BYNOE AREA, NT SEL22833

FINAL REPORT

JULIA CORPORATION LIMITED

CONTENTS

- 1.0 INTRODUCTION
- 2.0 SUMMARY AND CONCLUSIONS
- 3.0 TENURE
- 4.0 GEOLOGY
- 5.0 PREVIOUS INVESTIGATIONS
- 6.0 WORK COMPLETED
- 7.0 EXPENDITURE

LIST OF TABLES

- TABLE 1. ROCK CHIP SAMPLE DETAILS FOR TWIN HILLS
- TABLE 2. EXPENDITURE SUMMARY SEL 22833

LIST OF FIGURES

- FIGURE 1. LOCATION OF SEL22833
- FIGURE 2. TMI LANDSAT IMAGE AT SEL22833

LIST OF PLANS

- PLAN 1. TWIN HILLS DRILL COLLAR LOCATIONS
- PLAN 2. TWIN HILLS DRILL SECTION 1
- PLAN 3. TWIN HILLS DRILL SECTION 2
- PLAN 4. TWIN HILLS DRILL SECTION 3

APPENDICES

Appendix 1. Digital Data for Drill Collars, Drill Assays, Drill Geology, and Rock Chip Assays

1.0 INTRODUCTION

Tenement SEL22833 is located approximately 120 kilometres by road to the south of Darwin (see Figure 1.). Access is via the Stuart Highway, Litchfield Park Road and Labelle Downs Station track. The tenement formed part of the greater Bynoe Tantalite Project which included several other tenements held by Corporate Developments Pty Ltd of South Australia for tin and tantalite exploration. These tenements were included in an Option Agreement between Corporate Developments Pty Ltd and Julia Corporation Limited that was concluded on the 21st December 2001.

This report details work carried out by Julia Corporation Limited over SEL22833 in 2001.

2.0 SUMMARY AND CONCLUSIONS

A small RC drill program was completed on the Twin Hills pegmatite at SEL22833 in 2001. This program produced lower than expected tantalite grades over narrow pegmatite intersections. Hence no further work was recommended in 2001. Due to the withdrawal of Julia from the Option Agreement at Bynoe, SEL22833 was surrendered on the 11th March 2002.

3.0 TENURE

SEL22833 was applied for on the 6th November 2000 over 40 sub blocks in the name of Julia Gold Pty Ltd (wholly owned subsidiary of Julia Corporation Limited). The application covered NT Freehold land and was subsequently granted without any Native Title issues on the 31st July 2001.

4.0 GEOLOGY

The Bynoe Project covers the majority of the Bynoe Tin/Tantalite Field within the most north western extent of the Pine Creek Geosyncline. The tin/tantalite mineralisation is associated with Mid to Late Proterozoic pegmatite intrusions related to the Twin Sisters Granite of similar age which occurs immediately to the west and south-west.

The pegmatites have intruded Early Proterozoic metasediments consisting of interbedded shale, sandstone and conglomerates of the Burrell Creek Formation. These sedimentary units are variably metamorphosed to form quartz + mica schists \pm tourmaline and chlorite.

The pegmatites are extremely varied in their geometry however the majority form lenticular bodies that have intruded along foliations and bedding planes. These occur as narrow veins or dykes of up to 60 metres across and a kilometre in strike length. Sill like geometries and blind complex intrusions have also frequently been encountered in recent Julia exploration as well as previously documented work.

The pegmatites show fractional zoning during emplacement which effects the distribution of mineralisation. Generally but not always, the wall rocks are more mica rich with cores consisting of kaolinite rich zones (weathered feldspar) and sometimes barren milky quartz. Best grades, generally appear to be associated with the kaolinite rich zones and not the micaceous pegmatitic material.

Mineralisation consists of fine to very coarse grained tantalite, cassiterite and columbite. Specimens of up to 39kg have been recovered from previous exploration and mining in the area. These minerals are present in varied proportions from one body to the next and are also unevenly distributed throughout most of the pegmatites themselves. This erratic distribution of mineralisation is typical of pegmatite and poses some problems in delineation of ore as well as mining and processing.

SEL22833 is located immediately west of the Litchfield Park escarpment and consists mainly of flat, low lying pastoral grazing country. Outcrop is sparse and dominated by the Two Sisters Granite, quartz blows and pegmatite elluvials and dykes.

