2nd RELINQUISHMENT REPORT FOR THE WESTERN TANAMI PROJECT

for the period
28/04/1999 to 25/04/2002

Exploration Licences covered by this report:

EL 8803      Syrene
EL 8825      Lucky’s Bore

Volume 1 of 1

1:250,000 SHEET: The Granites        SF52-03

1:100,000 SHEET: Mc Farlane           4757
                Pedestal Hills        4756

AUTHOR: D. Power, M. Walter

TENEMENT HOLDERS: Normandy NFM Ltd

DISTRIBUTION: ☐ Northern Territory Department of Business, Industry & Resource Development
              ☐ Newmont Australia

The contents of this report remain the property of Normandy NFM Limited and may not be published in whole or in part nor used in a company prospectus without the written consent of the Company.

JULY 2002

NEWMONT CR 30685
SUMMARY

The Western Non-TGEA Project, located in the Tanami desert region approximately 130km west-north-west of the Granites Gold Mine, currently comprises 2 exploration licences. EL’s 8803, 8999, 8593 & 8825 were granted on the 29th April 1999. During 2002 EL8593 (Nora) and EL8999 (Medussa) were relinquished in full and all exploration work completed is covered in separate reports.

Exploration activities completed on the relinquished blocks of EL’s 8803 & 8825 (Syrene & Lucky’s Bore) are covered in this report. This is the second relinquishment report for the Western Project.

Exploration activity over the relinquished areas includes:

EL’s 8803 & 8825 – SYRENE & LUCKY’S BORE

- Lag Sampling 70 samples
- CRC Sampling 5 samples
- Soil Sampling 2 samples
- Vacuum Drilling 7 holes for 63.8m, 15 samples, 5 DSL samples
- RAB Drilling 11 holes for 374m, 124 samples
- Ground Magnetics 4.2 line km
# TABLE OF CONTENTS

1. **INTRODUCTION** ............................................................................................................................. 1

2. **LOCATION, INFRASTRUCTURE, ACCESS, SURVEY CONTROL & ENVIRONMENTAL PRACTICE** .................................................................................................................. 2
   2.1 LOCATION ........................................................................................................................................ 2
   2.2 INFRASTRUCTURE .............................................................................................................................. 2
   2.3 ACCESS ........................................................................................................................................... 2
   2.4 SURVEY CONTROL ............................................................................................................................ 2
   2.5 ENVIRONMENTAL PRACTICE ........................................................................................................... 2

3. **PREVIOUS EXPLORATION** .............................................................................................................. 3

4. **EXPLORATION OBJECTIVES** .......................................................................................................... 4

5. **GEOLOGY** ...................................................................................................................................... 5

6. **METHODOLOGY** ............................................................................................................................. 6

7. **EL 8803 (SYRENE) – WORK COMPLETED** .................................................................................. 8
   7.1 GROUND MAGNETICS SURVEY ......................................................................................................... 9
   7.2 SURFICIAL SAMPLING ....................................................................................................................... 9
   7.3 SOIL SAMPLING ................................................................................................................................ 10
   7.4 VACUUM DRILLING ........................................................................................................................... 10
   7.5 RAB DRILLING .................................................................................................................................. 11

8. **EL 8825 (LUCKY’S BORE) – WORK COMPLETED** ......................................................................... 12

9. **REFERENCE LIST / ANNUAL REPORT BIBLIOGRAPHY** ............................................................... 13
LIST OF FIGURES

FIGURE 1 Western Tanami Project Tenement Location Map 1:1,000,000
FIGURE 2 EL 8803 – Blocks to be Relinquished 1:50,000
FIGURE 3 EL8825 – Blocks to be Relinquished 1:250,000
FIGURE 4 EL 8803 – Sample, Drillhole & Ground Magnetics Survey Locality Plan 1:100,000

LIST OF APPENDICES

APPENDIX 1: Digital Sample & Drillhole Data:

SYR_WADG1_DOW2002P.DAT
SYR_WADL1_DOW2002P.DAT
SYR_WADS1_DOW2002P.DAT
SYR_WASG1_SUR2002P.DAT
SYR_WASG2_SUR2002P.DAT
SYR_WASL1_DRI2002P.DAT

APPENDIX 2: Geophysical Survey Data

EL8803(r)2002_GMag.xls
1. INTRODUCTION

This report covers exploration work over the relinquished areas of Western Tanami Project for the period ending 28/03/2001.

