OPEN FILE

1980/1981

ANNUAL REPORT ON

EXPLORATION LICENCE 1997

and EL2251

 $\underline{\mathtt{BY}}$

TERRITORY MINING PTY. LTD.

FOR

THE DEPARTMENT OF MINES & ENERGY,
DARWIN, NORTHERN TERRITORY

AUTHOR

J. N. CRAGO AUGUST 1981

DME LIBRARY
1 4 MAR 1996
SCANNED

CONTENTS	PAGE
TENEMENT INFORMATION	1
INTRODUCTION	2
WORK PROGRAMME 1980-1981	3 to 6
REPORT FROM R. BIRRELL (GEOLOGIST) GREENEX - A DIVISION OF GREENBUSHES TIN LTD.	7 to 9
ASSAYS	10 to 22
SCHEDULE OF EXPENDITURE	23
SUMMARY OF RESULTS	24
CONCLUSIONS	25
APPENDICES	
1 1:250.000 MAP REFERENCE	

LOCALITY MAP

PASTORAL LEASE LOCALITY MAP

SAMPLE LOCATION MAP

11

111

1 V

TENEMENT INFORMATION

TENEMENT:

EXPLORATION LICENCE 1997

HOLDER:

TERRITORY MINING PTY. LTD.

LOCALITY:

WINGATE MOUNTAINS, N.T.

AREA:

125.55 sq. miles (325 sq. km.)

MINES DEPARTMENT

MAP REFERENCE:

20/1 - 1:100,000 TENEMENT SERIES

DATE GRANTED:

26.6.79

YEARLY REPORT FOR:

2nd YEAR OF TENURE

(26.6.80 to 25.6.81)

INTRODUCTION

Territory Mining Pty. Ltd., acquired this licence from Darwin Tug & Line in 1979. The agreement was registered on the 26 March, 1980.

The only vehicle access to the licence is the old Fletchers Gully goldmine track which ends about 3 mile inside the north boundary of the licence. The rest of the licence is accessible only by foot or helicopter.

Outcrops over the licence area is good owing to a very youthfull topography and sharply incised juvenile streams. the main ones being Muldiva Creek and Spring Creek. Recorded mineralization is gold at Fletchers Gully and some alluvial tin production from the vicinity of this gold mine. Reconnaissance panning revealed some rich tin tantalite concerntrations on Upper Spring Creek and minor, but interesting tin values near the head of Allia Creek. No proved source was found for the Spring Creek mineralization which, although adjacent to Buldiva, is of a completely different character. Access to Spring Creek has been the major problem in carrying out a methodical evaluation of the alluvium. It had been planned to follow up encouraging earlier work with either auger drilling or back-hoeing. These plans were frustrated by the failure of the final drive on the D9 necessitating a down time of two months and subsequently the overburden removal at Mt. Wells fell behind and the machine has not since been available for other projects as the back log of work at the mine is first priority.

WORK PROGRAME : 25.6.80 to 25.6.81

During the period 25 June 1980 to 25 September 1980 an attempt was made to gain vehicle access from near Fletchers Gully to Spring Creek via Muldiva Creek, as after flying around the area in 1979 it appeared to be possible. Also Adrian Vanderplank thought that when he was with the B.M.R. some B.M.R. Geologists reached Spring Creek by vehicle. My attempts were unsuccessful.

Some samples were panned from Muldiva Creek and Lower Spring Creek and gave sub economic grades of tin from stream gravels.

It was decided to reach Spring Creek via Soldiers Creek as economic grade gravels had previously been located in 1979 on Exploration Licence 2251 and Exploration Licence 2541.

In the period 25 September 1980 to 25 December 1980 it was decided to evaluate the area by costeaning and pitting. G. Brown, Mine Foreman, and myself began the sampling project. The only machine available was a Caterpillar 977 Traxcavator which was transported to the Oolloo crossing on the Daly River on a low loader. After off-loading, the machine was walked to Collia where a base camp was established in a demountable, left behind for the express purpose of Exploration in the Collia-Wingate area.

The track from Collia to the junction of East Soldiers Creek and main Soldiers Creek was cleared of tree re-growth from 1978 and the dray track located during reconnaissance

prospecting was widened and upgraded to allow vehicle access to the head of West Soldiers Creek. Driving two shifts, this work took about 5 days to complete. Pits were then dug in areas where large widths and depths of wash seemed likely. Several dishes were panned from these pits and two (2) concentrates produced, one for Soldier's Creek West and the other for Soldier's Creek Central, the purpose being to establish tin tantalite ratios (Assay Number 1.) This established that West Soldier's Creek had the higher tantalite ratio.

The sampled area was mapped by W.S. Parsons and the location of pits plotted on the base map. R. Birrell, Greenex geologist, and W.S. Parsons took and recorded the samples which were channeled where practicable and from around the spoil heap where wet ground was encountered. The samples were transported to Collia Waterhole and panned by Amelio Undzucum and myself. A rough pan concentrate was made of the heavy minerals then bagged and despatched to the Greenbushes grain counting laboratory. The results of these assays are shown in Assay Table 2. It was found that while some samples approach economic grade, overall values were sub-economic at present tintantalite prices. It also shows that further testing of West Soldier's Creek is necessary to define the extent of the mineralization.

As stated in R. Birrell's report the source of the tantalite is probably an area of narrow but very linear pegmatites on the Soldier's Creek, Spring Creek divide. The tin tantalite found in Spring Creek is identical in size, colour and accessory minerals to that found in

West Soldier's Creek. R. Birrell also spent two days walking the area prospecting the base of the Petrel formation for old stream channels.

