EL 2104 McCALLUM CREEK

FINAL REPORT

JULY, 1981.

ABSTRACT

EL 2104 McCallum Creek, was granted to AAR Limited on the 15th day of August, 1979 for a period of twelve months. An application for renewal was granted on the 15th August, 1980.

During 1980 the EL was geologically mapped at 1:25,000 scale using colour aerial photographs. Within the area Lower Proterozoic schists and quartzites belonging to the Wildman Siltstone and dolerites of the Zamu Dolerites crop out. The intrusion of the early Carpentarian Burnside Granite which occupies the central and western sections of the EL has caused doming of the overlying Lower Proterozoic rocks.

In conjunction with mapping rock-chip sample and ground radiometric surveys were conducted.

TABLE OF CONTENTS

			Pag	<u>ze</u>					
ABSTRACT.									
1.	INTRO	DDUCTION.	1						
	1.3	1.1 Location and Access. 1.2 Topography and Climate. 1.3 Tenement Situation. 1.4 Previous Work.							
2.	REGIO	ONAL GEOLOGY.	3						
	2.1 2.2 2.3	Archean Basement. Lower Proterozoic Rocks. Cover Rocks.	3 4 5						
3.	RESUI	TS OF FIELD INVESTIGATIONS.	5						
	3.1 3.2 3.3 3.4		6 6 6 7						
4,	CONCI	JUSIONS & RECOMMENDATIONS.	7						
5.	REFEI	RENCES.	8						
		LIST OF APPENDICES							
Appendix	1.	Expenditure EL 2041.							
Appendix	2.	Thin Section Descriptions.							
Appendix	3.	Rock-chip Sample Assay Result	s.						
Appendix	4.	Grid plan and Radiometric Res	ults.						
Appendix	5.	Resistivity Survey Results.							
		LIST OF MAPS							
Map 1.		Geological Map EL 2104	Scale 1:25,000						
Map 2.		Sample Location Map EL 2104	Scale 1:25,000						

1. INTRODUCTION.

This report describes the results of work carried out on EL 2104, McCallum Creek, during the period August 1979 to July 1981.

The Exploration Licence was granted for all minerals on the 15th August, 1979.

1.1 Location and Access

Exploration Licence 2104, McCallum Creek is located approximately 150 kilometres south-south-east of Darwin (Fig. 1). The area is contained within the Pine Creek 1:250,000 Geological Sheet and the Batchelor 1:100,000 Geological Sheet areas. A detailed description of EL 2104 is as follows:-

All that piece or parcel of land in the Northern Territory of Australia containing an area of 7.71 square miles (19.97 sq. km.) more or less, the boundary of which is described as follows:-

Commencing at the intersection of latitude 13 degrees 21 minutes with longitude 131 degrees 27 minutes thence proceeding to the intersection of latitude 13 degrees 21 minutes with longitude 131 degrees 29 minutes thence proceeding to the intersection of latitude 13 degrees 24 minutes with longitude 131 degrees 29 minutes thence proceeding to the intersection of latitude 13 degrees 24 minutes with longitude 131 degrees 27 minutes thence proceeding to the intersection of latitude 13 degrees 21 minutes with longitude 131 degrees 27 minutes.

Access to McCallum Creek is gained via the Stuart Highway and bitumen side-road to Fountain Head. From there a formed dirt road to Ban Ban Station passes to the east of the EL. Tracks leading off the Ban Ban Station road afford easy access to the EL. Numerous tracks occur within the EL. All unsealed tracks are trafficable only during the 'dry' season.

LOCATION MAP.

E.L. 2104 ____MCCALLUM CREEK

1.2 Topography and Climate.

Within the EL the topography consists of low hills, with rocky outcrops having a relief of up to 30 metres. The creek valleys consist of "black soil" plains and occasionally swamps.

Climate is sub-tropical. The monsoonal season occurs from November to April, during which most of the annual rain falls in torrential storms. Rainfall averages more than 1 200 mm annually. Humidity is constantly high and temperatures range from $30\text{--}40^{\circ}\text{C}$. During the remainder of the year the humidity is lower with daily changes in temperature ranging from 30°C during the day to 10°C or less at night.