5.0 PREVIOUS INVESTIGATIONS

No documented exploration was located for the area however, numerous pits and excavations were evident on pegmatite elluvials beside the road within the tenement. These excavations may have been for road base or for the recovery of tin and tantalite. The Labelle pegmatite is located 3.5 kilometres to the west of SEL22833 whithin MCN5092. This pegmatite was discovered and assessed by Walton from 1986-89.

6.0 WORK COMPLETED

Julia Corporation Limited completed a data search in late 2000 after signing of a Heads Of Agreement with Corporate Developments Pty Ltd. Tenement applications were then lodged over 7 separate areas including SEL22833 in November 2000.

TM Landsat data was purchased, processed and imaged in Perth, WA. An example of this data set is shown in Figure 2.

Two rock chip samples were collected in April 2001 from the Twin Hills pegmatite which crops out beside the road at approximately 673 500mE 8 550 500mN (GDA94). The results of assaying are shown in Table ? below:

Table 1. - Rock Chip Sample Details for Twin Hills

Prospect	Sample No	Amg N	Amg E	Lith	Ta(ppm)	Sn(ppm)	Nb(ppm)	Lab	Lab No
Twin Hills	1101	8550500	673500	peg	156	6381	84.7	Genalysis	102337
Twin Hills	1102	8550500	673900	granite	1.5	21	11.8	Genalysis	102337

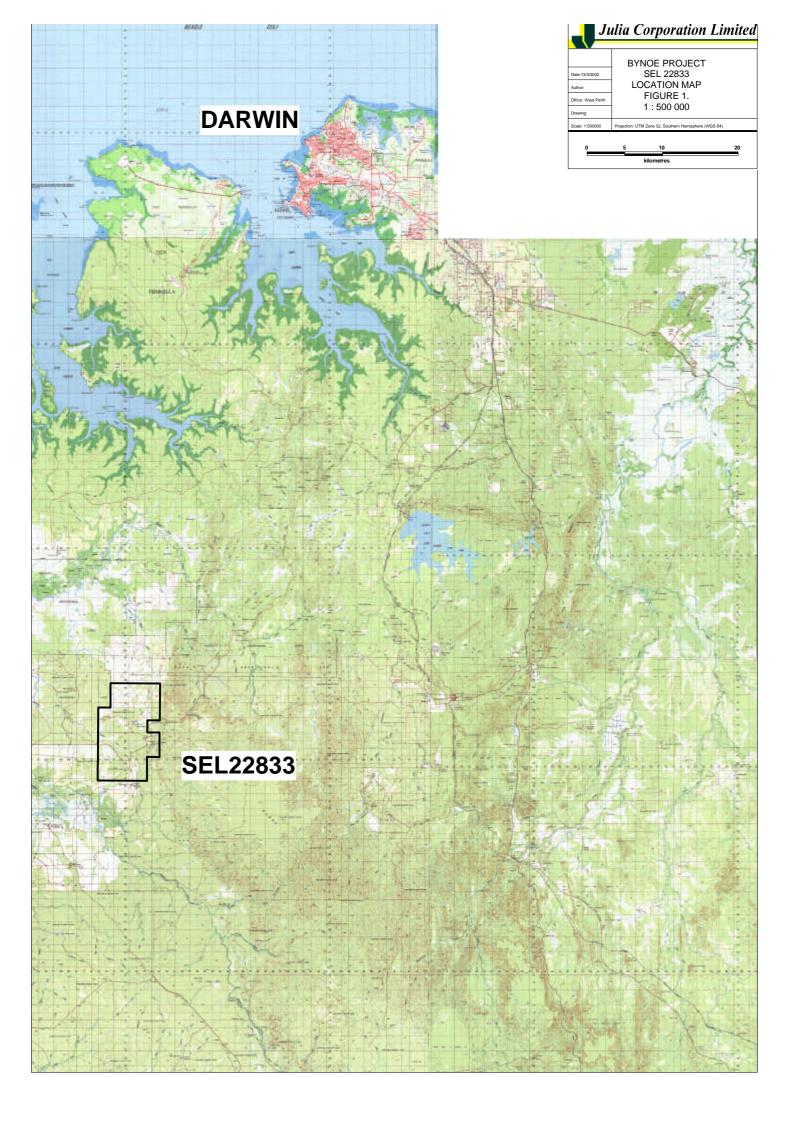


Figure 2. - TM Landsat Image for the whole of the Bynoe Project.