Following completion of the testing programe in October 1980 the northern part of the licence was prospected, via the Daly Crossing, and using an access road that is west of Alligator Lagoon joining the old Fletcher's Gully goldmine road. It is possible to drive to the junction of Spring Creek and Muldiva Creek. Several pegmatites were located in the vicinity of Muldiva Creek. Most contained sporadic tin mineralization. Only one appears to have economic possibilities. Several samples have been taken for assay to determine whether any tantalite is present with the tin. Diamensions of the pegmatite are, 110 metres long, average width .5 metre, maximum observed width 3 metres. The grade appears to be about 1% on the basis of sampling to date. If assay shows the presence of significant tantalite further work will be carried out to define the extend of the pegmatite. Both ends disappear under alluvium so the full strike length is unknown.

The Fletcher's Gully gold mine and environs was sampled and no significant values have been received to date.

As the general mine area possesses excellent outcrop I assume the potential for previously unfound lodes nil.

The extent of the known mineralization is not at all impressive and I consider no further work on the area for gold is warranted.

Several gravel samples have been panned to a heavy mineral concentrate. These are being assayed for tin, tantalite and gold and checked for diamond indicator minerals.

Our joint venture partners, Dampier Mining Company
Limited, in diamond exploration of the area, have
reported that initial sampling has been carried out
over the joint venture exploration licences, including
exploration licence 1997. Results from sampling will
be available in late September, 1981. In the meantime
a sample location map is included.

GREENEX

REPORT ON WINGATE MTS
(SOLDIERS/SPRING CREEKS)
PROSPECT N.T.

R. BIRRELL GEOLOGIST

AREA : SPRING/SOLDIERS' CREEKS, DALY RIVER AREA N.T.

 $\underline{\text{DATE}}$: 25/10/80 - 31/10/80

TENEMENT: E.L.2251 - Territory Mining P/L. 45 sq. miles

E.L.1997 - " 125

1NTRODUCTION

Following encouraging results from a field excursion undertaken in 1979 a more detailed sampling program was planned for the 1980 field season and has been completed. Interest in the area centers around four prominent drainages.

- 1. Soldiers Creek West
- 2. " Central
- 3. " East
- 4. Spring Creek

SUMMARY

A more organised and methodical sampling program has

- (i) Confirmed two sources of mineralisation small pegmatite stringers and old Jurassic conglomerate beds 'fossil drainages'.
- (ii) In recent alluvial drainages samples are approaching ore grade with 3 8% tantalite in concentrates.
- (iii) The conglomerate beds are rich in tin but have no significant tantalite.
- (iv) The drainages have large volumes of potential mineral bearing wash.
- (v) No diamond indicator minerals were identified in concentrates.

GEOLOGY

General

The three dominant lithologies in the area are the Soldiers Creek granite, the Buldiva sandstone member of the Tolmer Group, and remnants of Jurassic capping - the Petrel formation. The area has been severely faulted and this in turn has resulted in rejuvenation of watercourses to produce incised drainage systems.

The watershed is close to the granite sediment contact with the most active erosion cycle to the east into the Soldiers Creek system. This watershed is a predominant topographic feature of the area with the Jurassic capping forming shear cliffs on the break of slope. Small pegmatite dykes have invaded the country rock and generally there are narrow (1 m) but often can be traced for over .5 km.

Mapping (see appendix 1)

A base map at scale 1:15000 has been compiled from air photos. The following information has been added.

- 1. Costean locations
- 2. Sample locations alluvial, eluvial and rock samples.
- 3. Approx. extent of alluvial area available.

Alluvial samples from costeans were panned to a concentrate and despatched to Jewell Mineralogical Services for grain counting and Mineralogical Services for grain counting and mineralogical examination.

Rock specimens were despatched to S.G.S. laboratories, Perth.

Discussion

Field work carried out this year confirms that mineralisation apparently is derived from two sources.

- 1. Small pegmatite/quartz stringers intruded into the country rock.
- 2. Mineralisation liberated from fossil river channels in the Jurassic beds.

Current Drainages

Material collected from an old working (Kaolin Show) on a fossil Jurassic drainage revealed that these coarse gravels contain high tin values but no tantalite. In addition rounded pebbles of cassiterited (1.5 cm dia) were found at the mouth of the old workings as well as at central Soldiers Creek.

This confirms that some mineralisation has been liberated and has travelled in the more recent drainage system. Values of mineralisation were patchy within the creeks however it does appear that the concentrates average between 3 - 8% tantalite. While only a few of the samples could be regarded as 'approaching economic grades' the large volume of alluvial material available may have significant potential. Generally the wash is friable and would pose no significant treatment problems. Many of the tributories and creeks are 'boney' but again this would not be a major problem.

Fossil (Jurassic) Drainages

From the results of sampling the actual wash of the kaolin show, this source holds the most mineral potential for the area, however depth of overburden would make economic extraction impossible in this locality. It may be possible to locate other conglomerate beds at the base of the Jurassic further west on Allia Creek and thus determine if the thickness of overburden has decreased significantly to allow a viable operation. In several other locations, the conglomerate beds can be seen on the walls on the valleys.

CONCLUSIONS

- 1. From results sufficient encouragement was given to suggest an economic potential may exist within the Soldiers Creeks system.
- 2. The topography of the upper Spring Creek system suggests :
 - 1. A large volume of Jurassic material has been eroded and most likely transported down Spring and Allia creeks.
 - 2. The head waters of Spring Creek rise on country that has a myriad of quartz/quartz pegmatite stringers the inferred source of the tantalite in the area.