The Western Tanami Project is located south of the Tanami Road, within Aboriginal Freehold land approximately 130km west north west of the Granites Gold Mining Operations (Figure 1). Access to the Project area is via the Wilsons Camp Road, a well-formed road extending south for 40 km from its junction with the Tanami Highway, 20km east of the Western Australian border. Access within the EL’s is then via gravel tracks. The licences are dispersed but semi-contiguous with the Normandy NFM TGEA Project (Western zone).

Exploration Licences 8803, 8999, 8593 & 8825 were granted to Normandy NFM on 29th April 1999 for a period of six years. Access to EL’s 8803 & 8999 and approval of proposed Work Programs was granted by the CLC on 7th July, 1999 allowing work to commence in the second half of the field season. Access to EL 8593 and approval of proposed Work Programs was granted by the CLC on 11th September, 1999. A supplementary work program for this lease was not granted until late in the 2000 field season, therefore allowing only partial exploration to be undertaken within available time during 2000. Table 1 outlines tenement details.

Table 1: Western Tanami Project Tenement Summary

<table>
<thead>
<tr>
<th>EL Number</th>
<th>Name</th>
<th>Grant Date</th>
<th>Expiry Date</th>
<th>Blocks Prior to Relinquishment</th>
<th>Blocks Relinquished</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL 8803</td>
<td>Syrene</td>
<td>29/04/1999</td>
<td>28/04/05</td>
<td>8</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>EL 8825</td>
<td>Lucky’s Bore</td>
<td>29/04/1999</td>
<td>28/04/05</td>
<td>483</td>
<td>308</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>491</td>
<td>312</td>
<td>179</td>
</tr>
</tbody>
</table>
2. LOCATION, INFRASTRUCTURE, ACCESS, SURVEY CONTROL & ENVIRONMENTAL PRACTICE

2.1 Location
The Western Tanami Project is located in the Tanami Desert region, approximately 130km WNW of the Granites Gold Mine. The area is covered by the Granites (SF52-3), 1:250 000 series map sheet, as shown on Figure 1.

Sparse spinifex plains with isolated eucalypts are the typical vegetation found in the project area. Dense stands of mulga punctuate the landscape, but are usually no more than a few square kilometres in areal extent. Other vegetation includes shrubs (cassia) and low trees (mallee, tea tree and hakea). There are no permanent or perennial watercourses in the area.

2.2 Infrastructure
Prior to the presence of NFM in this part of the Tanami region, infrastructural support was almost completely lacking. Currently supplies are trucked or flown to the permanent camp at The Granites (within EL4529) from Alice Springs. Telephone and fax using microwave links service this camp. Water is provided by two remote borefields. One borefield lies 35km east of The Granites (Billabong) and the other 10km north-east of Dead Bullock Soak. Power is locally generated at exploration bases and mine sites. The nearest settlements are the Rabbit Flat roadhouse 50km to the northwest of The Granites on the Tanami Road and Tanami Downs homestead 60km to the west. The nearest town is Yuendumu some 250km southeast of The Granites on the Tanami Road.

2.3 Access
The Western Tanami Project is located south of the Tanami Road, within Aboriginal Freehold land approximately 130km west north west of the Granites Gold Mining Operations (Figure 1). Access to the Project area is via the Wilsons Camp Road, a well-formed road extending south for 40 km from its junction with the Tanami Highway, 20km east of the Western Australian border. Access within the EL’s is then via gravel tracks. The licences are dispersed but semi-contiguous with the Normandy NFM TGEA Project (Western zone). (Figure 1).

