SUMMARY

EL8610 – “Atlee Creek”, comprising 283 blocks, is located 40km NNW of Yuendumu in the northern Arunta Province of the Tanami Desert with the Northern Territory. Atlee Creek was one of two tenements within the Northern Arunta region covered by an option agreement signed between Adelaide Exploration Limited (as licence holders) and AngloGold Australia Limited that lasted from October 31st 2001 – 17th March 2003.

On 17th April 2003, a partial relinquishment was made on the Atlee Creek tenement of 187 blocks.

This report summarises the work completed by AngloGold Australia Ltd and Adelaide Exploration Ltd within the relinquished portions of tenure during the period 20th April 2002 and 19th April 2003.

Programs completed include detailed aeromagnetic data collection and interpretation, rockchip sampling, and petrology.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>I</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>II</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>III</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>III</td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2 TENEMENT STATUS</td>
<td>1</td>
</tr>
<tr>
<td>3 ABORIGINAL ISSUES</td>
<td>2</td>
</tr>
<tr>
<td>4 LOCATION AND ACCESS</td>
<td>2</td>
</tr>
<tr>
<td>5 REGIONAL GEOLOGY</td>
<td>3</td>
</tr>
<tr>
<td>6 LOCAL GEOLOGY</td>
<td>4</td>
</tr>
<tr>
<td>7 EXPLORATION HISTORY</td>
<td>4</td>
</tr>
<tr>
<td>7.1 ABERFOYLE & WESTERN METALS</td>
<td>4</td>
</tr>
<tr>
<td>7.2 NORMANDY-NFM</td>
<td>4</td>
</tr>
<tr>
<td>7.3 ANGLOGOLD – ADELAIDE RESOURCES LTD</td>
<td>5</td>
</tr>
<tr>
<td>8 EXPLORATION COMPLETED – 20 APRIL 2002 TO 19 APRIL 2003</td>
<td>5</td>
</tr>
<tr>
<td>8.1 GEOPHYSICAL DATA CAPTURE</td>
<td>5</td>
</tr>
<tr>
<td>8.2 GEOPHYSICAL INTERPRETATION</td>
<td>5</td>
</tr>
<tr>
<td>8.3 ROCKCHIP SAMPLING</td>
<td>6</td>
</tr>
<tr>
<td>8.4 PETROLOGY</td>
<td>6</td>
</tr>
<tr>
<td>9 ENVIRONMENTAL</td>
<td>6</td>
</tr>
<tr>
<td>10 REPORTING</td>
<td>6</td>
</tr>
<tr>
<td>11 REFERENCES</td>
<td>7</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

Appendix 1 Assay Results – Rockchip Samples
Appendix 2 Petrology Summary
Appendix 3 Environmental Register

LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Atlee Creek Project</td>
<td>1:1,500,000</td>
</tr>
<tr>
<td></td>
<td>Tenement Location and Access</td>
<td></td>
</tr>
<tr>
<td>Figure 2</td>
<td>Atlee Creek Project</td>
<td>1:250,000</td>
</tr>
<tr>
<td></td>
<td>Relinquished and Retained Areas</td>
<td></td>
</tr>
<tr>
<td>Figure 3</td>
<td>Atlee Creek Project</td>
<td>1:1,000,000</td>
</tr>
<tr>
<td></td>
<td>Regolith Interpretation</td>
<td></td>
</tr>
<tr>
<td>Figure 4</td>
<td>Atlee Creek Project</td>
<td>1:1,000,000</td>
</tr>
<tr>
<td></td>
<td>Regional Geological Setting</td>
<td></td>
</tr>
<tr>
<td>Figure 5</td>
<td>Atlee Creek Project</td>
<td>1:250,000</td>
</tr>
<tr>
<td></td>
<td>Relinquished Area</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Merged Aeromagnetic Image</td>
<td></td>
</tr>
<tr>
<td></td>
<td>First Vertical Derivative, Reduced to Pole</td>
<td></td>
</tr>
<tr>
<td>Figure 6</td>
<td>Atlee Creek Project</td>
<td>1:250,000</td>
</tr>
<tr>
<td></td>
<td>Detailed Digital Terrain Model</td>
<td></td>
</tr>
<tr>
<td>Figure 7</td>
<td>Atlee Creek Project</td>
<td>1:250,000</td>
</tr>
<tr>
<td></td>
<td>Detailed Radiometrics</td>
<td></td>
</tr>
<tr>
<td>Figure 8</td>
<td>Atlee Creek Project</td>
<td>1:250,000</td>
</tr>
<tr>
<td></td>
<td>Detailed Aeromagnetic Interpretation</td>
<td></td>
</tr>
<tr>
<td>Figure 9</td>
<td>Atlee Creek Project</td>
<td>1:100,000</td>
</tr>
<tr>
<td></td>
<td>Relinquished Area</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geochemical & Petrological Sample Location Plan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Annotated with Sample Numbers</td>
<td></td>
</tr>
<tr>
<td>Figure 10</td>
<td>Atlee Creek Project</td>
<td>1:100,000</td>
</tr>
<tr>
<td></td>
<td>Geochemical Sample Location Plan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Annotated with Au Results in ppb</td>
<td></td>
</tr>
</tbody>
</table>
1 INTRODUCTION

