (Sim) openial.	0.02	286 10 10 42
242	-10160E	allivum	001	194 8 20 57 -
(387293	-10/05€		0.03	170 10 10 20
	Trench 3,	LINE 1015ON.		
(18724)	9955 - 99605	allevum.	20.01	297 /2 40 24
245	-9965E	11	1001 001	268 12 35 24
26/6	-9970É	и	1001	297 4 45 50
297	-997SE	4	p.0/	290 8 40 37
298	-9980E	61	001 K001	210 12 40 47
299	-9985E	h	002	3/3 /2 40 3/
\$7300	- 9990E	weathy 9th vened (5cm) allurium.	1.69 1.72	7950 14 60 24

PROJECT :	WANDIE	R G C EXPLORATION PTY. LIMITE	D.	(5)	DATE	: -	Jul	<u> </u>	98-9	
SAMPLE		DESCRIPTION	Au	Au _R	As	Си	Pb 4	[⊄] Zn	Ag ′	
	Kim Prospect	, Gorhemical Trench 3, Line 10150~	,							
Q87301	9990 - 9995E	Weathy of verned (2x5cm) alluvum,	0.05		602	18	50	39		
. 302	-18000 E	n is a /2,3cm alterrum	0,02		255	10	15	30		
303	-10005 E	alleverm greywach	0.01		190	i2	15	28		
324	-10010E	11 1 6	003	0.63	/70	6	30	24		
305	-10015E	9/2 Veined (3con) alleram gregorache	007		/33	12	15	28		
306	-10020E	allurum Gregwach	001		128	6	iS	2/		
327	-10025€	<u></u>	001		164		15	36		
308	- 100308	Creepvach	0.01		155	8	45	<i>5</i> 2		
307	-100358	- / K	0.01		183	10	60	72		
30	- 100405	11	1001		/2/	10	30	41		
311	-100KZE	4			131	12	30	50		
32	- 100500	in in the second of the second	40-01		1/8	/2	20	53		<u></u>
33	-100555	Selbstone/gregosache	40.01		123			<i>5</i> 3		
3/4	-100601	grégorache	40.01	001	124		15	32		
3/5	-100656	weath gts Stochworheel gube.	4001		185	6		32		
316	-100708	allurium / gregwache	001		1/1	10	10	23		
3/7	-10075€	n ' V	0:01		1	4	ii	30		
3/8	-10080E	<u> </u>	001			14	1 1	6/		
319	10080E - 10085E	Cregwache	400					7/		
Q87320	STD PHY	V	0.02		114	188	15	169	<u> </u>	

J

PROJECT : GEOLOGIST :	WANDIE GLS	R G C EXPLORATION PTY. LIM	ITED :	DATE: July 1989
SAMPLE		DESCRIPTION	Au Au _R	As Cu Pb Zn Ag
	Kim Prospect,	Geochemical Trench 3, Line 10150		
Û87321	10085 -10090 E	Creenwache	2001	141 17 85 70
. 322	-10095E	U p	2001	112 12 20 62
3 <i>2</i> 3	-10100E	//	2001	135 8 15 50
32u	-10105E		4001	134 10 10 38
325	-10110 E	<i>H</i>	4001 2001	132 16 16 45
326	-10115 =	alburum / greywach	20.01	173 6 15 30
327	-1012CE	vi / /	20.01	172 20 25 43
¥2325	10120E - 10125E	h	40-01	136 14 20 3-2
	Kim Prospect	French in Line 9905N		
(187324	9950 - 9955€	allumin/sethtine	(0.01	157 6 60 335
330	- 9960E	alluium gregwach	0.10 0.08	370 44 680 690
331	-99652	weather of Stochworked gregorache.	1001/001	192 6 50 147
332	-9970E	quenty Veindel (3cm) greywach	040 0.39	4/7 20 250 239
333	-94755	11 4 11	006	291 24 760 213
334	- 9080E	griejwache	Φ02	180 16 60 128
335	-9985E	allevium/gregwach.	0.02	227 /2 50 92
336	-9990E	u V	<u> </u>	181 16 65 83
337	-999SE	И	(0.01	133 16 50 74
A7338	-10000É	и	003 0.05	349 20 65 52

PROJECT: WANDIE GEOLOGIST: G STEINERT	R G C EXPLORATION PTY. LIMITED) ·			DATE: AUG/89					
SAMPLE	DESCRIPTION	Au	Au _R		As	Cu	Pb	Zn	Ag `	
Q91668 veins: 20 cm inde, trend 115	t 10113N, 10065E: 284 remo in gwite-sillstone -85°5 & 8cm wide trand 100°40N; 85whit t pelsgry, any m	es <0.01		z	10	46	69	33		
					_					
								· · · · · · · ·	- 	
				_						
									-	
							-			
									-	
		-								
					_					
										·
	,									
						\neg				

APPENDIX 3. ASSAY RESULTS FROM 1989 SEASON.