2.4 Survey Control
Survey control has yet to be established over these licenses.

2.5 Environmental Practice
Rehabilitation of exploration sites was carried out pursuant to Section 24(e) of the NT Mining Act and in accordance with the Departments “Guidelines for Rehabilitation of Exploration Sites”.

- all drillholes were capped or backfilled on completion,
- all drillpads were rehabilitated,
- all costeans were backfilled when no longer required, and
- all grid lines and tracks were rehabilitated when no longer needed.
4 BLOCKS TO BE RELINQUISHED

Blocks to be relinquished

Blocks to be retained

UTM Zone 52 (AGD66)

11/07/2002

Figure 2
3. PREVIOUS EXPLORATION

The Syrene / Medussa portion of the Western Tanami Project was first held by the Power and Nuclear Corporation Pty Ltd (PNC) from 1988 to 1991 as EL 4829. In the subsequent period 1991 to 1994 Western Mining Corporation (WMC) held the ground under agreement with PNC as SEL 7423. No field work was conducted by WMC.

PNC was exploring throughout the region for uranium mineralisation by targeting anomalies generated from airborne magnetic and radiometric surveys. A high intensity magnetic feature (now the Bondi Prospect in EL 8803) was targeted as part of this project. Field reconnaissance and mapping were completed revealing the source of the magnetic anomaly to be multiple syenitic to monzonitic intrusives.

A limited program of RAB drilling and geochemical testing was conducted to test the intrusives for uranium mineralisation. Bulk samples were collected to test for the potential for diamonds. Two micro-diamonds were identified leading to a program of diamond drilling and a 10 tonne bulk alluvial sample. When no further diamonds were found, the petrological analysis of the diamonds was interpreted to indicate contamination. Of the geochemical sampling program, only three samples were analysed for Au. One of these returned 0.1g/t Au.

There is no record of modern exploration in the area covered by the Lucky’s Bore EL.
4. EXPLORATION OBJECTIVES

Exploration and mine studies have indicated that gold mineralisation in the region has an association with a range of geological environments. Models of gold occurrence for which the Tanami is believed to be most prospective include:

- Disseminated, stratabound deposits hosted by banded iron formations;
- Discordant stockwork deposits of gold in relatively late stage quartz veins;
- Gold mineralisation in veins hosted by shear zones with strong alteration characteristics;
- Deposits in regolith containing gold concentrated by alluvial, eluvial or alteritic processes.

With these models in mind, the Company's geologists have selected prospective target exploration areas based on regional geological, structural, geophysical and geochemical data.

The detailed assessment of these targets has been undertaken by a range of exploration techniques, designed to reveal the geology of the target area, and the presence of indicator elements, particularly gold itself, in anomalous quantities.

The task has been made difficult by the very extensive cover of windblown sand and other transported material, which conceals the rock and associated soil, typically to a thickness of several metres. This blanket covers as much as 98% of the region. Consequently the exploration process has relied heavily on point samples obtained by drilling and trenching to expose bedrock.
5. GEOLOGY

The Project Area lies astride the Granites - Tanami and Arunta provinces. The relationship between the Granites - Tanami and Arunta provinces is not well understood. Basement metasedimentary sequences in both regions are thought to be lateral equivalents (Blake et al., 1979) and the sequences merge with one another (Stewart et al., 1984).

The Granites - Tanami and the Northern Arunta provinces contain similar rock sequences and share similar Palaeoproterozoic magmatic, metamorphic and deformational histories. Both comprise of a deformed Palaeoproterozoic basement turbidite sequence of greywacke, quartz sandstone, siltstone, shale, and minor mafic rocks and their moderate to high grade metamorphic equivalents (schist, gneiss, quartzite, amphibolite). The Tanami Block also contains chert, pyritic carbonaceous sediments and ironstone, whereas the Arunta Block has minor calc-silicates and meta-felsic volcanics (felsic orthogneiss).

During the Barramundi Orogeny (1890-1850 Ma, Page and Williams, 1988), the sedimentary sequences in the Arunta were intruded by mafic rocks, deformed and metamorphosed up to amphibolite facies. Granite plutons were emplaced in the closing stages of the Barramundi Orogeny, at about 1820 - 1800 Ma.