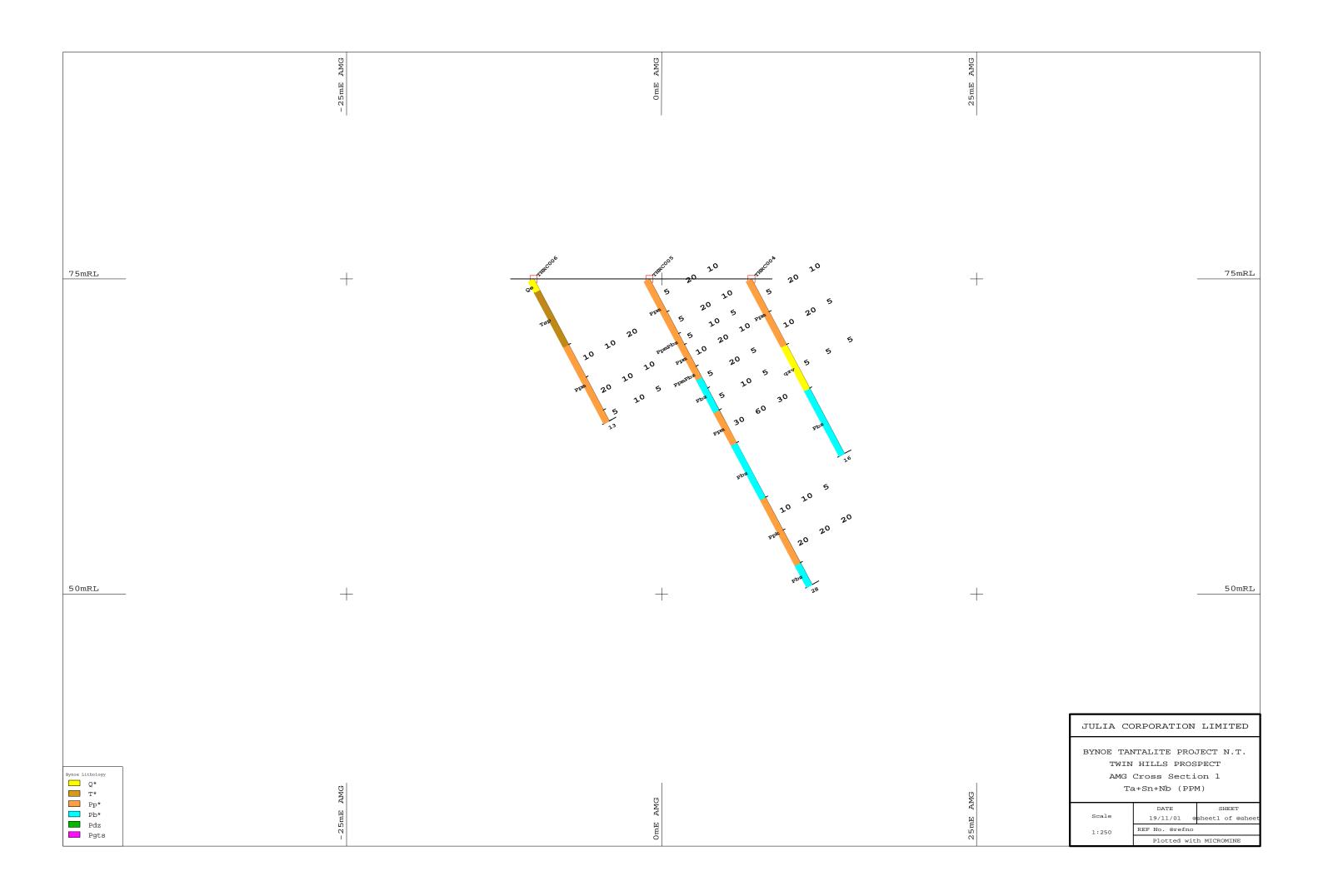
A small RC drill program was later completed on the Twin Hills pegmatite to get a better understanding of the extent and geometry of the pegmatite as well as it's tantalite grade and distribution.