Tenement EL8610 – Atlee Creek is located 40km NNW of Yuendumu and is one of a number of tenements and applications operated by AngloGold in the northern Arunta Province of the Tanami Desert (Figure 1).

AngloGold Australia entered into an option agreement with Adelaide Exploration on October 31st, 2001 over EL 8610 for the purposes of discovering economic gold mineralisation. This arrangement was terminated on 17th March 2003 with AngloGold withdrawing from the agreement.

A partial relinquishment of 187 blocks was made on the 17th April 2003. This report summarises the work completed by AngloGold Australia Ltd within the relinquished portions of EL 8610 during the period 20th April 2002 to 19th April 2003.

2 TENEMENT STATUS

EL8610 – Atlee Creek originally comprised 283 graticular blocks for 911sqkm and was one of two tenements within the Northern Arunta region covered by an option agreement signed between Adelaide Exploration Limited (as licence holders) and AngloGold Australia Limited in October 2001. The NTDBIRD (formerly NTDME) registered the dealing on the 17 April 2002.

Atlee Creek was granted to Adelaide Resources NL on the 20th of April 1998 for a period of six years. It was formerly part of the Tanami Joint Venture between Western Metals Resources Ltd (51%) and Adelaide Resources NL (49%). Western Metals (formerly Aberfoyle Resources Ltd) withdrew from the joint venture in March 1999.

Normandy–North Flinders Mines (NNFM) then joint ventured into the tenement in March 1999. Due to protracted delays in gaining work program approvals from the Central Land Council for the licence, exploration did not commence until late in 1999. NNFM successfully applied for a waiver of reduction in April 2000. In late December 2000 NNFM withdrew from the joint venture.

Adelaide Resources successfully requested a waiver of reduction, confirmed by NTDBIRD on 11th September 2001, to enable any prospective partners to thoroughly evaluate the tenement prior to relinquishing ground.

Following the execution of the option agreement between AngloGold and Adelaide Exploration, AngloGold became operator of the tenement. In March 2002 AngloGold applied for a waiver of reduction on the premise that no fieldwork had been possible since the execution of the agreement and a justified decision could not be made. This waiver was granted on the 17th of April for a period of 1 year from the fourth anniversary.

On March 17 2003, AngloGold withdrew from the option agreement.

Areas to be relinquished and retained are described in latitude and longitude coordinates (Figure 2):

Area 1 to be relinquished – 171 blocks:
- Starting in the NW corner at 21°44'S, 131°21'E, proceed east to 131°34'E, thence south to 21°45'S, thence east to 131°41'E, thence south to 21°46'S, thence east to 131°45'E, thence south to 21°51'S, thence west to 131°39'E, thence south to 21°52'S, thence west to 131°21'E, thence north to point of commencement.
Area 2 to be relinquished – 16 blocks:
- Starting in the NW corner at 21°58’S, 131°37’E, proceed east to 131°45’E, thence south to 22°S, thence west to 131°37’E, thence north to point of commencement.

Area to be retained – 96 blocks:
- Starting in the NW corner at 21°52’S, 131°23’E, proceed east to 131°39’E, thence north to 21°51’S, thence east to 131°45’E, thence south to 21°58’S, thence west to 131°37’E, thence north to 21°55’S, thence west to 131°23’E, thence north to point of commencement.

Total blocks to be relinquished are 187. Total blocks to be retained are 96.

3 ABORIGINAL ISSUES

The licence area is located with the Central Desert Aboriginal Land Trust and is represented by the Central Land Council in Alice Springs.

Since finalisation of the Option Agreement, AngloGold have tried to expedite exploration within the tenement. Work programs have been provided to the CLC, which have since been approved, covering airborne magnetic/radiometric surveys, field reconnaissance and RAB drilling programs.

A total of five significant sites were recognised by the Traditional Owners during the work program clearances and exclusion zones have been placed around them. Four of these exclusion zones fall within or straddle the boundary of the relinquished areas.

4 LOCATION AND ACCESS

The tenement is located in the southeastern corner of the "Mt Theo", 1:250,000-scale map sheet approximately 320km NW of Alice Springs and 50km NW of Yuendumu in the Northern Territory of Australia (Figure 1).