1.3 Tenement Situation.

Exploration Licence 2104 was granted to AAR Limited on the 15th day of August, 1979 for a period of 12 months with a minimum expenditure of \$1,250. An application for a twelve month renewal was granted on the 15th August, 1980.

Implementation of exploration programmes in the licence area is being undertaken by Mines Administration Pty. Ltd, a wholly owned subsidiary of AAR Limited.

1.4 Previous Work.

The earliest geological investigations of the Pine Creek region resulted from the discovery of gold in 1872. A number of the mining fields and mines were mapped with aerial photographs by the Aerial, Geological and Geophysical survey of Northern Australia between 1935 and 1939.

The BMR has carried out a number of regional mapping programmes which have included the EL. The area was studied at 1:63,360 scale in the Burnside Geological Series and at 1:250,000 scale in the Pine Creek Geological Sheet (Malone, 1962).

Walpole et. al., (1968) compiled all the existing data pertaining to the Katherine-Darwin Region and proposed a geological evolution of the Pine Creek Geosyncline. More recently mapping of the

1.4 Previous Work (Contd)

Batchelor area at 1:100,000 scale (1977) and the entire Pine Creek Geosyncline at 1:500,000 scale (Needham et. al., 1980) has included the EL.

Companies who have worked in the area include: -

Australian Mining and Smelting Company Limited 1954 - 1956
Enterprise Exploration Company Proprietary Limited. 1957
CRA Exploration Pty. Limited. 1976 - 1979
Geopeko Limited. 1976

Most of the previous work has been oriented toward base metal and gold with the major emphasis on the investigation of haematitic gossans? in the area.

2. REGIONAL GEOLOGY.

Exploration Licence 2104 is located near the centre of the Pine Creek Geosyncline. The regional geology of the Pine Creek Geosyncline has been described in detail by Needham et. al. (1980) and will be discussed only briefly in this report.

By correlating a Tuffaceous sequence Needham et. al., (op cit) have now defined the Pine Creek Geosyncline as a single intracratonic basin containing a thick sequence of mainly pelitic and psammitic Lower Proterozoic sedimentary rocks with interlayered tuff units resting on an Archean granitic basement. Cover rocks, of Carpentarian and younger age, unconformably overlie all of these rocks and conceal the basin margins (Table 1).

2.1 Archean Basement.

The Archean Basement is represented by the domes of the Rum Jungle/Waterhouse and Nanambu Complexes. Possible Archean rocks outcrop in the Woolner area. All the complexes consist mainly of gneisses, migmatites and leucocratic granites with minor schists, metasediments and banded iron formations. All of the Archean basement rocks have anomalous uranium concentrations

AGE	GROUP	FORMATION	LITHOLOGY					
Cretaceous		Bathurst Island F.	Fine to medium grained marine sandstones.					
Cambrian	Daly River Gp.	Jinduckin F. Tindall Limestone, Antrim Plateau Volc.	Ferruginous sandstone, siltstone, minor dolomite. Crystalline limestone. Massive vesicular basalt, minor agglomerate.					
Lower Proterozoic	Tolmer Gp.	Depot Creek Sandstone.	Massive cross-bedded quartz sandstone, pebble bands.					
(Carpentarian)	Katherine River	Kombolgie Form.	Medium to coarse quartz sandstone, minor andesite basalt and rhyolite.					
	Finniss River Gp.	Burrell Creek Form	Siltstone, shale and greywacke.					
	South Alligator Gp.	Kapalga Form.	Ferruginous siltstone, chert bands.					
		Gerowie Tuff.	Black-green cherty tuff, green argillite, green tuffaceous greywacke					
Lower Proterozoic		Koolpin Form.	Ferruginous siltstone with chert bands, pyritic carbonaceous shale, silicified dolomite minor jasper.					
	Mount Partridge Gp.	Nourlangie Schist	Quartz mica schist, mica quartz schist, minor quartzite.					
		Wildman Siltstone.	Siltstone, in places carbonaceous at depth, red and cream laminated siltstone, minor quartzite and quartz greywacke.					