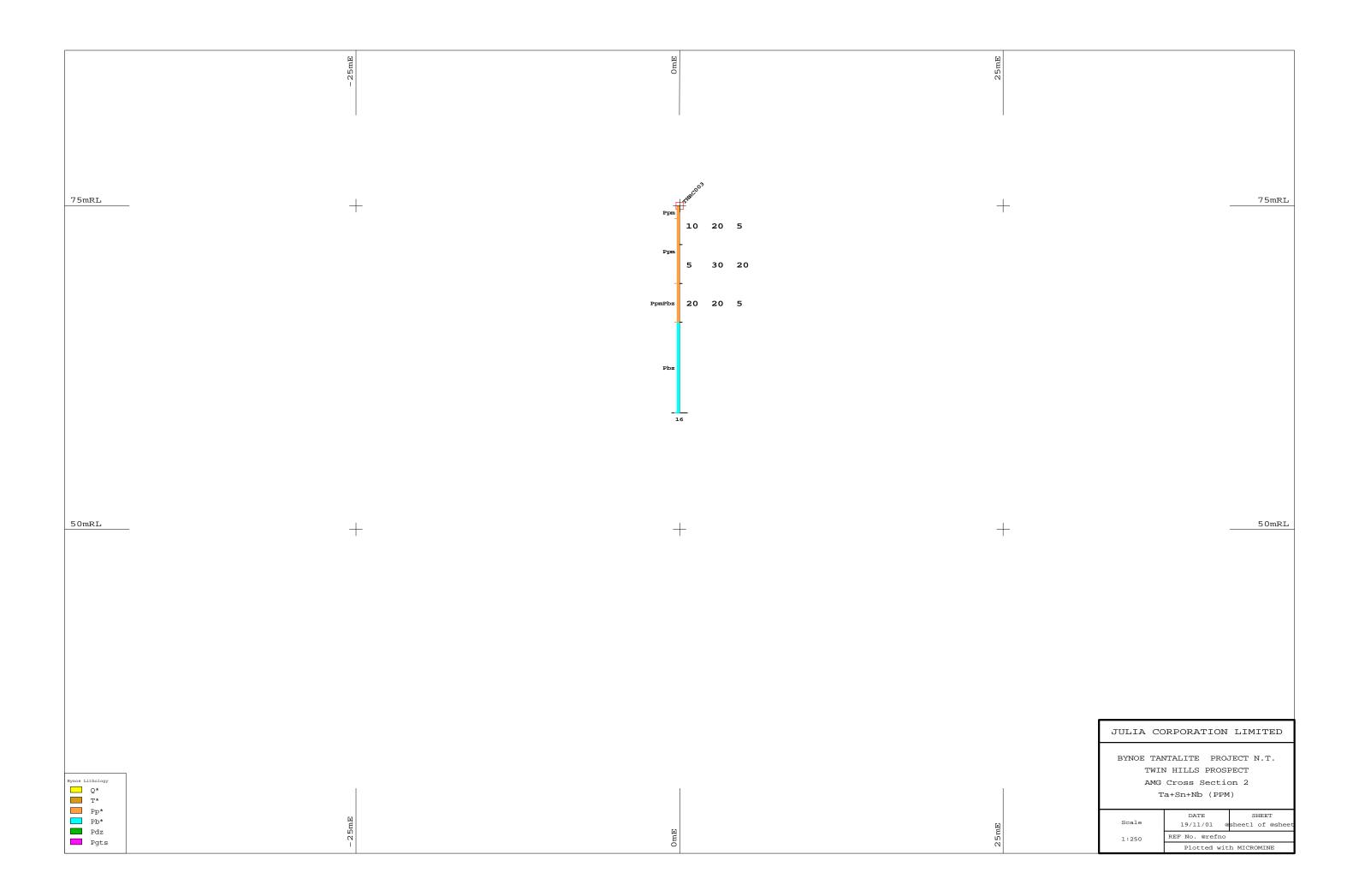
A total of 6 RC holes were drilled in November 2001 totalling 132 metres. Only narrow intersections of pegmatite of up to 10 meters were intersected in a series of parallel dykes dipping shallowly to the south west with a strike of roughly 280 to 300 degrees. A total of 23 composite samples varying in size from 1 to 4 metres were submitted for assay. Samples were sent to a preparation laboratory in Pine Creek where they were sorted then dried at 120 degrees for 12 hours. At that point the samples were roll crushed through a Jaques 10 x 8 Rolls Crusher. A one quarter sub-sample was split from the roll crushed product in the range of 800 to 1,400 grams. This sub-sample was milled to a nominal 106U in a Vertical Spindle Pulveriser. After roll mixing on a rubber mat, a 100 gram split was taken for assay. This was air-freighted to Ultratrace Laboratories in Perth for determination of Ta, Sn and Nb. Samples were given another mix after transport then approximately 1 gram of sample was fused with flux (12:22) and then analysed by XRF (10 ppm detection limits).