Access from Alice Springs is gained via the Stuart Highway travelling north and then via the Tanami Road to Yuendumu. Entry to the southern portion of the tenement can be obtained from Yuendumu along tracks to the NW for 24km and then to the N for another 24km. Access can be gained to the northern portion of the license area by travelling approximately 75km further north along the Tanami Road then via tracks to the ENE for approximately 17km. The Atlee Creek allows for dry weather access only via the later route.

The area is affected annually by access restrictions, extremely high temperatures (in excess of 47°C), and high seasonal rainfall associated with the northern monsoon season, which typically extends from late November to the middle of April. Access into the Tanami is via the Tanami road (gravel), which is closed every year for varying lengths of time (up to four months) by the Hall’s Creek and Alice Springs Shire Councils due to flooding.

The vegetation over the project area varies considerably from wide-open, spinifex studded plains to low desert scrubland. The area has a characteristically subdued topography with limited low breakaway hills and sub-cropping areas. The majority of the area lies beneath a veneer of aeolian or colluvial sediments. Deep palaeo-drainage systems, comprising a veneer of aeolian or colluvial sediments, are known to transect some of the tenements.
5 REGIONAL GEOLOGY

Atlee Creek is thought to be located within the Arunta Inlier. Rocks of the Arunta Inlier are interpreted as being at least partly correlative with sedimentary and volcanic sequences of the adjacent Tennant Creek and Granites-Tanami Inliers.

Mapping by the BMR during the 1960s and 1970s resulted in the subdivision of the Arunta Inlier into three major tectonic provinces: northern, central and southern (Shaw et al. 1984). Palaeoproterozoic stratigraphy was grouped into three major divisions: Division 1, Division 2 and Division 3, based on facies assemblages and lithological correlations, (Stewart et al. 1984). Division 1 rocks were inferred to be the oldest, comprising mafic and felsic granulites. Division 2 rocks are mainly represented by turbiditic metasediments. Division 3 rocks comprise platform-style quartzite, shale and carbonate sequences unconformably overlying Division 1 and 2 rocks. All three Palaeoproterozoic divisions are intruded by K-feldspar megacrystic granitoids. The three Proterozoic divisions, as well as the granitoids, are unconformably overlain by Neo-Proterozoic cover sequences.

Collins and Shaw (1995) suggested that the Arunta Inlier be sub-divided into Northern (older) and Southern (younger) tectonic provinces, separated by the Redbank Thrust Zone. They also suggested that the previously defined Division 1 and 2 packages in the Northern Province are gradational and part of the same tectonostratigraphic unit named the Lander Assemblage.

Recent reviews of the tectonostratigraphic relationships of the Arunta Inlier by the NTGS and Geoscience Australia (Edgoose et. al., 2002) suggest more terrains in the Southern and Western Arunta than previously recognised. The NTGS has based these findings on stratigraphy and chronology. The Yaya and Haast Bluff Terrains extend east-west across the Southern Arunta with the older Haast Bluff Terrain (HBT) on the southern margin of the Arunta Inlier. The Yaya Terrain lies immediately to the north of the HBT and forms the boundary with the Northern Arunta province along the Redbank Thrust Zone.

The Northern Arunta basement has recently been described by the NTGS (Vandenberg et. al., 2002) in terms of domains. The Northern Arunta province is made up of Archaean Billabong Complex, Tanami Group, Surprise Igneous Province (containing the Lander Rock Beds), Highland Rocks Metamorphic Complex, and the Cambro-Ordovician Wiso Basin Sediments. The Killi Killi unit well known in the Granites-Tanami Inlier is interpreted to be a formation equivalent of the Lander Rock Beds in upper greenschist facies of the Northern Arunta Province.

The Atlee Creek EL lies within the northern Arunta Inlier in a region predominantly underlain by turbiditic metasediments of the Lander Assemblage and K-feldspar megacrystic granitoids. Metamorphic grade of the Lander Assemblage varies from granulite facies (Mt Stafford Beds) to upper greenschist or lower amphibolite facies (Lander Rock Beds). Platform-style metasediments of the Reynolds Assemblage are locally preserved as in-folded/faulted blocks, unconformably overlying the Lander Assemblage. In the north of the area, Neo-Proterozoic cover sequence quartzite (Vaughan Springs Quartzite) overlies Paleo/Meso-Proterozoic granitoids (Smith 2000).
6 LOCAL GEOLOGY

The majority of EL8610 lies under recent aeolian and alluvial cover (Figure 3). A major drainage system (Atlee Creek) runs across the tenement from north to south, comprising of alluvium and lacustrine clay, silt and sand, calcrete and red soils are largely restricted to the south of the licence.