NEW SOUTH WALES 74 McEvoy St., Alexandria, Sydney, N.S.W. 2015 Telephone 699 7625 Telex: SGSSYD AA22395

WESTERN AUSTRALIA 80 Railway Parade, Queens Park Telephone 458 1421 Telex: SGSPTH AA92624

Date received 14.11.80

ANALYTICAL REPORT

	μ	WAL	TICA	LRE	PORI	•			
Sample Ref.	Ta ₂ 05	SnO ₂	Nb205	Fc20	_{3 T1} O ₂	Wt	(g)		
0042	<.01	0.19	<.01	9.85	0.11	13.1			
AMELIO 3	0.98	62.1	0.53	1.50	0.26	 2.8			
AMELIO STN 4	3.20	51.2	0.78	7.00	0.39	0.8			
S.A.? 1	2.25	74.7	0.87	1.75	0.33	 1.0			
CASTBON A12?	1.80	81.3	0.80	1.40	0.24	 5.8			
	ppm				·				
METHOD:	XRF			,					
4									
							_		
	·								-
								_	
						. ,			
				•					

10	17		. (:	
 	***********	*************	******		

SGS Australia Pty. Ltd.

KIBIKKICLE

NEW SOUTH WALES 74 McEvoy St., Alexandria, Sydney, N.S.W. 2015 Telephone 699 7625 Telex: SGSSYD AA22395

WESTERN AUSTRALIA

80 Railway Parade, Queens Park Telephone 458 1421 Telex: SGSPTH AA92624

2 DEC 1980 Greenex, P.O. Box J646, G.P PERTH W AUST

Our ref	LP 1985
Your ref	.1082
Date received	.171180
Date completed.	28,11,80
·	Perth
190000 #1 111111111	*************************************

ANALYTICAL REPORT

3/10/21 45 95 50 0.69 <0.01 22 40 120 55 1.25 0.01 23 <10 25 30 0.39 <0.01 24 17 100 45 1.45 0.06 25 18 70 55 1.00 0.04 26 45 75 50 0.98 0.01 27 40 270 130 1.85 0.06 28 18 <10 <10 0.74 0.01 3/10/29 10 40 19 3.40 0.33 PPM PPM PPM X X METHOD: XRF	Sample Ref.	Ta ₂ 0 ₅	Sn	Nb 205	Fe ₂ 0 ₃	Ti02				
23 <10	3/10/21	45	95	50	0.69	<0.01		_		
24 17 100 45 1.45 0.06 25 18 70 55 1.00 0.04 26 45 75 50 0.98 0.01 27 40 270 130 1.85 0.06 28 18 <10 <10 0.74 0.01 3/10/29 10 40 19 3.40 0.33 PPM PPM PPM X X METHOD: XRF	22	40	120	55	1.25	0.01	,			
25	23	<10	25	30	0.39	<0.01				
26 45 75 50 0.98 0.01 27 40 270 130 1.85 0.06 28 18 <10 <10 0.74 0.01 3/10/29 10 40 19 3.40 0.33 PPM PPM PPM X X METHOD: XRF	24	17	100	45	1.45	0.06				
27 40 270 130 1.85 0.06 28 18 <10 <10 0.74 0.01 3/10/29 10 40 19 3.40 0.33 PPM PPM PPM X X METHOD: XRF	25	18	70	55	1.00	0.04				
28 18 <10 <10 0.74 0.01 3/10/29 10 40 19 3.40 0.33 PPM PPM PPM X X METHOD: XRF	26	45	75	50	0.98	0.01				
3/10/29 10 40 19 3.40 0.33 PPM PPM PPM X X METHOD: XRF	27	40	270	130	1.85	0.06				
3/10/29 10 40 19 3.40 0.33	28	18	<10	<10	0.74	0.01				
METHOD: XRF	3/10/29	10	40	19	3.40	0.33				
METHOD: XRF										A. A. 1991 - A. A. 1991
		PPM	РРМ	PPM	%	*				
	METHOD: X	RF								
										,
									 	k a s a s s s s s s s s s s s s s s s s
										m

i	P_/	<u>حـــــ</u>	

SGS Australia Pty. Ltd.