In the Arunta province, platform quartzite-shale-carbonate sediments (Reynolds Range Group) unconformably overlie the Barramundi metamorphic rocks and probably represent correlatives of the Hatches Creek Group of the Davenport Province to the north (Blake et al. 1987). Deformation of the Hatches Creek Group preceded granite intrusion at about 1660 Ma (Page and Williams 1988) and involved an early phase of upright northwest-trending folds and a second episode of northeast-trending folds. Faulting, thrusting and metamorphism accompanied both episodes of folding.

The Arunta province remained tectonically active after the Barramundi Orogeny with several metamorphic and deformational events, including the ~ 1800 Ma Strangways granulite event (Shaw et al, 1984), the 1760-1650 Ma Aileron retrogressive event (Windrim and McCulloch, 1986) and the most recent Carboniferous Alice Springs Orogeny. In the northern Arunta region, significant granitic magmatism occurred at 1780-1770, 1713, 1635 and 1570 Ma.

The basement provinces described above are unconformably overlain by younger, Neoproterozoic and Palaeozoic sediments of the Birrindudu, Wiso, Georgina and Ngalia basins (Wells and Moss, 1983).

The Geology of the Syrene / Medussa portion of the Western Tanami Project area consists of Palaeoproterozoic Killi Killi Beds and Pargee Sandstone of the Tanami Complex intruded by felsic igneous bodies. The Syrene / Medussa Project area is dominated by a strong north west fault which has induced splay faulting through the lease, resulting in intercalations of Killi Killi Beds and Pargee Sandstone.

The Geology of the Lucky's Bore portion of the Western Tanami Project area is dominated by Palaeozoic Lucas formation and Pedestal Bed cover sediments with subordinate Cambrian Antrim Plateau Volcanics.
6. METHODOLOGY

6.1 SURFACE SAMPLES

**CRC (Composite Rock Chip)**

Composite Rock Chip samples are representative samples of outcrop composited over an area of 10 to 20 metres diameter. Samples are generally 2 to 3 kg and comprise all outcropping lithologies in the sample area without bias towards lithology, quartz vein or apparently mineralised materials. Selective samples are composites of specific lithologies or apparently mineralised materials from within a similar diameter area. They are noted as selective samples in sample logs.

GPS equipment is used to determine reconnaissance sample locations in the absence of a local grid. Sampled sites have been marked with flagging tape and numbered aluminium permatags affixed to the outcrop or nearby tree.

**Lag/DSL (Drill-derived Stone Line)**

Lag is any hard surficial material varying from a coarse sand to rock fragments.

The sample is obtained via a shallow surface scrape, through a 2mm aluminium sieve to obtain approximately 300g of material and collected into a plastic zip seal bag. Material over a diameter of 2cm is generally discarded. The sample is collected from over an area of 10 metres diameter to derive a representative sample of the surficial materials in the area.

Reconnaissance spaced sample sites are not marked, however infill sample sites are flagged in the absence of a local grid. Sample type, quality, description and size is noted at the time of collection and recorded via codes outlined in Appendix 1 of this report.

A DSL sample is a drill derived “buried” lag sample. Other than using a drill rig to bring the sample to surface, collection methods are identical to lag.

**Soil**

Samples are collected at 20 metre intervals from a pseudo B-horizon soil (darkening of soil colour) at the bottom of a hole approximately 20 to 25cm deep. Material is sieved with a 0.18mm nylon sieve to derive a 100 gram sample and the oversize discarded. Digging is conducted using a pelican pick from which the paint has been removed, and collected in plastic buckets to minimise contamination. Samples are stored in plastic bags for analysis.

6.2 GROUND MAGNETICS SURVEY

All ground magnetic surveys were effected by Normandy NFM personnel.