GROUP	FORMATION	LITHOLOGY
Mount Partridge Gp. (Contd)	Acacia Gap Sandstone Member,	Quartz sandstone and feldspathic sandstone with pyritic carbonaceous siltstone and quartz siltstone interbeds.
	Mount Hooper Sandstone,	Medium quartz sandstone and quartzite with some chert fragments, siltstone, phyllite, feldspathic quartzite, pebbly in places, chert pebble conglomerate cross-bedded.
	Mundogie Sandstone	Coarse medium quartz sandstone and orthoquartzite, commonly pebbly, quartz pebble conglomerate, siltstone cross-bedded scoured and graded beds. Minor schist amphibolitic in places.
Namoona Group	Stage Creek Volcanics	Mafic volcanic breccia hawaiite, tuff, tuffaceous shale, tuffaceous greywacke.
	Cahill Formation	Mica feldspar quartz schist, quartz mica schist, with garnet, amphibole and kyanite in places, carbonaceous schist, crystalline dolomite-magnesite, and calc-silicate gneiss near base.
	Masson Formation	Ferruginous shale (mostly pyritic and carbonaceous at depth) fine-coarse calcareous and volcanic greywacke, calcarenite, sandstone, limestone.
Batchelor Gp.	Coomalie Dolomite,	Dolomite, magnesite, dolomite breccia tremolite schist, calcilutite algal structures and evaporite pseudomorphs in places.
	Crater Formation.	Feldspathic sandstone, pebble conglomerate, siltstone, pyritic in part, basal ferruginous conglomerate in places.
	Celia Dolomite	Dolomite, magnesite, silicified or with algal structures in places, tremolite schist, minor sandstone, arkose, carbonaceous sediments.
	Mount Partridge Gp. (Contd) Namoona Group	Mount Partridge Gp. (Contd) Acacia Gap Sandstone Member. Mount Hooper Sandstone. Mundogie Sandstone Namoona Group Stage Creek Volcanics Cahill Formation Masson Formation Batchelor Gp. Coomalie Dolomite. Crater Formation.

and ablant (Cquark) and the transfer of the control of the control

r		7	 	
<u> </u>	AGE	GROUP	FORMATION	LITHOLOGY
		Batchelor Group. (Contd)	Beestons Formation,	Arkose, feldspathic sandstone, conglomerate, siltstone.
		Kakadu Group.	Munmarlary Quartzite.	Gneissic massive to friable orthoquartzite, minor schist.
			Mount Howship Gneiss	Very coarse white feldspathic leucogneiss, minor schist, rare garnet and amphibole.
			Kudjumarndi Quartzite.	Orthoquartzite, quartz gneiss, minor schist, rare cross-bedding, rare amphibole.
			Mount Basedow Gneiss	White-grey-pink coarse muscovite biotite gneiss, granitoid gneiss minor schist.
	Archaean		Rum Jungle Complex Waterhouse Complex Nanambu Complex.	Gneiss, migmatite, leucocratic granite, biotite - chlorite schist, amphibolite and quartzite.
	oper Proterozoic Carpentarian)	Granite.	Margret Granite. Cullen Granite Fenton Granite. Burnside Granite Mt. Bundy Granite Jim Jim Granite Mt. Shoobridge Granite.	Porphyritic adamellite, fine grained granite, hornblende - biotite granite and aplite dykes.
Lc	wer Proterozoic		Zamu Dolerite.	Differentiated continental tholeiitic basalt sills, olivine dolerite, metamorphosed to amphibolite in places.

Talenti (mitd)

and are possible source rocks for the deposits in the Pine Creek Geosyncline.

2.2 Lower Proterozoic Rocks.

The oldest known Lower Proterozoic rocks are those of the Batchelor and the Kakadu Groups which rest unconformably on Archean basement. The Batchelor Group, which surrounds the Rum Jungle/Waterhouse complex contains arkosic rudites, psammites, conglomerates, and minor shales of the Beetsons and Crater Formations interbedded with massive crystalline carbonates of the Celia and Coomalie Dolomities. The Kakadu Group is best developed adjacent to the Nanambu Complex and is comprised mainly of meta-arkose and paragneiss.