Clay pans occur in topographically low areas.

The bulk of the tenement is interpreted to be within the Lander Rock Beds of the northern Arunta Complex, with a metamorphic grade in the mid- to upper-greenschist facies (Figure 4). Large macroscopic folds are evident from broad spaced geophysical datasets.

Outcrop on the tenement is dominated by metasediments mapped as Lander Rock Beds. Lithotypes are represented by mica-quartz metasiltstones to metasandstones. NNFM reported finding chloritised mica-quartz schist with andalusite clasts. Quartz veining was also encountered intermittently.

RAB drilling within the tenement has intersected deformed doleritic bodies, containing appreciable amounts of magnetite and to the north of the tenement, undeformed granitoids possibly adamellite.

7 EXPLORATION HISTORY

No modern exploration of note had been conducted within the confines of the Atlee Creek licence prior to grant of the tenement.

7.1 Aberfoyle & Western Metals

During the first year of tenure Aberfoyle Resources then Western Metals did not undertake any fieldwork in the tenement due to delays in work program clearances.

7.2 Normandy -NFM

Normandy- NFM conducted fieldwork over the period March 1999 to April 2000, which extended over two annual reporting periods. The following bullet points outline the work completed in the second and third years of tenure by NNFM.

Year 2

- 68 Lag samples
- 26 composite rock chip samples
- 290 soil samples composited over 500m intervals to assay 60 samples.

Year 3

- 83 lag samples.
- 3 composite rock chip samples.
- 46 line kilometres of ground magnetic traverses.
- 19 vertical aircore drill holes totalling 1199 metres, drilled to 90m depth or refusal. Samples were collected as 3m composites.
- 21 petrological samples were submitted from the drill chips.
The lag and soil samples have since been deemed ineffective. No anomalous results were returned.

The maximum result from the rockchip samples returned 86.7ppb Au from a blue-grey quartz vein hosted in metasiltstone.

Results received from the drill program were generally not considered significant, a maximum Au result of 6.1ppb was returned from alluvial cover and 2.9ppb from residual metasediment.

7.3 AngloGold – Adelaide Resources Ltd

No field work was completed during the fourth year of tenure as AngloGold completed desktop reviews of previous explorers data. This data was contained in closed file, confidential reports made available to AngloGold. This data was compiled and entered into the AngloGold database.

8 EXPLORATION COMPLETED – 20 April 2002 to 19 April 2003

During the fifth year of tenure, exploration activities included gathering and interpreting aeromagnetic, radiometric, and digital terrain model data, rock chip sampling and petrology.

8.1 Geophysical Data Capture

UTS Geophysics were contracted to fly detailed magnetic, radiometric and digital terrain model data in September 2002 over the Atlee Creek tenement. A fixed wing Fletcher aircraft was used to fly 100m line spacings over a north-south orientation over the tenement. A total of 5,846-line km was flown.

Magnetic data was captured from a sensor height of 20m with a sample density of 5m (Figure 5). Digital terrain model data was captured simultaneously (Figure 6). Radiometric data was also captured from the same sensor height but with 50m along line sampling (Figure 7).

8.2 Geophysical Interpretation

The overall structure of the sequence is interpreted as a doubly plunging overturned antiform with both limbs dipping shallow-moderately to the north (Figure 8).

There is 3-4 deformation events recognised. The first being pulses of north-south compression resulting in folding and thrusting about an east-west axis. This event is seen to be the mechanism for thickening and refolding the mafic sequence. The second phase is interpreted to be regional NW strike slip and emplacement of NE trending dolerite dykes. A third phase in the structural history is another NW strike slip with NE faulting and more NE trending dykes emplaced. A fourth and late phase is NW faults offsetting previous structures and units.

Targets have been selected on the following criteria:
- Mafic units behave favourably with observed deformation and have the best competency contrast with sedimentary units
- Thick mafic units
- Mafic units showing some areas of structural repetition
8.3 Rockchip Sampling

A total of 12 rock chip samples were collected from the relinquished areas of the tenement during a field trip to the tenement in July 2002 (Figure 9). Rock types sampled include meta-sandstone, mica schists, gossanous schists, and quartz float and veins of translucent/smoky/milky/buck with varying amounts of recrystallisation and haematite staining.

Results were subdued with maximum Au returned at 2ppb, and most other samples below detection (Figure 10). Multi-elements assayed for included As, Bi, Cu, Mo, Pb, Sb, and Zn. A weak Cu-Pb-Zn association can be drawn from the results with occasional supporting arsenic. The gossanous schist returned 19ppm As (max), 47ppm Cu (max), 156ppm Zn (max), and anomalous Pb. The Au result for the gossanous schist was 1ppb (equal to the detection limit).