Total Magnetic Intensity (TMI) readings were taken at 10m intervals (unless otherwise stated) using a G856 proton precession magnetometer and a pole height of 1.8m. Diurnal measurements were taken using a second magnetometer as a base station, with readings taken every 30 seconds. On completion of the survey, diurnal variations were removed from the data using the MAGPAC program.

Data was collected over the surveyed lines which were pegged every 100m and clearly annotated with the line number and location coordinates. The placement of these traverses was achieved by using a Trimble Global Positioning system combined with a Racal differential GPS attachment.
6.3 RAB and VACUUM DRILLING & SAMPLING

Vacuum Drilling

Vacuum drilling is undertaken by Normandy NFM using EDSON 200 series vacuum drill rigs. All holes are plugged and are only marked if positioned on an established grid.

DSL Samples

As described above. The sample is sieved to a –5+2mm fraction and approximately 250g of which is collected into a plastic zip seal bag.

Vac/BOH Samples

A perspex tube collects the sample that retains relative downhole depth proportions. The geologist may choose to sample a particular horizon of interest as a selected sample or collect a composite sample. For this reason, sample intervals are variable. Specific sample intervals are listed in the drill hole logs.

RAB Drilling

All RAB holes are drilled at an angle of -60° to grid east or west for empirical holes and along ground magnetic traverse bearings for targeted holes. Three metre composite samples are collected using a spear. Each sample pile is speared 4 times from different directions to collect a 2 - 3kg sample. Logging of the holes is conducted over 3m intervals. Most holes have been drilled to an average depth of 36 metres using Century Drilling’s Moonwalker Rig 1. All drill holes are plugged on completion by inserting a concrete bung approximately 1m below surface. The cavity is then back filled and mounded with drill cuttings.

The sample intervals are clearly documented in the drillhole logs accompanying this report.
7. EL 8803 (SYRENE) – WORK COMPLETED

Work on the relinquished areas included:

- Lag Sampling 70 samples
- CRC Sampling 5 samples
- Soil Sampling 2 samples
- Vacuum Drilling 7 holes for 63.8m, 15 samples, 5 DSL samples
- RAB Drilling 11 holes for 374m, 124 samples
- Ground Magnetics 4.2 line km
7.1 Ground Magnetics Survey

Ground magnetics survey data was collected over 6 traverses or parts thereof over the northern part of the relinquished area for 4.2 line km. The traverses are presented on Figure 4 and the data is supplied in Appendix 2.

7.2 Surficial Sampling

In the course of drilling in these licences, several lag and rockchip samples were collected. Rock chip samples consisted of outcropping basement as well as patches of quartz float. Lag samples were collected in lieu of drilling vacuum holes at some locations. A total of 70 lag samples and 5 rockchip samples were collected from the area to be relinquished. All samples were dispatched to Genalysis for analysis by B*ETA and A/MS. Sample locations are presented on Figure 4.

A summary of sample statistics is given in Tables 2 & 3 and data is supplied in Appendix 1.

Table 2 – EL 8803 Reconnaissance Lag Sample Details

<table>
<thead>
<tr>
<th>Tenement</th>
<th>Sample Numbers</th>
<th>Total</th>
<th>Genalysis Method</th>
<th>Elements Analysed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syrene(8803)</td>
<td>3127511-513, 3127530 – 532, 537, 541, 3127547-556, 586, 312669-686, 3127740, 743, 745-746, 3127759-787</td>
<td>70</td>
<td>B*ETA</td>
<td>Au</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A/MS</td>
</tr>
</tbody>
</table>

70 samples

Table 3 - EL 8803 Reconnaissance CRC Sample Details

<table>
<thead>
<tr>
<th>Tenement</th>
<th>Sample Numbers</th>
<th>Total</th>
<th>Genalysis Method</th>
<th>Elements Analysed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syrene (8803)</td>
<td>755085, 755479-482</td>
<td>5</td>
<td>B*ETA</td>
<td>Au</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A/MS</td>
</tr>
</tbody>
</table>

5 samples

None of the surface samples collected from Syrene returned gold mineralisation above 1ppm.
7.3 Soil Sampling

Following favourable surficial geochemical results from lag and CRC programs, a one line kilometre traverse was constructed in the west of the Syrene tenement. The traverse is perpendicular to quartz veining and covers the contact of Killi Killi Beds and Pargee Sandstone. Soil sampling was conducted on 20m intervals. Soil sample details are displayed in Table 4 and geochemical data is contained in Appendix 1. Sample distributions are shown in Figure 4.