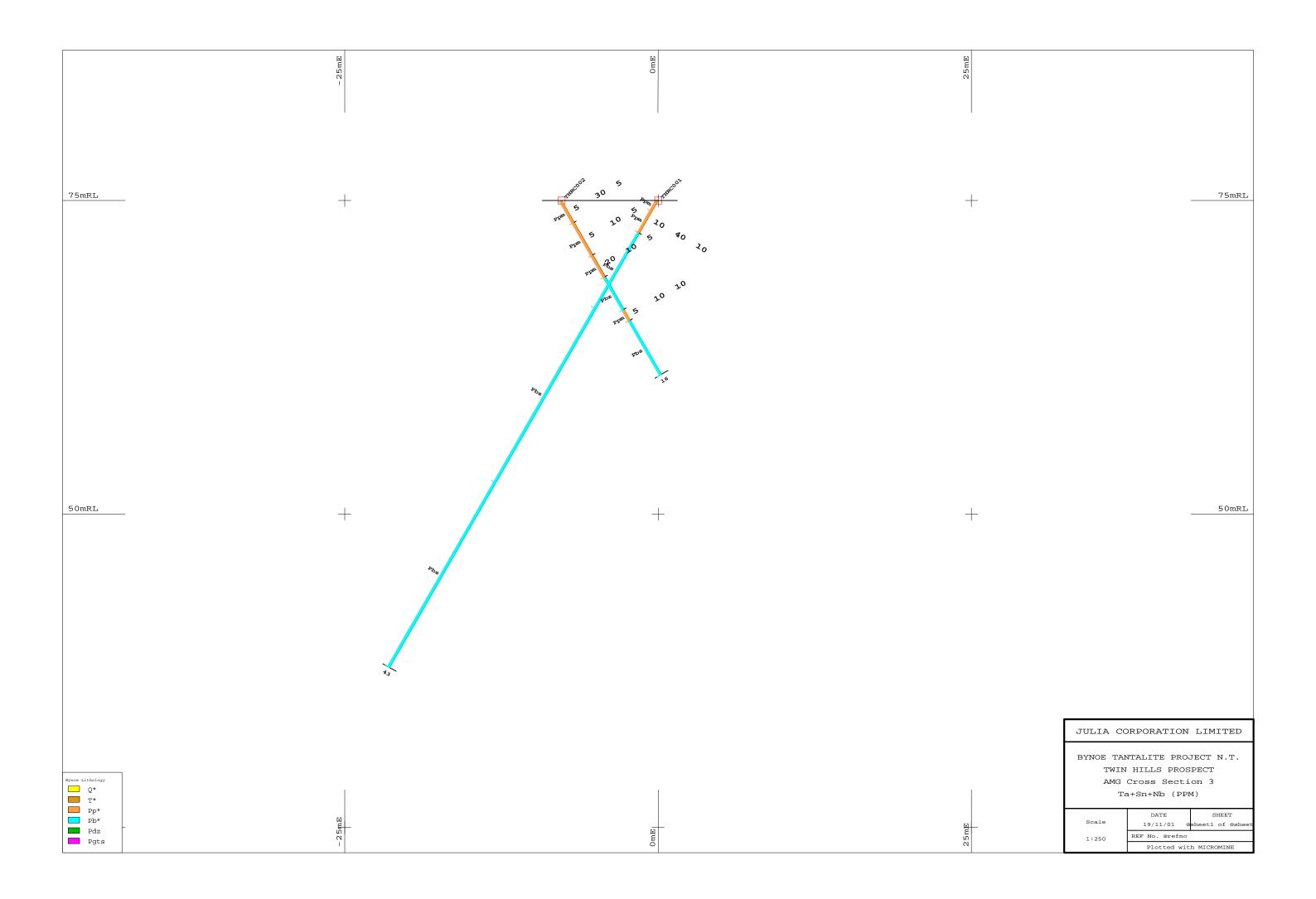
The results of the drilling were disappointing and no further work was recommended on the Twin Hills pegmatite.

A collar plan and set of drill cross sections are shown in Plans 1 to 4.

All digital data relating to this work are contained in Appendix 1.


7.0 EXPENDITURE


Table 2. below summarises all expenditure incurred on tenement SEL22833 by Julia Corporation Limited.