Results from the rockchip program are included in Appendix 1.

8.4 Petrology

One hand sample (Figure 9) was sent to Applied Petrological Services to determine grade of metamorphism and potential to host gold mineralisation.

The sample was described as a biotite schist of upper greenschist facies. Due to the grade of metamorphism, APS suggest there would be more chance to host mineralisation during a retrograde phase when fault controlled epithermal-mesothermal style gold deposits involving meteoric fluids could develop.

The petrological summary is included in Appendix 2.

9 ENVIRONMENTAL

The use of existing tracks and a vehicle mounted GPS for accurate navigation reduced the number of new vehicle tracks during the field visit to the tenement.

An environmental register has been compiled and is included as Appendix 3.

10 REPORTING

A digital copy of this report has been produced in an Adobe Acrobat format and is submitted to the NT DBIRD, Adelaide Exploration Limited and the AngloGold Perth Office. For further information on opening and reading Adobe Acrobat files please access the web site www.adobe.com. A hardcopy report is submitted to the Central Land Council Alice Springs.
11 REFERENCES

BLAKE, D.H., HODGSON, I.M., MUHLING, A.C 1979
Geology of the Granites-Tanami Region:
BMR Bulletin 197, 91p

Geochronological Constraints On Orogenic Events In The Arunta Inlier :
A Review. Precambrian Research.

A New Geological Framework for the Southern Arunta Province,
AGES 2002 Abstract.

Arunta Orogen and Billiluna Complex
In: Geology and Mineral Resources of Western Australia: Western Australia Geological Survey, Memoir 3,
pp286-288.

Atlee Creek EL8610 1998 Annual Report for the Year to 19th April 1999.
Western Metals Limited.

Arunta Block, regional geology. In Knight, C. L. (Editor),

SHAW, R. D., STEWART, A. J. and BLACK, L. P., 1984:
The Arunta Inlier : A Complex Ensialic Mobile Belt In Central Australia.

Second Annual Report for EL8610 (Atlee Creek)
For The Period 20/04/99 to 19/04/00
Normandy –NFM, Company report RN: 26823

SPURWAY, C., 2002
Fourth Annual Report for Exploration Licence 8610 – Atlee Creek
For the Period 20th April 2001 – 19th April 2002
AngloGold Australia Ltd, Company Report No. NT.11795

Mt Theo, Northern Territory.
BMR 1:250 000 Geological Series Explanatory Notes.

The Arunta Inlier : A Complex Ensialic Mobile Belt In Central Australia.
Part 1 : Stratigraphy, Correlations and Origin.

Mount Solitaire: Establishing Tanami-Tennant Links,
AGES 2002 Abstract.

Summary of Information on Mineral Deposits of the Arunta Complex,
Alice Springs Area, N.T. BMR Record 1974/117.

U - Pb Zircon Dating Of Tectonomagmatic Events In The Northern Arunta Inlier,
Central Australia. Precambrian Research, 71, 71-43.
APPENDICES
APPENDIX 1

Assay Results – Rockchip Samples
CERTIFICATE OF ANALYSIS

Batch: AS5961
Sub Batch: 0

CONTACT: MS L STIRLAND-MITCHELL
CLIENT: ANGLOGOLD AUSTRALASIA LIMITED
ADDRESS: PO BOX 36121
WINNELLIE NT 0821
ORDER No.: DS700041
PROJECT:

LABORATORY: ALICE SPRINGS
DATE RECEIVED: 25/07/2002
DATE COMPLETED: 31/07/2002
SAMPLE TYPE: ROCK CHIP
No. of SAMPLES: 20

COMMENTS

RECEIVED - 6 AUG 2002

NOTES
This is the Final Report and supersedes any preliminary reports with this batch number.
Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: ALICE SPRINGS

Address
13 Price Street
Alice Springs
NT 0871

Phone: 61-8-8952 6028
Fax: 61-8-8952 6028
Email: cameron.brosnan@alschemex.com

Signatory

LABORATORIES

AUSTRALIA
Brisbane
Alice Springs
Kalgoorlie
Perth
Townsville

NORTH AMERICA
Vancouver
Chihuahua
Elko
Fairbanks
Guadalajara
Reno
Thunder Bay
Toronto