These two basal groups are overlain by the pelites and psammites of the Namoona Group. The dominant unit in this group is the Masson Formation which extends from west of the Rum Jungle/ Waterhouse Complex almost to the South Alligator River. Further east it is thought to be equivalent to the lower member of the Cahill Formation, a partly calcareous and carbonaceous sequence of micaceous quartz-feldspathic schist, with lenses of massive carbonate. These two units are the hosts to the major uranium deposits in the Rum Jungle and Alligator Rivers areas. In the centre of the geosyncline the Masson Formation is unconformably overlain by the Stag Creek Volcanics. Elsewhere the Masson Formation is overlain by the sandstone-siltstone assemblage of the Mount Partridge Group which contains the Mundogie Sandstone, Mount Hooper Sandstone and Wildman Siltstone and correlates with the Acacia Gap Sandstone in the Rum Jungle area. East of the South Alligator River the Mundogie Sandstone correlates with feldspathic quartz schist of the upper Cahill Formation and the overlying Wildman Siltstone correlates with the Nourlangie Schist.

Overlying the older rocks is the South Alligator Group which comprises the Koolpin Formation, Gerowie Tuff and Kapalga Formation. Together with the Koolpin Formation, the overlying Gerowie Tuff provides the main evidence for correlating the strata of the western and central parts of the geosyncline. The Kapalga Formation is the youngest unit in the South Alligator Group and represents a transitional sequence between the South Alligator

Group and the overlying Finniss River Group.

The Finniss River Group is the youngest Lower Proterozoic Group and consists of a monotonous sequence of siltstone, slate, shale and greywacke. The Finniss River Group is made up of the Burrell Creek Formation, the Fisher Creek Siltstone and the Chilling Sandstone. The Burrell Creek Formation grades laterally and upwards into the Chilling Sandstone. The Fisher Creek Siltstone is present in the South Alligator Valley area and is a correlative of the Burrell Creek Formation.

At or near the end of sedimentation in the Lower Proterozoic the rocks were intruded by a suite of dolerites, mainly sills, known as the Zamu dolerities. At approximately 1 800 m.y. the sills and sedimentary rocks were deformed and regionally metamorphosed. Both the grade of metamorphism and degree of deformation increases towards the north east of the geosyncline. The metamorphics were then intruded and in places domed by early Carpentarian granite plutons. This was followed by the intrusion of a series of tholeitic lopoliths known as the Oenpelli Dolerites.

2.3 Cover Rocks,

The Lower Proterozoic rocks of the Pine Creek Geosyncline are unconformably overlain by the sandstone and minor volcanics of the Tolmer and Katherine River Groups. The northern and southern margins of the geosyncline are concealed by Palaeozoic rocks of the Daly River Group and Mesozoic strata of the Bathurst Island and Petrell Formations.

RESULTS OF FIELD INVESTIGATIONS.

Geological mapping of EL 2104 at a scale of 1:25,000 using colour aerial photographs was commenced in July, 1980 (Map I). Base and airphoto interpretation maps had been prepared in January 1980 by Hunting Geology and Geophysics (Australia) Pty. Ltd.

In conjunction with the mapping a foot-borne radiometric survey was completed. 16 line kilometres of gridding had been completed in November 1979. A rock-chip sampling programme was also undertaken during 1980. Sample locations are presented as Map 2. During October - November 1980 a resistivity survey was conducted over the EL (Appendix 5).

3.1 Geology.

The oldest rocks which crop out in the project area belong to the Wildman Siltstone and are comprised of quartz sandstones, quartzites and micaceous schists. The quartz sandstones are white grey in colour, medium to coarse grained and consist of sub-angular to sub-sounded quartz grains in a matrix of clay. The quartzites are metamorphosed equivalents of the sandstones and consist of fused aggregates of quartz grains and interstitial muscovite. Interbedded with the sandstones and quartzites are micaceous schists which are coarse grained and slightly haematitic and probably represent metamorphosed siltstones.