Table 2. - Expenditure Summary SEL22833

Food and Accommodation	\$	132.55
Drafting	\$	20.00
RC Drilling	\$	3,812.00
Geologist	\$	1,880.00
Management Staff	\$	1,410.00
Remote Sensing	\$	1,500.00
Tenement Maintenance	\$	921.36
Applications	\$	391.95
Rent	\$	400.00
Drill Assays	\$	914.08
TOTAL	\$ 1	11,381.94

5M4 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E E E E E C C C O C O	674850mE AMG	674875mE AMG	674900mE AMG	674925mE AMG	674950mE AMG	BWK HE HE S C C C C C C C C C C C C C C C C C C
8549875mN .	AMG	+	+	Anticool +	+	+	8549875mN AMG
8549850mN	AMG	+	+ +	+ Haracoo ²	+	+	8549850mN AMG
8549825mN	AMG	+ +	+ +		+	+	8549825mN AMG
Costean Costean Channel Sample Plotted with F	и 0 0 1 1	4825mE	BYNOE PROJECT NORTHERN TERRITORY	DATE SHEET Scale 19/11/@sheet1 of @sh 1:500 REF No. FILE @reffwoin Hills Plan			BYNOE TANTALITE PROJECT Northern Territory TWIN HILLS PROSPECT Plan View (AMG)

BYNOE GEOLOGICAL LEGEND

SHOWING APPROXIMATERANGE OF PREFERRED COLOURS

Qs

Alluvium

Aluvium, pegmatite components

All uvium, s and, gravels, soils

Residualsoils

Qe Qep

Qeq

Qes

Elluvial

Elluvial, pegmatite components

Elluvial, quartzrich

Elluvial, shale, sandstone, schist, clasts

Qd Qdc Qdf Qds

Duricrust

Calcrete

Ferricrete

Silcrete

Tlm

Tmz Tpal

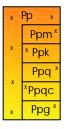
Tc

Laterite

Pisoliticlaterite

Manganeserichduricrust

Femottledclayzone(red,brown,yellow)

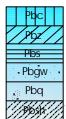

Pallidleachedclays(white,grey,cream)

Undifferentiated clays (saprolite or transported)

Saproliticclay(remnanttexture&minerals)
Saprock(transitional,recognizablerocktype)

PROTEROZOICROCKTYPES

Undifferentiatedpegmatite


Pegmatite, muscoviterich

Pegmatite,kaolinrich

Pegmatite,quartzrich

Pegmatite,quartzcore

Pegmatite, greisen

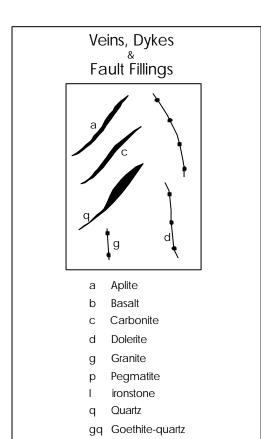
UndifferentiatedBurrelCreekFormation

Micaschist

Siltstone

Greywacke

Quartzite


Shale

Dolerite (ZamuDolerite)

Granite, adamellite, granodiorite, (TwoSistersGranite)

<u>Col</u>	<u>ours</u>
bla	— black
bl	blue
bkr	brickred
br	brown
bu	buff
cr	cream
gn	green
gy	grey
kh	khaki
mar	maroon
or	orange
pk	pink
pu	purple
rd	red
tan	tan
wh	white
у	yellow
Sha	<u>des</u>
pl	pale
It	light
dk	dark
leuc	leucratic
mel	melanocratic

1		Min	<u>erals</u>		, <u>Ī</u>
	act	actinolite	sch	scheelite	brec
	and	andalusite	SCO	scorodite	xtal
	ар	apatite	ser	sericite	xbed
	ару	arsenopyrite	sil	silica	fo
	az	azurite	sph	sphalerite	fr
	bar	barite	stib	stibnite	gl
	bt	biotite	tc	talc	gos
	bor	bornite	Ta ₂ O ₅	tantalite	grad
	calc	calcareous	tour	tourmaline	lam
	CC	calcite	trem	tremolite	mas
	Co3	carbonate	vg	visualgold	porp
	SnO_2	cassiderite	wolf	wolframite	pg
	сру	chalcopyrite			Z
	chal	chalcedony			shr
	chl	chlorite			sl
	epi	epidote			ves
	fe	iron			xen
	gal	galena			
	goeth	goethite			
	gr	graphite			<u>Granı</u>
	gt	garnet			cgr
	gyp	gypsum			fgr
	hem	haematite			mgr
	hbl	horneblende			
	kaol	kaolinite			
	lim	limonite			
	mg	magnesite			
	mt	magnetite			
	mal	malachite			
	mn	manganese			
	mus	muscovite			
	orth	orthoclase			
	phl	phlogopite			
	plag	plagioclase			
	kf	potassium feldspa	ar		
	ру	pyrite			
	prl	pyrolusite			_
	pyr	pyrrhotite			1