NEW SOUTH WALES

74 McEvoy St., Alexandrin, Sydney, N.S.W. 2015 Telephone 699 7625 Telex: SGSSYD AA22395

WESTERN AUSTRALIA

80 Railway Parade, Queens Park

Telephone 458 1421 Telex: SGSPTH AA92624

Our ref LP1976
Your ref
Date received 14.11.80
Date completed3.12.80

7.5 ULC 1980

Greenex P.O. Box J646 G.P.O. PERTH WA 6000

СÇ

Issued atPERTH ANALYTICAL REPORT

	1		, 	·			r=====================================	ı -		ı -
Sample Ref.	ra ₂ 0 ₅	SnO ₂	Nb2O	Fe ₂ 0	3 T1 ^O 2		Wt (g)		
0001	0.78	35.4	0.46	3.55	0.31		2.3			
02	2.15	71.2	1.10	1.95	0.30		2.7			
03	1,90	82.2	0.97	1.45	0.18		16.6		·	
04	1.55	62.8	0.67	2.10	0.29		2.2	1017-181-16 AA- A MIJ S. 1		
05	1.80	84.8	0.88	1.40	0.31		4.2			**************************************
06	3.45	35.7	0.81	4.20	0.49		1.8			
0 7	5.05	24.6	1.95	18.5	0.61		4.4			
08	4,00	21.8	1.60	6.95	0.61		1.6			
09	2.10	11.4	0.60	7.65	0.41		1.1			
10	6.75	37.5	2.90	5.85	0.69		2.2			
11	0.88	2,50	0.29	8.50	0,60		0.8			
12	1.85	53.8	0.74	9.45	0.29		6.2			
13	0.88	71.9	0.52	2.70	0.44		4.3			
14	1.65	14.3	0.58	21.9	0.30		7.0			
1,5	0.85	61.4	0.50	2.95	0.86		0.2			
16	2,10	21.6	0.80	7.70	1.50		0.1			ı
1.6 (was))0.17	4.25	0.12	3.55	0.55		0.6			 .
17	0.92	77.1	0.34	0.98	0.62	_	1.0			
18	0.04	41.8	0.10	7.85	0.56	***************************************	10.7			
19	1.40	72.2	0.60	2.30	0.57		5.0			l

12.15

SGS Australia Pty. Ltd.

NEW SOUTH WALES

74 McEvoy St., Alexandria, Sydney, N.S.W. 2015 Telephone 699 7625 Telex: SGSSYD AA22305

WESTERN AUSTRALIA

80 Railway Parade, Queens Park

Telephone 458 1421 Telex: SGSPTH AA92624

Our ref LP1976

Your ref 1164

Date received 14.11.80

Date completed. 3.12.80

Issued at PERTH

ANALYTICAL REPORT

		11.43.4 m	LILOM	L IIL	Oiti				•	
Sample Ref.	ta ₂₀₅	SnO ₂	Nb2 ^O 5	Fe ₂ 0:	₃ T ₁ O ₂		Wt (g)		
0021	2.90	29.0	1.40	6.35	1.05		0.4			
22	6.05	43.1	2.55	3.90	1.15		1.0			
23	5.00	22.6	2.20	4.10	0.65		0.6			
24	0.61	4.00	0.41	16.1	1.00		0.9			
25	1.15	2.00	0.59	17.2	1.30		0.5			
26	3.40	17.8	0.86	7.20	0.67		3.3			
27	6.15	35.8	2.00	8.65	0.95		4.9			
28	2.70	16.1	0.74	2.85	0.98		0.3			
29	4.40	30.9	1.75	11.3	0.74		5.4			
30	6.40	38.2	2.95	6.25	0.68		3.6			
31	1.85	57.8	0.70	4.00	0.53		8.0			
32	0.02	91.0	0.13	0.33	0.64		12.4			
33	0.03	15.0	0.04	0.96	0.36		13.1			
34	0.03	90.9	0.16	0.24	0.67		24.0			
35	0.15	82.9	0.20	0.61	1.60		16.8			
36	0.09	3.75	0.05	2.30	0.52		3.5			
38	0.11	4.20	0.06	10.0	0.64		6.9_			
39	0.01	1.95	0.01	22.6	0.50		6,8			
40	<.01	0.03	<.01	2.90	0.10		18.5			
41	0.18	1.50	0.07	20.4	0.80	<u>]</u>	4.2]		

13	15	C	
,		 	

RESULTS

ROCK SAMPLES

Sample No.	Area	Description
3/10/21	Soldiers Creek Central	Pegmatite med. grained mica rich
3/10/22	и и и	Pegmatite coarse grained
3/10/23	11 11 11 11 11 11 11 11 11 11 11 11 11	Pegmatite feld rich coarse grained
3/10/24	11 11 11 11 11 11 11 11 11 11 11 11 11	Pegmatite very coarse grained (contact zone)
3/10/25	Soldiers Creek West	Soldiers Creek granite
3/10/26	n n n n n n	Pegmatite med. grained in granite
3/10/27	Muldiva Creek	Very coarse pegmatite mica rich
3/10/28	Soldiers Creek East	Seds. with chert bands
3/10/29	Cretaceous/Kaolin Show	Sandstone med-fine grained

• .		Results ppm	1	Resu	lts %
	Ta ₂ 0 ₅	Sn	Nb205	Fe ₂ 0 ₃	Ti02
3/10/21	45	95	50	0.69	< 0.01
22	40	120	55	1.25	0.01
23	10	25	30	0.39	۷.01
24	17	100	45	1.45	0.06
25	18	70	55	1.00	0.04
26	45	75	50	0.98	0.01
27	40	270	130	1.85	0.06
28	18	<10	< 10 ·	.74	0.01
29 `	10	40	19	3.40	0.33