3.6 Regional Geology - Mt. Davis.

	WANDIE G STEINERT	R G C EXPLORATION PTY. LIMITED)		DATE	:		SEF	7/8	9
SAMPLE	-	DESCRIPTION		Au _R	As	Cu	Pb	Zn	Ag	
987474	0.8 murde of reined gree of what (80° Einelined sh	icenzed granite, rock chipa across zone 2 m nor oft, 10 m depth to water) 20 rogt, of class to white, milky, e Dx, zone trendo 3560 - 90°	Th. 50,00		2860	148	1750	52	1	
	week aprilote, weak f	e Dx, zone trans 3560-90°]	
Q87475	dump sample from shaf in preserved granite,	t (8 mdepth to water) very week of veino to 6cm ins	0.58	0.63	7.92%	1620	5150	130	81	
	Zone Krando 360 - 8	o E								•
Q87476	0. Smard of rein to	end 340°, brecciated, 95 white, milky, Plant & Mn Ox alteration deep shaft: 0.3 m wide 95 vein trend 356-8	<b.0,< td=""><td><0.01</td><td>430</td><td>164</td><td>105</td><td>32</td><td>1</td><td></td></b.0,<>	<0.01	430	164	105	32	1	
HTD/Y / /L	1 0 me as minor your me	local at comme additional point const. with a tology	246	0.11	9300	2009	1710	35	14	
	dump comple from pet 40	nx Efm x Simplifigs. O. Sin wide of when hand 2° - 80 W	, 0	i	5900	HI	214	19	2	
Q87479	dump sample from inclined	epicte, greisement gravite. I shaft &m deep : 0.3 muride of vin trans 360 - 80 web tomoderate epideta, greinings granter, 4-5% gales	0.10	,	372%	736	1340	26	4	
	standard		ع./5							
	dump sample from 2 sh	exte 10 in apart: Cu-Pb-bearing gt vein in greening	2 0.72		20.1%	2-75/	276	58	7,2	
Q87482	dump sample from she	ft Indeep. 0.3 mile go vin trend 350°-75°)	وی ق این ا			i	535	1	1 1	
Q87483	dump cample film I shept	to 15m depth 85 vein trend 348 - 80 W, 85 whit	دد.ه د		8 12/	મંડ્યું	408	70	34	
287484	2 m rock chip acres pet	2 mx2 m x 2 moderal 6. 3 m winds of vein tranch 330-	65NE, 20.42	0.42	3.42	150	4030	33	5	
987485	dump sample from skept	of galera, 50 py, Fe Dx green trend 5 - 80°6	0.49		13-17	1600	423	13	7	
ŀ	dump sample from oh	et 10mdesp. 13cm wide g van land 3 -00 W)			1-16%	189	245	<i> </i> 6	3	
287487	dump cample from shaft	15 m deep to water I m unde goodnood of ven to	<0.01		487	127	153	15	i	
987488	dump sample from shaft "	5 indeep week of verno to 3 cm trans 10°-70°E, of white meta, copy & galene 17°, malaclita malaclita, week fe 0 x malaclita, week fe 0 x 6 m day : weak of verno in grobe-allutone, vernote 10. The amount moderate fe 0 x, asp? trace - 17.	o. 37		3235	1-84%	98	108	25	
Q874 § 9	dump sample from pet in	molaclet week Fe 0x	90%				3735			
98749 a	dump sample from shaft	Em deep : weak of views in gurbe-altertone, veinte 10. Chy, gonzanova, moderate FeOx, asp? trace - 17.	0.64		7040	2540	1360	191	186	
487491	dump sample from juit 10 m	deep; I'm wide of view in micaceous quide, vein truck moderate fe 0x, marine galina, 5-10 locar, py, malach, 3mx 4 m depth: 0.5 m wide of vein trend 360 - 80 h,	ع.92 ني		9.4%	4.86	1-787	1500	220	
987492	dump cample from pit 3 mx	3mx 4 m depth: 0.5 mirde of vein trend 360 - 80°W,	٥.٤	3	3.26/	1-091	1330	ಬ	60	