Pld 4, also part of the Wildman Siltstone, outcrops in the south-eastern corner of EL 2104. The rocks are grey-black carbonaceous and haematitic metasiltstones. They are fine grained and have a poorly developed schistosity. Thin section M.Ck. 6 (Appendix 2) describes a typical sample from Pld 4.

3.2 Intrusions.

The Lower Proterozoic sedimentary rocks within the EL have been intruded by a suite of dolerites belonging to the Zamu Dolerites. The rocks range in thickness from less than 10 metres to more than 500 metres. The rocks are dark green-black in outcrop, fine to coarse grained and have been deformed with the sedimentary rocks.

The dominant lithology within the EL is the early Carpentarian Burnside Granite. Mineralogically the rock consists of porphyritic microcline crystals, coarse prismatic plagioclase crystals, quartz and minor muscovite. Lithologically the rock is a muscovite adamellite. Doming of the overlying Lower Proterozoic sedimentary and igneous rocks has been caused by the intrustion of the granite.

3.3 Geochemistry.

Six rock-chip samples were collected and assayed for Cu, Pb, Zn, W and U. One sample was also analysed for As and Au. Results are presented as Appendix 3.

Some relevant statistical data is given below as Table 2.

TABLE 2.

Element.	Cu	Pb	Zn	W	U
Range	5-65	25-135	5-60	10-50	4-8
Mean	20	68	3 3	20	5

No assay results are considered anomalous.

3.4 Geophysics.

In conjunction with the geological mapping a ground radiometric survey was conducted using a GIS - 3 spectrometer. 16 line kilometres of gridding had been completed on 250 x 250 metre centres during 1979. Readings were taken every 20 metres along the east-west lines. A grid plan and the results are presented as Appendix 4.

During October - November 1980 a resistivity survey was completed over the EL by Murdoch Geophysics Pty. Ltd. Results indicate an area of generally high apparent resistivity. The most conductive area was located in the south-eastern corner of the area. This corresponds to the outcropping of a small amount of graphitic shales which belong to the Wildman Siltstone (Appendix 5).

CONCLUSIONS AND RECOMMENDATIONS.

Geological mapping of EL 2104, McCallum Creek, delineated rocks belonging to the Wildman Siltstone, the youngest formation of the Mt. Partridge Group. Outcropping doleritic rocks of the Zamu Dolerites occur.

The Lower Proterozoic rocks were intruded and domed by the early Carpentarian Burnside Granite.

From the results of the mapping and resistivity survey it is concluded that the most favourable environment for an economic accumulation of uranium would be in the south-eastern corner of EL 2104. However, rock-chip samples from this area failed to detect any significant concentrations of uranium.

It is therefore recommended that no further work be undertaken in EL 2104 and that the area be relinquished.

5. REFERENCES.

A.G.G.S.N.A., 1935:

Reports for periods ended 30th June and 31st December, 1935.

A.G.G.S.N.A., 1936:

Reports for period ended 31st December, 1936.

A.G.G.S.N.A., 1939:

Reports for period ended 31st December, 1939.

Bureau of Mineral Resources - 1959:Burnside Northern Territory I Mine Geological Series, Sheet 69 and Zone 4.

Campbell, F.A. 1956:

Report on Gossan Formations of Brock's Creek, Northern Territory. N.T. Open File CR 56/1 Unpubl.

Malone, E.J. 1962:

Pine Creek, N.T. - 1:250,000 Geological Series. Bur. Miner, Resour. Aust. Explan. Notes D/52-8

Murray, K.J. 1955:

Report on Uranium Search Brock's Creek Area. N.T. Open File CR 55/1/ Unpubl.

Needham, R.J. Crick, I.H. & Stuart-Smith, P.G., 1980: Regional Geology of the
Pine Creek Geosyncline. Proceedings of the
International Uranium Symposium on the Pine
Creek Geosyncline.

Patterson, G.W., 1959:

Brock's Creek Gossans.

N.T. Open File CR 59/3 Unpubl.

Walpole, B.P., Crohn, P.W., Dunn, P.R. & Randal, M.A., 1968: Geology of the

Katherine Darwin Region, Northern Territory.