,			
Sample	Mesh	DESCRIPTION	
No.	Size	Minerals	Appearance
0001	+10	Quartz, ironstone, Tin	Angular grains
	-10 +30	Tin, tant. quartz, ironstone	Angular
,	- 30	Tin, tant. quartz, tourmaline	Angular
0002	+10	Tin, 1 grain tant.	Angular
	-10 +30	Tin, few grains tant.	Angular
	- 30	Tin, tant, quartz, tourmaline	Angular
0003	+10	Tin, iron stone, some larger	
		grains	Rounded
	-10 +30	Tin, few grain tant.	Angular grains
	-30	Tin, tant. quartz, tourmaline	Angular grains
0004	+10	Tin - slightly rounded, quartz	
	-10 +30	Tin, quartz, tant. tourmaline	Angular grains
	-30	Tin, quartz, tourmaline	Angular grains
0005	+10	Tin	A few rounded grains
	-10 +30	Mostly tin, angular grains	
	-30	tin, tant. quartz, tourmaline	Angular grains
0006	+10	Tin and ironstone	A couple of
			rounded grains
	-10 +30	Tin, tant. tourmaline & quartz	Angular grains
	-30	Tourmaline, quartz, tin,	
		tant. zircon	Angular grains
0007	+10	Tin, tourmaline ironstone	Angular grains
	-10 +30	Tin, tant. ironstone,	
	•	tourmaline & 1 pyrochlore	Angular grains
	-30	Tin, tant. tourmaline, quartz	Angular grains
0008	+10		
·	-10 +30	Tin, tant. tourmaline, iron-	
•		stone	Angular grains
	-30	Tin, tant. tourmaline, quartz	Angular grains
0009	+10	Ironstone	
	-10 +30	Tin, tant. tourmaline, quartz	;
		ironstone.	Angular grains
	-30	Tin, tant. quartz, tourmaline	Angular grains
0010	+10	Tin and tourmaline	Slightly rounded
			grain
	-10 +30	Tin, tant. tourmaline	Angular grains
	-30	Tin, tant. tourmaline, quartz	Angular grains
	1		

'.		DESCRIPTION	
Sample No.	Mesh Size	Minerals	Appearance
0011	+10	Nil	
	-10 +30	Tin, tant. tourmaline	Angular grains
	-30	Tin, tant. tourmaline, quartz	Angular grains
0012	+10	Tin & ironstone	A few slightly
	•		rounded grains
	-10 +30	Tin, tant. ironstone, quartz	•
		tourmaline	Angular grains
	-30	Tin, tant. quartz, tourmaline	Angular grains
0013	+10	Tin & ironstone	Fairly worn grains
	-10 +30	Tin, tant. tourmaline and	
	-	ironstone	A few rounded grains
	-30	Quartz, tourmaline, tin, tant.	Angular grains
0014	+10	Tin and ironstone	Angular grains
	-10 +30	Tin, tant. quartz, tourmaline	
•		ironstone	Angular grains
	-30	Tin, tant. tourmaline, quartz	Angular grains
0015	+10	Tin & tourmaline	Angular grains
	-10 +30	Tin & tourmaline	Angular grains
	-30	Tin, tant. tourmaline, quartz	
-	,	zircon	Angular grains
0016	+10	Nil	
	-10 +30	Tin and tourmaline	Angular grains
,	-30	Tin, tant. tourmaline, quartz	Angular grains
0016	. +10	Quartz and tourmaline	
(wash)	-10 +30	Tourmaline, quartz & tin	Angular grains
	-30	11 11	Angular grains
0017	+10	Tin	Larger grains
,			fairly rounded
	-10 +30	Tin, tant. tourmaline, quartz	Angular grains
0018	+10	Tin, tourmaline, ironstone,	
٠,		quartz	A few rounded grains
	-10 +30	Tin, tant. tourmaline, iron-	
		stone, quartz	A few rounded grains
	-30	Tin, tourmaline & quartz	Angular grains
0019	+10	Tin & ironstone	A few rounded grains
V	'	Tin, tant. tourmaline, quartz	A few rounded grains
	-10 +30		•
	-10 +30 -30	Tin, tant. tourmaline, quartz	Angular
0021		Tin, tant. tourmaline, quartz	Angular
	-30	Nil	Angular Angular grains

4

I

Sample	Mesh	DESCRIPTION	
No.	Size	Minerals	Appearance
0039	+10	Mostly ironstone, 2	Angular grains
	-10 +30	grains cassiterite Quartz, ironstone, cassit.	Angular
	-30	Quartz & cassiterite	Angular grains
0040	+10	Ironstone	
	-10 +30	Quartz & ironstone	Fairly worn grains
	-30	Quartz - trace tin	
0041	+10 ,	Ironstone	
	-10 +30	Ironstone, quartz, tin, trace tantalite	Slightly rounded grains
	-30	Quartz, tin, tourmaline tantalite	Slightly rounded
0042	+10	Ironstone	
٠.	-10 +30	Quartz & some tin	Slightly rounded grains
	-30	Quartz - trace tin	
Amelio Stn 4	+10	Mostly tin, 1 grain tant.	Grains fairly rounded
	-10 +30	Tin, tant., quartz, tourmaline	Angular grains
	-30	Quartz, tourmaline, tin & tant.	Angular grains
0001	+10	Quartz, ironstone, tin	Angular grains
	-10 +30	Tin, tant, quartz, ironstone	Angular
	-30	Tin, tant, quartz, tourmaline	Angular

1		DESCRIPTION	
Sample No.	Mesh Size	Minerals	Appearance
Amelio	+10	Tin	A few rounded grains
3	-10 +30	Mostly tin	1 or 2 rounded grains
•	-30		
Casteon A-12?	+10	Tin & ironstone	1 or 2 rounded grains
	-10 +30	Tin, tant., tourmaline	A few larger grains rounded
	-30	Tin, tant., tourmaline quartz	Angular
0031	+10	Cassiterite & tourmaline	Angular grains
-	-10 +30	Cassiterite & tourmaline	Angular grains
	-30	Cassiterite, tourmaline & quartz	Angular grains
0032	+10 Coarse fraction	11.5 out of 12.46 grams cassiterite quartz and tourmaline in fine fractions	Grains rounded around edges (slightly worn)
0033		Crushed sample	
13	+10	Cassiterite and quartz	fairly rounded grain
	-10 +30		some rounded grains mostly angular
	-30		Angular grains
0034	+10	Cassiterite and a few grains quartz	(Some large grains slightly worn on edges
	-10 +30	Cassiterite and quartz	Angular grains
•	-30	Cassiterite and quartz	Angular grains
0035	+10	Cassiterite	Angular grains, 1 or 2 with rounded edges
	-10 +30	Cassiterite and quartz	Mostly angular. A few rounded
	-30	Cassiterite, tourmaline and leocorene	Angular
0036	+10	Quartz and iron oxide	
	-10 +30	Quartz, cassiterite	Angular grains
	-30	Quartz, cassiterite, tourmaline	Angular grains
0038	+10	Iron stone	
	-10 +30	Ironstone, quartz, cassiterite, trace tant.	Angular grains
	-30	Quartz, tourm. cassit.	Angular grains