quartz

qz

<u>Textures</u> OtherQualifyers brecciated acic acicular vit vitreous crystalline aggregate VW veryweathered agg cossbedded altered/alteration wt watertable alt amarph amorphous foliated weathered fractured amyg amygdaloidal WS wetsample botryoidal glassy bot gossanous brittle brit graded cavity cav laminated cl clay cleavage massive cleav colloform coll porphyritic puggy d dampsample schistose dis disseminated dull shearing/sheared dull slatey fib fibrous vesicular gran granular xenolithic gravel gra incl inclusion ist interstitial nularity/ParticleSize i/p inpart lenticular coarsegrained len finegrained lineation lin mediumgrained magnetic mag metallic met moderately mod oxidising ОХ piso pisolitic plastic plas prismatic pris red reducing sand sa sed sediment silic silicified shearzone SZ silty slt stri striated tabular tab **OUALIFYERS** 11THMAY2001 vein

9	Symbols
	Geologicalboundary(fact) Geological boundary (interpreted)
	Fault(established)
	Fault(interpreted)
<u>60</u>	Strike&dip
	Foldaxis
3	Shearzone
*	Mineworkings
\	Prospect
,	Photolineament

BYNOE GEOLOGICAL LEGEND

Appendix 1.

Digital Data for Drill Collars, Drill Assays, Drill Geology, and Rock Chip Assays

DRILL COLLARS SEL22833 (2001)

HoleID	Prospect	Tenement	Grid	AmgN	AmgE	RI	Depth	AziAmg	Dip	Year	Month	Logged	DhType	Drilling_C
THRC001	Twin Hills	EL22833	AMG	8549872	674891	75	43	235	-60	2001	11	DVH	RC	Arinooka
THRC002	Twin Hills	EL22833	AMG	8549867	674885	75	16	55	-60	2001	11	DVH	RC	Arinooka
THRC003	Twin Hills	EL22833	AMG	8549850	674885	75	16	0	-90	2001	11	DVH	RC	Arinooka
THRC004	Twin Hills	EL22833	AMG	8549841	674897	75	16	245	-60	2001	11	DVH	RC	Arinooka
THRC005	Twin Hills	EL22833	AMG	8549833	674889	75	28	245	-60	2001	11	DVH	RC	Arinooka
THRC006	Twin Hills	EL22833	AMG	8549833	674880	75	13	245	-60	2001	11	DVH	RC	Arinooka

DRILL GEOLOGY SEL22833 (2001)