SOUTH AMERICA
Santiago
Antofagasta
Arequipa
Calama
Copiapo
Lima
Mendoza
Quito

AFRICA
Mwanza

Australian Laboratory Services Pty Ltd (ABN 009 936 029)
<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>Element Unit Method</th>
<th>Au ppb AU-AA22</th>
<th>Au CHECKS ppb AU-AA22</th>
<th>Cu ppm ME-ICP41</th>
<th>Pb ppm ME-ICP41</th>
<th>Zn ppm ME-ICP41</th>
<th>As ppm ME-ICP41</th>
<th>Bi ppm ME-ICP41</th>
<th>Sb ppm ME-ICP41</th>
<th>Mo ppm ME-ICP41</th>
<th>% -75um SCR-31</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLUSH A</td>
<td></td>
<td><1</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>2</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>0.1</td>
</tr>
<tr>
<td>FLUSH B</td>
<td></td>
<td><1</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><2</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>0.1</td>
</tr>
<tr>
<td>FLUSH C</td>
<td></td>
<td><1</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><2</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>0.1</td>
</tr>
<tr>
<td>263062</td>
<td></td>
<td><1</td>
<td>8</td>
<td>17</td>
<td>67</td>
<td>16</td>
<td><5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>96.2</td>
</tr>
<tr>
<td>263063</td>
<td></td>
<td>2</td>
<td>12</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><2</td>
<td><5</td>
<td><5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>263064</td>
<td></td>
<td><1</td>
<td>5</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td><2</td>
<td><5</td>
<td><5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>263065</td>
<td></td>
<td>2</td>
<td>1</td>
<td><5</td>
<td>9</td>
<td>20</td>
<td><2</td>
<td><5</td>
<td><5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>263066</td>
<td></td>
<td>1</td>
<td>17</td>
<td><5</td>
<td>6</td>
<td><2</td>
<td><5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>96.2</td>
</tr>
<tr>
<td>263067</td>
<td></td>
<td>2</td>
<td>21</td>
<td>7</td>
<td>13</td>
<td><2</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>263068</td>
<td></td>
<td><1</td>
<td>12</td>
<td>5</td>
<td><5</td>
<td><2</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>263069</td>
<td></td>
<td><1</td>
<td>9</td>
<td>5</td>
<td><5</td>
<td><2</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>263070</td>
<td></td>
<td><1</td>
<td>7</td>
<td>5</td>
<td><5</td>
<td><2</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>263071</td>
<td></td>
<td><1</td>
<td>5</td>
<td>5</td>
<td><5</td>
<td><2</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>263072</td>
<td></td>
<td><1</td>
<td>19</td>
<td>5</td>
<td>8</td>
<td><2</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>263073</td>
<td></td>
<td><1</td>
<td>16</td>
<td>9</td>
<td>7</td>
<td><2</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
QUALITY CONTROL REPORT

Sub Batch: 0
Date of Issue: 31/07/2002
Client: ANGLOGOLD AUSTRALASIA LIMITED
Client Reference:

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>Element Unit Method</th>
<th>Au ppb AU-AA22</th>
<th>Au(CHECKS) ppb AU-AA22</th>
<th>Cu ppm ME-ICP41</th>
<th>Pb ppm ME-ICP41</th>
<th>Zn ppm ME-ICP41</th>
<th>As ppm ME-ICP41</th>
<th>Bi ppm ME-ICP41</th>
<th>Sb ppm ME-ICP41</th>
<th>Mo ppm ME-ICP41</th>
<th>% -75um SCR-31</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLANK</td>
<td></td>
<td><1</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><2</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
</tr>
</tbody>
</table>

BLANKS

If applicable, duplicate results for fire assay golds are shown in the main body of the report.

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>Element Unit Method</th>
<th>Au ppb AU-AA22</th>
<th>Cu ppm ME-ICP41</th>
<th>Zn ppm ME-ICP41</th>
<th>As ppm ME-ICP41</th>
<th>Bi ppm ME-ICP41</th>
<th>Sb ppm ME-ICP41</th>
<th>Mo ppm ME-ICP41</th>
</tr>
</thead>
<tbody>
<tr>
<td>263065</td>
<td></td>
<td>2</td>
<td><5</td>
<td>11</td>
<td>21</td>
<td><2</td>
<td><5</td>
<td><5</td>
</tr>
</tbody>
</table>

DUPLICATES

Original Result

<table>
<thead>
<tr>
<th>STANDARD I.D.</th>
<th>RESULT OF STANDARD</th>
<th>TARGET RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST122</td>
<td>ST122</td>
<td>58</td>
</tr>
<tr>
<td>BM6/581</td>
<td>BM6/581</td>
<td>230</td>
</tr>
<tr>
<td>BM6/581</td>
<td>BM6/581</td>
<td>210</td>
</tr>
<tr>
<td>BM6/581</td>
<td>BM6/581</td>
<td>266</td>
</tr>
<tr>
<td>BM6/581</td>
<td>BM6/581</td>
<td>77</td>
</tr>
<tr>
<td>BM6/581</td>
<td>BM6/581</td>
<td>44</td>
</tr>
<tr>
<td>BM6/581</td>
<td>BM6/581</td>
<td>67</td>
</tr>
<tr>
<td>BM6/581</td>
<td>BM6/581</td>
<td>34</td>
</tr>
</tbody>
</table>