Bull. Bur. Miner, Resour. Geol. Geophys Aust.

82, 304 p.

Wills, K.J., 1977:

Annual Report Burnside East EL 1137 Pine Creek Basin N.T.

N.T. Open File CR 79/167 Unpubl.

Wills, K.J., 1979:

Final Reports Burnside East EL 1137 and Burnside West EL 1149. Pine Creek Basin N.T. N.T. Open File CR 79/56 Unpubl. APPENDIX 1.

BRISBANE.

10th August, 1981.

MINES ADMINISTRATION PTY LIMITED

STATEMENT OF EXPENDITURE

McCULLUM CRK EL 2104

YEAR ENDED 12.7.81

REF: AC/MDE

	<u>\$</u>
Salaries and Wages	6,003
Travel & Accommodation	214
Vehicle Hire	400
Communications	3
Freight	56
Drafting, Air Photography, Printing, etc.	175
Geophysics Contractor - Other	3,591
Surveying Consumables	296
	10,738

Interest

Accountant.

APPENDIX 2.

THIN SECTION DESCRIPTIONS.

SAMPLE NO.	ROCK TYPE - COMPOSITION	FABRIC	MINOR MINERALS	COMMENTS.
M.Ck. 1	Metaquartzite. Irregular interlocking medium and coarse quartz grains; small interstitial aggregates of fine muscovite, replacing matrix-cement.	Clastic textures recognisable, but modified. Grainsizes up to 1 mm.	Interstitial goethite- limonite staining. Trace authigenic tourmaline.	Originally an orthoquartzite; very mildly contact-metamorphosed, with formation of intergranular muscovite.
M.Ck. 6	Tourmalinised Schist. Fragments of fine quartzsericite schist, replaced by bands of coarse radiating tourmaline, vein-quartz; all ferruginised.	Coarse tourmaline bands conformable with schistosity. Replacement textures.	Poorly-defined masses of cloudy, leucoxenic rutile.	Schist may be carbonaceous; Tourmaline presumably pneumatolytic hydrothermal.

APPENDIX III

ROCK-CHIP SAMPLES ASSAY RESULTS

SAMPLE NO.	Cu.	Pb.	Zn.	U.	W.	As	Au.
M.Ck. 1	15	110	50	4	<10		
M.Ck. 2	10	135	40	4	20		
M.Ck. 3	5	35	60	4	<10		
M.Ck. 4	10	55	5	4	20		
M.Ck. 5	15	25	10	8	∠10		
M.Ck. 6	65	50	30	8 .	50	440	0.1

^{*} All values in ppm.

APPENDIX 4.