FIELD SCHEDULE					SHEET No. / AREA: N. T. HOLE CO-ORDINANCE:																
Orill Supervis			Lз	LABORATORY SCHEDULE Laboratory Superviser: Flucturo guli Laboratory Operator: Hamul																	
Drill Operator:						y 0,	1	~					Caboratory Operato	x: AKO	MIL						
Date Drilled: Sample Type:					-					 		· · · · · · · · · · · · · · · · · · ·			 -	Date Despatched: 31-10-50					
		Ţ	-{			1	CASSIT	ERITE (Sn O ₂)		1.27	est j	3	1	ANTAI	LITE (Fe					
				Weight o from Pan			Weight %		T	Maint			1	-			1	2	6	T	n
							Sn O			Weight Sn ()		्रTotal Weight	Weight in		Weight 9 Tant,	. .		Weight	,	Total	
	Description	Vol.	1	1 2		1 4	5	6		1 8	, ,	Cass	Grams		7		<u> </u>	Tent.		Weight Tant.	Weight in Grams
				Mesh Size		-	Mesh Siz		 -	Mesh Siz		10	VOL =	11	12	13	14	15	16		VOL =
Ab No	SAMPLE No.		+ 10	-10 +30	-30	+ 10	-10 +30			-10 + 30	Ţ	7+8	Kg/M3	<u> </u>	Mesh Siz	e T	}	Mesh Sia	e .	17 14 + 15	Kg/M3
				┼──	 	 	+	-30	+10		30	+9		+ 10	-10 + 30	-30	+ 10	-10 + 30	-30	+ 16	
06/	0032	6	12.46		.07	92.33	46-82	16.68	11.5	.004	.007	11.51	1.918	NI.	Nil	NIL					NIL
1062 1063	0031	6	2.99	1.95	3./0	7983	75.62	38.06	2.38	1:47	1.18	5.03	0.838	NIL	AND.	1.6	 	 	.049	- 049	0.008
	0033	Ŀ	5.6	4.23	3.6	24.74	24.65	TE.	1.38	1.04	TR	2.42	0.403			 	<u> </u>	<u> </u>	577	277	i
1064 1065	0034	6	22-12	1.10	.16	95.7	86.07	19.77	21.75	.45	.03	22.13		1	NIL	NIL		ļ			NIL
1065	0035	6											3.788	NIL	NIL	NIC	-	<u> </u>			₩2°,
	0030		11.2	3.10	2.59	100	18.42	7-45	11:2	3.13	:10	14.53	2.42	NK	.25	1.53	NIC	1007	.04	-047	0.007
			ļ									·	्र सु								
		······································		·							-	·									
												···									
																	14				
													17 1 19								
										!					_						
	}	. 1																-			
																					
																	ļ				
																		j			
							<u>!</u>						ii					<u>-</u>		<u>i</u>	
		l							 				!	+							
																					