Table 4: Orientation Soil Sample Details

<table>
<thead>
<tr>
<th>Tenement</th>
<th>Sample ID</th>
<th>Amdel Analytical Technique</th>
<th>Total Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syrene (8803)</td>
<td>3125180-181</td>
<td>ARM1 Ag, As, Au, Bi, Cd, Co, Cu, Mo, Ni, Pb, Sb, Se, Te, Zn</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>2</td>
</tr>
</tbody>
</table>

7.4 Vacuum Drilling

A program of vacuum drilling was completed to geochemically test the cover/bedrock interface and upper bedrock in areas beneath a variable and aeolian/alluvial dominated transported profile. Holes were drilled along 2 portions of a E-W traverse, spaced 50m apart. A total of 7 holes for 63.8m were drilled.

Holes were drilled until recognisable bedrock was intersected (where possible), with the complete profile being sampled. Composite samples (defined by geological intervals) were collected from both the transported and residual parts of the hole, with an unsieved interface sample also being collected where a derived stone line (DSL) existed.

Composite samples were dispatched to Amdel for analysis by ARM1, with interface (DSL) samples being dispatched to Genalysis for analysis by B/*ETA and A/MS. A total of 15 composite samples and 5 DSL samples were collected.

Drill hole locations are presented in Figure 4, sampling data presented in Table 7 and drilling logs presented in Appendix 1.

Table 6 - Reconnaissance Vacuum Drillhole & Sample Details.

<table>
<thead>
<tr>
<th>Tenement</th>
<th>Drillhole ID</th>
<th>Total</th>
<th>Metres</th>
<th>Sample Type</th>
<th>Sample ID</th>
<th>Total Samples</th>
<th>Sample Method / Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL 8803</td>
<td>SYV001 - 007</td>
<td>7</td>
<td>007</td>
<td>Composite</td>
<td>3140794-808</td>
<td>15</td>
<td>Amdel ARM1 Ag, As, Au, Bi, Cd, Co, Cu, Mo, Ni, Pb, Sb, Se, Te, Zn</td>
</tr>
<tr>
<td>(Syrene)</td>
<td></td>
<td></td>
<td></td>
<td>DSL</td>
<td>3202966-970</td>
<td>5</td>
<td>Genalysis B/*ETA (Au) and A/MS (Ag, As, Bi, Co, Cu, Fe, Pb, Sb, Mo, Ni, Sn, Th, U, W,)</td>
</tr>
</tbody>
</table>

7 holes for 63.8m, 20 samples

The vacuum drilling in the relinquished portion of Syrene was hampered by excessive moisture in the ground.
7.5 RAB Drilling

Eleven RAB drillholes were completed within the relinquished area of EL 8803 Syrene.

Drill cuttings were laid out in three metre piles with one sample being collected from each pile by spearing from four different directions. The complete hole was sampled with all samples dispatched to Amdel for analysis by ARM1. A total of 124 samples were collected.

Drill hole locations are presented in Figure 4, sampling data presented in Table 5 and drilling logs presented in Appendix 1.