140	26750	25760	2378	0 268	00 2	26820	26840	26860	2688	0 269	00 2	26920	26940	26960	26980
9500	43	34	39	38	38	46	45	41	43	44	54	65	54		
9250	49	44	41	42	45	37	36	36	34	34	32	31	35		
9000	251	25	22	21	20	20	23	29	26	34	30	29	30		
141	27000	27020	2704	0 270	60 a	27080	27100	27120	2714	0 271	60 3	27180	27200	27220	27240
9500	50	52:	40	45	47	42	40	34	30	30	30	31	34		
9250	38	32	27	58	31	35	<u>,</u> 36	32	31	34	Э4	30	58		
9000	31	30	24	30	28	26	25	27	25	23	26	25	24		
142	27250	27260	2728	0 273	00 a	27320	27340	27360	2738			27420		27460	27480
10250	60	59	62	48	49	52	50	59	56	۵0	63	62	70		
10000	50	55	51	51	42	39		37	34	37	42	46	38		
9750	51	50	47	48	49	51	50	49	45	40	43	42	40		
9500	33	32	35	34	33	35	33	28	26	24	20	22	18		
9250	29	29	30	24	25	25	26	22	52	21	19	19	18		
9000	22	21	20	18	16	16	18	18	20	26	26	32	38		
	27500	27520				27580		27520		0 2,76				27720	27740
10250	80	68	63	70	50	36	35	37	33	29	34	36	32		
10000	34	34	42	40 .	40	47	58	30	28	53	20	21	21		
9750	38	33	36	35	32	34	36	28	33	27	30	29	28		
9500	27	25	23	21	19	25	27	25	26	25	27	22	55		
9250	19	19		21	23	20	30	31	33	30	33	22	15		•
9000	41	38	34	24	24	24	35	21	21	21	22	25	23		
	27750	27760				27820	27840	27860		0 279				27960	27980
10250	29	33	27	29	58	29	34	30	26	24	24	24	26		
10000	30	40	35	28	37	30	26	20	58	30	28	23	16		
9750	28	28	27	50	22	25	29	33	32	29	27	50	50		
9500	22	53	24	53	20	23	26	26	29	29	27	30	34		
9250	14	14	13	12	13	15	18	20	21	23	25	28	27		
9000	26	24	28	26	27	27	26	21	18	18	17	16	14	~~~~	00040
	58000	58050				28080		28120		0 281				28220	28240
14500	20	38	38	26	27	27	28	30	28	58	26	25	21		
14250	38	40	37	39	38	32	35	38	38	30	30	35	30	•	
14000	27	29	27	30	40	36	33	35	30	27	22	24	24		
10250	26	27	23	21	19	19	22	23	19	20	22	27	28		
10000 9750	18	23	18	21	29	38	28	29	26	25	29	23 29	26		
	25	27 29	23 23	30	27	27	28 20	24	27 20	20 20	18 20	18	23 17		
9500 9250	35 36	24 24		23	22	50		18		14	12	13	13		
9000	28 14	16	23 13	16 12	16 13	13 1 2	14 12	13 13	15 15	14	16	14	10		
	28250	58590				28320							28440	20440	29480
14500	17	14	13	, 283 13		10	11	10	- 8 - 2000	0 204 8	8	8	9	ZUTOV	CUTUV
14250	27	26	24	25	12 23	25	53	21	22	50	17	18	17		
14000	25	30	32	25 34	33	28	26	27	27	28	29	31	35		
10250	25 25	30 25	ਹਵ 25	21	26	22	59 55	27 25	24	23 23	23	18	14		
10500	EL O	e; J	et J	## T	ű Ö	<u>a' e'</u>	ಟ೦	E. 3	4	دے	ال ت	10	14		