HoleID	Sample	From	То	Interval	Ta_av	Ta	Ta_dl	Sn_av	Sn	Sn_dl	Nb_av	Nb	Nb_dl	Th	Th_dl	U	U_dl La	ab	Lab_No	Sub_No	Method
THRC001	3504	0	3	3	10	10	10	40	40	10	10	10	10				UI	Itratrace	u31483	9404	XRF202 ICP302
THRC002	3505	0	2	2	5	5	10	30	30	10	5	5	10				UI	Itratrace	u31483	9404	XRF202 ICP302
THRC002	3506	2	5	3	5	5	10	10	10	10	5	5	10				UI	Itratrace	u31483	9404	XRF202 ICP302
THRC002	3507	5	7	2	20	20	10	10	10	10	5	5	10				UI	Itratrace	u31483	9404	XRF202 ICP302
THRC002	3508	10	11	1	5	5	10	10	10	10	10	10	10				UI	Itratrace	u31483	9404	XRF202 ICP302
THRC003	3509	0	3	3	10	10	10	20	20	10	5	5	10	3	0.05	2.05	0.05 UI	Itratrace	u31483	9404	XRF202 ICP302
THRC003	3510	3	6	3	5	5	10	30	30	10	20	20	10	4.55	0.05	3.25	0.05 UI	Itratrace	u31483	9404	XRF202 ICP302
THRC003	3511	6	9	3	20	20	10	20	20	10	5	5	10	12.5	0.05	5.15	0.05 UI	Itratrace	u31483	9404	XRF202 ICP302
THRC004	3512	0	3	3	5	5	10	20	20	10	10	10	10				UI	Itratrace	u31483	9404	XRF202 ICP302
THRC004	3513	3	6	3	10	10	10	20	20	10	5	5	10				UI	Itratrace	u31483	9404	XRF202 ICP302
THRC004	3514	6	10	4	5	5	10	5	5	10	5	5	10				UI	ltratrace	u31483	9404	XRF202 ICP302
THRC005	3515	0	3	3	5	5	10	20	20	10	10	10	10				UI	ltratrace	u31483	9404	XRF202 ICP302
THRC005	3516	3	5	2	5	5	10	20	20	10	10	10	10				UI	Itratrace	u31483	9404	XRF202 ICP302
THRC005	3517	5	6	1	5	5	10	10	10	10	5	5	10				UI	Itratrace	u31483	9404	XRF202 ICP302
THRC005	3518	6	8	2	10	10	10	20	20	10	10	10	10	2.4	0.05	1.3	0.05 UI	Itratrace	u31483	9404	XRF202 ICP302
THRC005	3519	8	10	2	5	5	10	20	20	10	5	5	10	17.4	0.05	3.75	0.05 UI	Itratrace	u31483	9404	XRF202 ICP302
THRC005	3520	10	12	2	5	5	10	10	10	10	5	5	10	23.7	0.05	4.2	0.05 UI	Itratrace	u31483	9404	XRF202 ICP302
THRC005	3521	12	15	3	30	30	10	60	60	10	30	30	10	10.4	0.05	3.1	0.05 UI	Itratrace	u31483	9404	XRF202 ICP302
THRC005	3522	20	23	3	10	10	10	10	10	10	5	5	10	3.4	0.05	1.5	0.05 UI	Itratrace	u31483	9404	XRF202 ICP302
THRC005	3523	23	26	3	20	20	10	20	20	10	20	20	10	3.6	0.05	1.9	0.05 UI	Itratrace	u31483	9404	XRF202 ICP302
THRC006	3524	6	9	3	10	10	10	10	10	10	20	20	10				UI	Itratrace	u31483	9404	XRF202 ICP302
THRC006	3525	9	12	3	20	20	10	10	10	10	10	10	10				UI	Itratrace	u31483	9404	XRF202 ICP302
THRC006	3526	12	13	1	5	5	10	10	10	10	5	5	10				UI	Itratrace	u31483	9404	XRF202 ICP302

DRILL GEOLOGY SEL22833 2001

HoleID	Prospect	From	То	Lithology
THRC001	Twin Hills	0	1	Ppm
THRC001	Twin Hills	1	3	Ppm
THRC001	Twin Hills	3	10	Pbs
THRC001	Twin Hills	10	26	Pbz
THRC001	Twin Hills	26	43	Pbz
THRC002	Twin Hills	0		Ppm
THRC002	Twin Hills	2	5	Ppm
THRC002	Twin Hills	5	7	Ppm
THRC002		7	10	Pbz
THRC002		10	11	Ppm
THRC002	Twin Hills	11	16	Pbz
THRC003		0	1	Ppm
THRC003	Twin Hills	1		Ppm
THRC003		6	9	PpmPbz
THRC003		9	16	Pbz
THRC004	Twin Hills	0	6	Ppm
THRC004		6	10	qzv
THRC004		10	16	Pbz
THRC005		0		Ppm
THRC005		5		PpmPbz
THRC005	Twin Hills	6	8	Ppm
	Twin Hills	8		PpmPbz
THRC005		9		Pbz
THRC005		12		Ppm
THRC005		15	20	Pbz
THRC005		20		Ppk
THRC005		26		Pbz
	Twin Hills	0	1	Qe
THRC006		1		Tsp
THRC006	Twin Hills	6	13	Ppm

ROCK CHIP SAMPLING SEL22833 2001

Area	Prospect	Sample	Туре	Grid	AmgN	AmgE	Lith	Ta(ppm)	Sn(ppm)	Nb(ppm)	Tenement	Year	Month	Day	Sampler	Lab	Lab No
Bynoe	Twin Hills	1101	rock	AMG	8550500	673500	peg	156	6381	84.7	EL22833	2001	4	15	DWM/DVH	Genalysis	102337
Bynoe	Twin Hills	1102	rock	AMG	8550500	673900	granite	1.5	21	11.8	EL22833	2001	4	15	DWM/DVH	Genalysis	102337