REFERENCE STANDARDS

The data that appears on this report are results for the internal standards analysed in conjunction with this batch.
APPENDIX 2

Petrology Summary
SAMPLE NUMBER: 16039.03 (482296)

LOCATION: 7581100 nM, 767320 mE
Arunta province

ROCK NAME: Biotite schist

FIELD DESCRIPTION: Metamorphic rock

OFFCUT DESCRIPTION:
A weathered/oxidised, brown to grey-brown, foliated/banded, biotite-rich/bearing regional metamorphic rock (schist). A foliation is defined by the distribution of quartz and mica minerals.

THIN SECTION DESCRIPTION
LITHOLOGY: PRIMARY MINERALOGY, TEXTURES
In order of decreasing abundance the rock mainly comprises muscovite, quartz and biotite. A penetrative strain fabric is defined by a dimensional and crystallographic preferred orientation of muscovite and to a lesser extent biotite. A penetrative foliation or banding is defined by segregation of quartz and mica minerals. Biotite is distribution between either bands or lenses of granular anhedral quartz and broader bands of platy muscovite. Trace amounts of zircon occur as inclusions within the mica minerals and quartz, and apatite and tourmaline within quartz. Ghosted Fe/Ti-oxides are interstitial to the silicate minerals. Rutile occurs interstitially to the mica minerals.

An incipient secondary cleavage or set of repeated shears exists at high angles to the prominent foliation/schistocity. This set of secondary structures occurs in association with crenulation folding of the early foliation.

ALTERATION
REPLACEMENT
Hematite forms an overprint to the silicate minerals. Fe/Ti-oxides are altered to hematite.

DEPOSITION
Microfractures are filled with hematite.

COMMENTS
Minerals present. (major) muscovite; (abundant) quartz, biotite; (minor) hematite; (trace) zircon, rutile, tourmaline, apatite
A mod-T/mod-P metamorphic replacement of a sedimentary rock, representing regional metamorphism of upper greenschist facies grade. The rock has true foliation defined by metamorphic segregation of quartz and mica minerals.
Plate right. A schist lithology complete with segregation of mica minerals (muscovite and brown biotite) and quartz defining true foliation. Note penetrative structures (secondary cleavage) post-dating/crosscutting segregation/foliation and evident in hand-specimen (top right). 1200 µm. ppl.
APPENDIX 3

Environmental Register
TENEMENT ENVIRONMENTAL MANAGEMENT REGISTER

LAND STATUS RECORD

Project: Atlee Creek EL 8610

Registered Holder(s): Adelaide Exploration Limited

Security: Nil

Date Granted: 19th April 1998 Term: 6 years

Bond/Security:

JV Partners (if any): AngloGold Australia Limited

Land Classification: (Crown, Private, Lease) Crown

Pastoral Notes: (Stock, Cultivation, Access, Rainfall)

The project area is located with the Central Desert Aboriginal Land Trust

Environmental Notes: (Flora/Fauna, Erosion, Bushfires, Flooding)

Acacias, stunted eucalypts
Regular burning - dry season
Occasional flooding - sheet water - wet season

Groundwater: (Bores/Wells/Dams, streams, drainage, test data)

Drainage system “Atlee Creek” and minor tributaries located on western portion of tenement.

Aboriginal Notes: (Sacred Sites, Cultural)

The Central Land Council cleared the exploration programs proposed for the fifth year of tenure. A total of five exclusion zones were outlined effecting tenure.

Historic Relics: (Mine Workings, Equipment, Homesteads etc.) Nil

Previous Activity: (Mining, Exploration, Forestry, etc.)

There is no previous recorded modern exploration for minerals on the licence area.

During the first four years of tenure, Adelaide Exploration, Aberfoyle and Normandy-NFM, have completed the following exploration;

Year 1

No work completed
Year 2

- 68 Lag samples, collected over a 2km N-S traverses at nominally 500m spacings
- 26 composite rock chip samples, samples included vein quartz and calcrete specimens.
- 290 soil samples, several 2km spaced traverses were completed with 100m spaced samples collected along the traverse. Composite samples were collated from these every 500m to generate a single bulk sample. A total of 60 samples were assayed.

Year 3

- 83 lag samples collected by helicopter borne reconnaissance.
- 3 composite rock chip samples
- 46 line kilometres of ground magnetic traverses, including 39 line kilometres of gridding.
- 19 vertical aircore drill holes totalling 1199m were drilled to 90m depth or refusal. Samples were collected as 3m composites.
- 21 petrological samples were submitted from the drill chips.