													·								
·		l	-			İ	l	1	į	-	Ī									·-·	

												•	į ·									
)					-								•									
EWELL	MINERALOGICAL S	ERVICES] 9	SHEET N	10. ノ		AREA: N.T. HOLE CO-ORDINANCE:												<u></u>			
	FIELD SCHEDULE					****	LABORATORY SCHEDULE															
Drill Super			Lat	boratory S	uperviser:	JUIN	Phicketyll Laboratory Operator Dlamm															
Date Drilled			Pare	ME RELENED 30-10-80 Date Despatched: 4-11-80																		
Sample Typ			CASSITERITE (Sn O ₂)											Date Despatched: 4-11-80 TANTALITE (Fe Mn) (Ta Nb) ₂ O ₆₀								
			8	Weight of					2				; u	<u> ''</u>	ANIAL	iit (he	Mn) (la	Nbi ₂	ક	r	,,	
			н.м.	from Panr	ning		Weight % Sn O 2			Weight Sn O	2	Total Weight	Weight in	Weight % Tant.				Weight Tent.		Total Weight	· Weight in	
	Description	Vol.	i	2	3	4	5	6	7	8	9	Cass.	Grams VOL =	11	12	13	14	15	16	Tant,	Grams VOL =	
				Mesh Size			Mesh Siz	e		Mesh Size	·	10	Kg/M3		Mesh Size	!	<u> </u>	Mesh Siz	е	17	Kg/M3	
ABNo	SampNo	LITRES	+ 10	-10 +30	-30	+ 10	-10 +30	-30	+10	-10 + 30	-30	7 + 8 + 9		+ 10	-10 + 30	-30	+ 10	-10 + 30	-30	14 + 15 + 16		
L 1066	0036	6	.27	-16	3:23	NK	31-13	1084	NIL	.05	.35	.40	0.06	NIL	NK	NIL	NIL	NIL	NK		NIC_	
1 267	0038	6	·78	.29	5-94	NIL	47.22	1247	NI	136	.74	. 876	0.146	NIL	.98	Nil.	Nı/	103	Nil	-003	0.005	
11068	0039	6	1.4	.45	4.51	5.05	10.12	3-36	.09	.04	-15	-28	0.046	NIL	NIL	NIL	Nil	NI	Mil		NIL	
1069	0040	6	.61	3:23	14.62	NIL	NIL	TR	NIL	NIC	TR		TRACE	NIL	NIL	NIL	NIL	NIL	NIL	-	NIL	
41010	0041	6	152	.25	3.25	NIL	14.49	2.82	NIL	1078	.09	-168	0.028	NIL	2.57	1.90	NIL	.01	.09	10	0.016	
1011	0042	6	1.78	1.07	10.28	MIL	6.58	TR	NIL	-07	TR	-07	0.011	NIL	NIL	NIL	NIL	NIL	NIL		NIC	
.			=					<u> </u>						‡ =	_					·		
1 272 A	MEUO STN 4	6	.34	.18	.41	77.09	71.85	21.81	.26	./3	.09	.48	0.08	15-55	6.29	1.23	·05	.01	1005	-065	0.01	
11073	0001	6	.17	1.75	1.50	13-32	8205	45·14	·02	1-4	67	2.09	0.348	NIL	1.6	/-8/	NIG	1028	.027	.055	0.009	
4	0002	6	.71	1.19		94:)9			167	1-14	:25	2.06	0.343	5.7/	189	2.17	.04	101	.019	.069	0.011	
4075	0003	ė –	11-71	2.78	2:2	97:14	K08	46-73	11:37	2.67	1.02	15.06	2.51	NIL	122	-32	NIL	.03	007	- 037	oak	
GC76	0004	6	·35	.97	1.01	95·9 ₆	89.17	52.64	133	-86	·53	1.72	0.28	NIL	1.06	127	NIL	-01	·0C2	.012	0.002	
1077	0005	6	1.34	1.99	194	100	18:21	59.78	1.34	1.95	·56	3. <i>8</i> 5	0.64	Nıl	.92	2-09	NI	-018	019	-037	0006.	
21078	0006	6	-32	•36	1.23	16.42	8423	28-09	.25	·30	.34	-89	0.148	NIL	7.57	-68	NIL	.027	.008	1035	0.005	
4079	0007	6	184	.93	2.19	14.81	6685	23-37	'/깇	-62	165	1.39	0.23	NIL	D-23	9.6	NIL	://	126	.37	0.06	
7080	0008		ML					21.89			•3/	.48	0.08	NIL	8.87	1.03	NIL	.02	.01	.03	0.005	
1031	0009			.16	-49	NIL	58.55	9.38	NIL	.09	.09	18	0.03	NIL						.04	0.006	
27082	OCIC	6	•03	.48	1.81	68:63	16.02	39-2	۲0،	-36	.70	1.08	0-18	NIL	21.28	13:52	NIL	10	24	.34	0.05	