Table 5: Reconnaissance RAB Drillhole and Sample Details

<table>
<thead>
<tr>
<th>Tenement</th>
<th>Drillhole ID</th>
<th>Total</th>
<th>Metres</th>
<th>Samples</th>
<th>Total</th>
<th>Amdel Method</th>
<th>Elements Analysed</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL 8803</td>
<td>SYRB0004-0005, 0007-0011, 0014, 0019, 0021-0022</td>
<td>11</td>
<td>3225753-806, 3225729-742, 3225832-841, 3226314-333, 3226350-375</td>
<td>124</td>
<td>ARM 1</td>
<td>Ag, As, Au, Bi, Cd, Co, Cu, Mo, Ni, Pb, Sb, Se, Te, Zn</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11 holes for 374m 124 samples
8. EL 8825 (LUCKY’S BORE) – WORK COMPLETED

Due to access restrictions, primarily resulting from extended wet seasons, work within the Lucky’s Bore EL has been limited to the interpretation of geophysical and remote sensing data.
9. REFERENCE LIST / ANNUAL REPORT BIBLIOGRAPHY

REFERENCES


REPORTS TO THE NT DME


APPENDIX 1: DIGITAL SAMPLE & DRILLHOLE DATA

&

APPENDIX 2: GEOPHYSICAL SURVEY DATA
# BIBLIOGRAPHIC DATA SHEET

<table>
<thead>
<tr>
<th>REPORT NUMBER</th>
<th>30685</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPORT TITLE</td>
<td>2nd Relinquishment Report for the Western Tanami Project for the period 28 April 1999 to 26 April 2002.</td>
</tr>
<tr>
<td>PROSPECT NAME</td>
<td>Syrene, Luckys Bore</td>
</tr>
<tr>
<td>TENEMENT NUMBERS</td>
<td>EL's 8803, 8825</td>
</tr>
<tr>
<td>OWNER/JVPARTNERS</td>
<td>Normandy NFM Ltd</td>
</tr>
<tr>
<td>COMMODITIES</td>
<td>Gold</td>
</tr>
<tr>
<td>TECTONIC UNITS</td>
<td>The Granites-Tanami Block</td>
</tr>
<tr>
<td>STRATIGRAPHIC UNITS</td>
<td>Tanami Complex, Pargee Sandstone</td>
</tr>
<tr>
<td>1:250,000 MAPSHEET</td>
<td>The Granites SF52-3</td>
</tr>
<tr>
<td>1:100,000 MAPSHEET</td>
<td>MacFarlane 4757</td>
</tr>
<tr>
<td>KEYWORDS</td>
<td>Geophysics, ground magnetics, lag sampling, CRC sampling, soil sampling, Vacuum drilling, RAB drilling</td>
</tr>
</tbody>
</table>
**REPORT METADATA FORM**
**(MINERAL EXPLORATION)**

### PART A (DME USE ONLY)

<table>
<thead>
<tr>
<th>Report Number</th>
<th>Date Received</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Collation</th>
<th>Date</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>pp.</td>
<td>figs</td>
<td>logs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### PART B

<table>
<thead>
<tr>
<th>Tenure Number(s)</th>
<th>Company Report Number</th>
<th>Report Date</th>
<th>Anniversary Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>8803, 8825</td>
<td></td>
<td>July 2002</td>
<td>26/07/2002</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group Project Name</th>
<th>Report Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western Tanami</td>
<td>2nd Relinquishment Report for the Western Tanami Project for the period 24/04/1999 to 26/04/2002.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Corporate Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. Power, M. Walter</td>
<td>Newmont Australia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maps 1 : 250 000</th>
<th>SF52-03</th>
<th>The Granites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maps 1 : 100 000</td>
<td>4757</td>
<td>4758</td>
</tr>
</tbody>
</table>

### Tectonic Units

- Amadeus Basin
- Arfutara Basin
- Arnhem Inlier
- Arunta Inlier
- Birrindudu Basin
- Bonaparte Basin
- Browse Basin
- Carnie Basin
- McArthur Basin
- Murphy Inlier
- Money Shoal Basin
- Ngalia Basin
- Ord Basin
- Pedirka Basin
- Pine Creek Inlier
- Simpson Basin
- South Nicholson Basin
- Tennant Creek Inlier
- Eromanga Basin
- Fitzmaurice Mobile Zone
- Georgina Basin
- Granites-Tanami Inlier
- Money Shoal Basin
- Musgrave Block
- South Nicholson Basin
- Tennant Creek Inlier
- Victoria Basin
- Wiso Basin