Year 4

No work completed whilst Adelaide Exploration were finalising new JV/Option arrangements.

Year 5 – AngloGold

- 15 Rockchip Samples
- 1 petrological sample
- 5,846 line km of detailed airborne geophysical data capture
TENEMENT ENVIRONMENTAL MANAGEMENT REGISTER
PRE-EXISTING ENVIRONMENTAL DISTURBANCE RECORD

Tenement Name: Atlee Creek

No: EL 8610

Exploration Activity Area:

- 68 Lag samples, collected over a 2km N-S traverses at nominally 500m spacings
- 83 lag samples collected by helicopter borne reconnaissance.
- 29 composite rock chip samples, samples included vein quartz and calcrete specimens.
- 290 soil samples, several 2km spaced traverses were completed with 100m spaced samples collected along the traverse. Composite samples were collated from these every 500m to generate a single bulk sample. A total of 60 samples were assayed
- 46 line kilometres of ground magnetic traverses, including 39 line kilometres of gridding.
- 19 vertical aircore drill holes totalling 1199 metres, were drilled to 90m depth or refusal. Samples were collected as 3m composites.
- 21 petrological samples were submitted from the drill chips.
- 15 rockchip samples.
- 1 petrological sample
- 5,846 line km of detailed airborne geophysical data capture

Shafts/Pits/Dumps: Nil

Track/Access:

Entry to the southern portion of the tenement can be obtained from Yuendumu along tracks to the NW for 24km and then to the N for another 24km. Access can be gained to the northern portion of the license area by travelling approximately 75km further north along the Tanami Road then via tracks to the ENE for approximately 17km. The Atlee Creek allows for dry weather access only via the later route.

Line Clearing:

Pre-existing lines cleared by hand and naturally revegetated.

Costeaming: Nil

Drill Sites:

19 vertical aircore drill holes totalling 1199 metres, were drilled to 90m depth or refusal.

Location Data:

Mapsheets
1: 250, 000 Mt Theo SF5208 1:100, 000 Yaloogarrie 5154

Compiled by: Niki Spurway Date: 30th April 2003
TENEMENT ENVIRONMENTAL MANAGEMENT REGISTER

ANGLOGOLD ENVIRONMENTAL IMPACT RECORD

<table>
<thead>
<tr>
<th>Tenement Name:</th>
<th>Atlee Creek</th>
<th>No: EL 8610</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Ref No's:</td>
<td>NT.11795 and NT.12471 (this report)</td>
<td></td>
</tr>
</tbody>
</table>

Exploration Activities:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Activity</th>
<th>Activity</th>
<th>Activity</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grids & Traverses:</td>
<td>Nil</td>
<td>Soil Sampling:</td>
<td>Nil</td>
<td>Costeans / Pits:</td>
</tr>
</tbody>
</table>

Camps:

Temporary “fly” camps only. Dismantled and cleaned prior to leaving.

<table>
<thead>
<tr>
<th>Other</th>
<th>Other</th>
<th>Other</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nil</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Compiled by: Niki Spurway
Date: 30th April 2003
TENEMENT ENVIRONMENTAL MANAGEMENT REGISTER
ANGLOGOLD REHABILITATION RECORD

Tenement Name: Atlee Creek
No: EL 8610

Grids & Traverses: Nil
Soil Sampling: Nil
Costeans/Pits: Nil
Drilling: Nil
Drill Traverses: Nil
Drill Pads: Nil
Ground Geophysics: Nil
Access Tracks: Nil

Camps:
Temporary “fly” camps only. Dismantled and cleaned prior to leaving.

Other: Nil

Inspected / Clearance: Bond/Security released:

Compiled by: Niki Spurway
Date: 30th April 2003

Follow-up Inspection Report:
FIGURES
PDF Image
Atlee Creek Project
Relinquished Area
Regional Aeromagnetic Image
First Vertical Derivative, Reduced to Pole

Figure No: 5
Date: 10/06/2003
Coord System: AMG52 AGD84
Scale: 1:250,000

EL8610 - Atlee Creek Project

ANGLOGOLD AUSTRALIA LIMITED
A.C.N. 008 737 424

LOCALITY MAP
Jabiru
DARWIN
Kununurra
Pine Creek
TANAMI
Borroloola
Tennant Creek
ALICE SPRINGS
QUEENSLAND
SOUTH AUSTRALIA
WA
NT
AM
g
GN
tn
MN
GRID-MAGNETIC ANGLE
3.9°
GRID CONVERGENCE
0.5°