 $\langle G \rangle$

6

```
20
                                                                       28
                                                                             26
                                                                                   26
10000
          27
                28
                      28
                            33
                                  31
                                        25
                                              17
                                                     18
                                                           20
                      26
                            27
                                  27
                                        34
                                               20
                                                     24
                                                           18
                                                                 13
                                                                       20
                                                                             16
                                                                                   17
 9750
          25
                26
                                                                 14
                                                                       14
                                                                             12
                                                                                   13
                      14
                            15
                                  14
                                        15
                                             . 14
                                                     14
                                                           15
 9500
          14
                14
                                                                 12
                                                                       12
                                                                             13
                                                                                   14
                                                     12
                                                           13
 9250
                14
                      15
                            13
                                  11
                                        12
                                               10
          14
                                                                 15
                                                                             15
                                                                                   18
           9
                             9
                                  13
                                        10
                                              14
                                                     14
                                                           13
                                                                       13
 9000
                 9
                      11
                                                          28640 28660 28680 28700 28720 28740
                      28540 28560 28580 28600
  147 28500
              28520
                                                   28620
                                   9
                                         9
                                                           12
                                                                 12
                                                                        9
                                                                             12
                                                                                   12
                 8
                            10
                                              11
                                                     10
14500
           8.
                       8
                                                                             12
                                                                                   12
                                                     15
                                                           12
                                                                 13
                                                                       14
                                        18
                                              14
14250
          17
                17
                      17
                            16
                                  14
                                                                                   21
                                                                 30
                                                                       27
                                                                             27
                      29
                            30
                                  26
                                        30
                                               32
                                                     32
                                                           24
14000
          34
                31
                                                                       22
                                                                            18
                                                                                   24
10750
          27
                25
                      28
                            27
                                  26
                                        20
                                               22
                                                     26
                                                           22
                                                                 17
                                  25
                                              23
                                                     18
                                                           18
                                                                 15
                                                                       14
                                                                             13
                                                                                   14
                      27
                            26
                                        24
10500
          27
                58
                                                                             20
                                                                                   21
                                  23
                                        23
                                                     22
                                                           20
                                                                 22
                                                                       22
                      23
                            24
                                              21
10250
          16
                18
                                                                       13
                                                                             15
                                                                                   15
          25
                      21
                            15
                                  14
                                        15
                                               14
                                                     14
                                                           14
                                                                 14
10000
                28
                                                                                   15
                                                                             12
 9750
                      17
                            15
                                  13
                                        14
                                               16
                                                     18
                                                           17
                                                                 15
                                                                       14
          16
                16
                                                           12
                                                                 12
                                                                       13
                                                                             12
                                                                                   12
                            13
                                  13
                                        14
                                               13
                                                     11
 9500
          12
                12
                      10
                                                                             17
                                                                                   17
                            18
                                  17
                                        19
                                               16
                                                     17
                                                           16
                                                                 14
                                                                       15
 9250
         14
                      14
                14
                           14
                                                                 19
                                                                       17
                                                                             15
                                                                                   17
                                  17
                                        21
                                               24
                                                     20
                                                           22
 9000
          17
                16
                      14
                                                          28880 28900 28920 28940
                                                                                        28960 28980
  148 28750
              28760
                     29780 28800 28820
                                            28840
                                                   28860
                                  14
                                                                 28
                                                                       31
                                                                             29
                                                                                   28
                                               21
                                                     23
                                                           24
14500
          12
                12
                      12
                            12
                                        14
                                                                        9
                                                                             10
                                                                                   10
                                         9
                                                      \mathbf{S}
                                                           10
                                                                  9
14250
                                   8
                                               7
          14
                11
                      13
                            10
                                                                             22
                                                                                    19
                                        29
                                               21
                                                     19
                                                           24
                                                                 18
                                                                       21
14000
          22
                27
                      23
                            27
                                  25
                                                                             15
                                                                                   14
                            19
                                  19
                                        16
                                               18
                                                     14
                                                           12
                                                                 15
                                                                       17
10750
          27
                28
                      28
                                                           17
                                                                 19
                                                                       18
                                                                             12
                                                                                    13
                                        12
                                                     14
10500
          16
                      15
                            14
                                  14
                                               14
                16
                                                                       15
                                                                             14
                                                                                    16
                                                           16
                                                                 16
                                  17
                                        16
                                               17
                                                     18
10250
          22
                21
                      20
                            19
                                                                                    8
                                                                        9
                                                                              B
                                                            9
                                                                  6
10000
          13
                      14
                            13
                                  11
                                        .13
                                               10
                                                     10
                10
                                                                       13
                                                                             10
                                                                                    14
                            12
                                  14
                                        13
                                               12
                                                     12
                                                           12
                                                                 12
 9750
          17
                12
                      10
                                               13
                                                     13
                                                           13
                                                                 12
                                                                       13
                                                                             14
                                                                                   12
                            14
                                  15
                                        14
 9500
          12
                14
                      15
                                                                                    35
                                  26
                                        26
                                                                 26
                                                                       26
                                                                             34
                                               23
                                                     24
                                                           25
 9250
          20
                21
                      24
                            24
                                                           35
                                                                 37
                                                                       36
                                                                             38
                                                                                    34
                                  35
                                               38
                                                     35
 9000
          17
                19.
                      32
                            36
                                        34
  149 29000
         25
14500
         10
14250
14000
         20
10750
          14
10500
          14
10250
         11
10000
          10
 9750
          13
 9500
         12
 9250
          40
```

6.

9 6

Apparent resistivity traverses

Apparent resistivity values.

Interpreted geo-electrical zones.

MURDOCH GEOPHYSICS (AUSTRALIA) PTY LTD.

RESISTIVITY SURVEY

CLIENT: Mines Administration

LOCATION: Mª CUILLIM Greek - Northam Territory

491

Location plan showing distribution of apparent resistivities.

Scale - 1: 25,000

Plate No: 8

Report No:

Date: February 181