### Other structural units

### Stratigraphic Names

- Killi Killi Beds

### AMF Thesaurus Terms - General

- Geological mapping
- Metallogenesis
- Petrology
- Lineaments
- Regional Geology
- Remote sensing
- Lithology
- Photogeology
- Stratigraphy
- Literature reviews
- Reconstruction
- Structural Geology
- Indicator minerals
- Metamorphism

### AMF Thesaurus Terms - Target Minerals

- Gold
- Lead
- Zinc
- Silver
- Copper
- Tin
- Platinum Group Minerals
- Diamonds
- Industrial Minerals
- Uranium
- Bauxite
- Others…
<table>
<thead>
<tr>
<th><strong>AMF Thesaurus Terms - Mining</strong></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental impact surveys</td>
<td>Feasibility studies</td>
<td>Geostatistics</td>
<td>Metallurgy</td>
</tr>
<tr>
<td>Ore reserves</td>
<td>Resource assessment</td>
<td>Mineral resources</td>
<td>Mining geology</td>
</tr>
<tr>
<td>Mine design</td>
<td>Mine drainage</td>
<td>Mine evaluation</td>
<td>Pits</td>
</tr>
<tr>
<td>Other terms ...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>AMF Thesaurus Terms - Geophysical Surveys</strong></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerial magnetic surveys</td>
<td>Aerial radioactivity surveys</td>
<td>Aerial EM surveys</td>
<td>Ground EM surveys</td>
</tr>
<tr>
<td>Gravity surveys</td>
<td>Geophysical anomalies</td>
<td>Gravity anomalies</td>
<td>Bouger anomaly maps</td>
</tr>
<tr>
<td>Sirotem surveys</td>
<td><strong>Ground magnetic surveys</strong></td>
<td>IP surveys</td>
<td>Resistivity surveys</td>
</tr>
<tr>
<td>Seismic surveys</td>
<td>Magnetic anomalies</td>
<td>Geophysical interpretation</td>
<td>Geophysical logs</td>
</tr>
<tr>
<td>Other terms ...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>AMF Thesaurus Terms - Geochemical Exploration – Surface sampling</strong></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Geochemical sampling</td>
<td>Stream sediment sampling</td>
<td>Rock chip sampling</td>
<td>Bulk sampling</td>
</tr>
<tr>
<td>✓ Soil sampling</td>
<td>Heavy mineral sampling</td>
<td>Geochemical anomalies</td>
<td>Assaying</td>
</tr>
<tr>
<td>Isotope geochemistry</td>
<td>Whole rock analysis</td>
<td>X ray diffraction</td>
<td>Sample location maps</td>
</tr>
<tr>
<td>Other terms ...</td>
<td><strong>Lag sampling</strong></td>
<td><strong>DSL sampling</strong></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>AMF Thesaurus Terms - Geochemical Exploration - Drill sampling</strong></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diamond drilling</td>
<td>✓ RAB drilling</td>
<td>Percussion drilling</td>
<td>Air drilling</td>
</tr>
<tr>
<td>RC drilling</td>
<td>Rotary drilling</td>
<td><strong>Vacuum drilling</strong></td>
<td>Auger drilling</td>
</tr>
<tr>
<td>Drill core</td>
<td>Drill cuttings</td>
<td><strong>Drill hole logs</strong></td>
<td>Drill core analysis</td>
</tr>
<tr>
<td>Other terms ...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Drilling Type</strong></th>
<th><strong>No. of holes</strong></th>
<th><strong>Hole name(s)</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diamond</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percussion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vacuum</td>
<td>7</td>
<td>SYRV001-007</td>
</tr>
<tr>
<td>RAB</td>
<td>11</td>
<td>SYRB004-005, 007-011, 014, 019, 021-022</td>
</tr>
<tr>
<td>Auger</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other ...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Mine / Deposit / Prospects</strong></th>
<th><strong>Location - AMG</strong></th>
<th><strong>Location - Datum</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deposits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prospects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other ...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2nd Relinquishment Report For The Western Tanami Project, July 2002
Normandy NFM Limited