													Attended in the Control of the Contr		· ·							
EWELL	MINERALOGICAL S	ERVICES	; s	HEET N	lo. 👌				AR	EA: /	Y.Z. S	1111126	3.4141663	403 E C	OORD	TALA MEN						
FIELD SCHEDULE													Y SCHEDULE	TOLL O		INANUL	<u></u>	بيداد				
Drill Supervi	iser.		l.at	Laboratory Superviser: JElickersgell Laboratory Operator Alexander																		
Prill Operate	or:					/	0	7					1		<u> </u>							
Date Orilled			DATE REGIVED: 30-10-80											Date Despatched: 5-//-80								
Sample Type	:		₹] c	ASSITE	RITE (Sn 0 ₂)			1000		TANTALITE (Fe Mn) (Ta Nb), Oc								
(-8	Weight of					T -			T	—				7			T		
		:	1 1.W. (ifom rasii	nng	Î	Weight % Sn O			Weigh: Sn O		Total Weight	li Waight in	Weight % Tans				-Weight Tent.		Total Weight	Weight in	
	Description	Vol	ļ	1	 	 		T	ļ		7 T	Cass	Weight in Grams	ļ		· · · · · · · · · · · · · · · · · · ·	<u> </u>	1 	1	Tant.	Grams	
				2 Moch Sixe] 3	4	5	6	7	8	. 9	<u> </u>	VOL =	11	12	13	14	15	16		VOL=	
		1		Mosh Size	' T	}	Mesh Siz	e 	 	Mesh Size		10 7 + 8	Kg/M3		Mesh Size	E 1	ļ	Mesh Siz	e T	17 14 + 15	Kg/M3	
16 No.	SAM! No	LITTES	+ 10	-10 +30	-30	+ 10	+30	-30	+10	-10 + 30	-30	+ 9		+ 10	-10 + 30	-30	+ 10	+ 30	30	+ 16		
11083	0011	6	NIL	.02	.89	NIL	31.28	5.1/	NIL	-006	-04	. 046	0.007	NK	33.17	145	NIC.	·ar	1004	101	0.001	
1084	0012	6	1.54	237	237	62.07	84.78	26-58	195	2.05	1.63	3-63	0.605	IVIL	2.76	3.08	NIL	.06	.07	./3	0.02	
21085	0013	6	2.98	.18	120			11.08		•11	.13	2.96	049	WIL	+	7.00	NK	·as	- 08	-088	0-014	
2086	0014-	6	1.66	-88	4.52	9.42			16	-57	.74	1.47	0.245	+	7.03	.59	NIL	 	-04	10	0-016	
11087	0015	É	.08	.05	15	100	74.46	¥.09	.08	237	.04	157	0.026	T		3.18	NK	NK	-004	aix	O'OCCE	
A 088	0016	ć	NIL	-03	.05	NIL	33·2i	3S 61	NK	.009	.017	1026	0004	NIL	NIC	3:35	Nx	NIL	1001	-001	0.0001	
11089	0016 (WASH)	6	.07	'06	.54	NIL	36.19	15:37	NIL	.02	:08	-10	0.016	WIL	NIL	NIL	NIL	NIL	NIL		NIL	
1090	0017	6	•52	.24	.29		92:23		•52] -	-//	-85	0.14	1	447		NIC	.01	·03	.04	0.01	
<u> 1091 76</u>	ERRACE OCI8	6	5.76	149	4.60		24.36	5.24	3 4 /	.14	-24	3.99	0.67	NIL	·37	60	NIL	1001	·02	.021	0.003	
122	0019	6	1.65	1.71	1.87	95 <i>1</i> 92	92.42	53:4%	<i>1</i> .58	1.58	.99	4.15	0.69	NIL	2.4	74	NIC	104	14	.15	0.03	
41093	0021	ĺ	NIL	·CÝ	.4/	MIL	55:38	4329	MIL	.02	.18	٠ ين 🗀	0.03	NIL	NIL	9.93	MIL	ivK	.04	104	O'CCE	
1094	0023	6	·02	-32	· <i>1</i> 9	10C	83.05	43-6	ッシス	·26	-34	162	C-10	FUIL	12.75	7.34	NIL	.04	·057	-097	0.016	
4095	0023		NIL	12	.54	NK	71.46	29.22	NIC	.08	•15	· 23	0.038	Nr.	18.57	7.93	NIL	.02	-04	106	001	
1096	0.024	6	./3	12	•7/	NIL	1034	10.5	N/L	-01	-07	108	0.01	NIL	2.65	54	NIL	1003	-038	.041	0.00	
11097	0025	Ė	-02	-12	,45	NIL	8.02	9.87	NIC	.009	-04	.049	0.008	NIL	2.06	1.7	IXIL	.002	-007	-009	0.001	
1098	0026	6	.10	.62	2.71	IVIL	5.46	18:34	MIL	•40	.51	.91	0-15	NIL	11.29	1-27	NIL	·07	.07	· 10	0.016	
11099	OC27	E	-34	1.67	3.06	NIL	D-64	43-10	NIL	121	/·3Z	2.53	0.42		17:54		NIL	.29	-23	152	0.08	
_1100	0028	E	·02	.07		NIL	33 33	10.05	NIL	•0.37	·06	47	0.016	NIL	7.48	5.95	N/L	·05	-019	.624	0.004	

SCHEDULE OF EXPENDITURE

FIELD STAFF

2 PROSPECTORS (SIX WEEKS @ \$400 PER WEEK EACH) 1 GEOLOGIST (1.5 WEEKS) 1 CONSULTANT (3 DAYS) 1 PLANT OPERATOR (4 WEEKS @ \$500 PER WEEK) 1 FITTER (FOR REPAIRS TO 977 - 1 WEEK @ \$800 PER WEEK)	\$4,800.00 750.00 900.00 2,000.00
CONSULTANTS	
R. THOMSON) PLUS AIR FARES	2,200.00
DRAFTING, MAPPING & RECORDING	800,00
<u>VEHICLES</u>	
CHARGED AGAINST THE PROJECT ON THE BASIS OF 800 KM. PER WEEK @ 13 CENTS A KILOMETRE	1,969.00
MESSING & ACCOMMODATION	1,920.00
AIR CHARTER	350,00
CAT. 977 (240 HOURS @ \$60 PER HOUR)	14,400.00
HEAD OFFICE & ADMINISTRATION	14,500.00
	\$45,389.00

SUMMARY OF RESULTS

- 1. A sub-economic area of tin-tantalite mineralization was outlined at the head of West Soldiers Creek.
- 2. Indications of mineralization was found over a large area of West Soldiers Creek, within Exploration

 Licence 1997 and adjacent Exploration Licence 2251.
- 3. A zone of narrow linear pegmatites on the divide between West Soldiers Creek and Spring Creek were found to carry some tantalite and at present are regarded as the tantalite source for the area.
- 4. No outcropping reefs assayed around Fletchers Gully contained economic gold values.
- 5. An interesting pegmatite was located on Muldiva Creek containing zones of strong mineralization.
- 6. No diamonds or diamond indicator minerals were discovered.

CONCLUSIONS

Exploration Licence 1997 has been proved to have potential for profitable tin-tantalite deposits, both lode and alluvial. Further work is warranted to test this potential and access to Spring Creek is vital as this appears, from reconnaissance panning, to have the largest volume of gravels and the best grades. The isolation and poor access necessitates higher than average mining grades would have to be proved to make a mine in this location viable — that is grade in the order of 0.6 kg. Sno 2 and 0.05 kg. Ta 2 05 per loose cubic metre.

Sufficient work has now been done to indicate that these grades may be achieved.

Gold prospects have not been encouraging.

No results have been received from DAMCO but all Territory
Mining samples despatched to Greenbushes Tin Ltd. contained
diamond indicator minerals.

MAP REFERENCE

Fergusson River 1:250,000 SERIES

SD52-12

LOCALITY MAP

NORTHERN TERRITORY

