

TANAMI GOLD N.L.

EIGHTH

ANNUAL MINERAL REPORT

FOR YEAR ENDING 14 DECEMBER 2001

AND FINAL REPORT

FOR PERIOD 15 DECEMBER 1993 TO 14 DECEMBER 2001

EL 8164

WINNECKE

AUTHOR M KAVANAGH

FEBRUARY 2002

DISTRIBUTION:

DEPARTMENT OF BUSINESS, INDUSTRY, & RESOURCE DEVELOPMENT (1)
TANAMI GOLD NL (1)

File: j12ntdmAR1032001

CONTENTS

		CONTENTS	Dogo				
			Page				
1.0	Summ	ary	1				
2.0	Tenure	e	1				
3.0	Location	on and Access	2				
4.0	Geolog 4.1 4.2	gy	2				
5.0	5.1 5.2 5.3 5.4 5.5 5.6	ation Summary Exploration Prior to the Grant of EL 8164 Exploration by Roebuck and NFM on EL 8164 - Years 1 to 4 Exploration by Tanami Gold NL - 1998, Year-5 Exploration by Tanami Gold NL - 1999, Year-6 Exploration by Tanami Gold NL - 2000, Year-7 Exploration by Tanami Gold NL - 2001, Year-8	3 4 5				
6.0	Year-8	Exploration Expenditure					
7.0	Tenem	nent Relinquishment	6				
8.0	Rehab	ilitation	7				
9.0	Refere	nces and Annual Report Bibliography	8				
FIGURES							
Figure	1	Location Plan					
PLATE	ES						
Plate 1 Plate 2 Plate 3 Plate 5 Plate 5 Plate 7 Plate 8	2 3 4 5 5 7	Interpreted Geology Golden Goose RC Percussion Drilling Golden Goose Section 2060N Golden Goose Section 2115N Golden Goose Section 1900E Golden Goose Section 7419270mN (AMG) Golden Goose Section 433445mE (AMG) Exploration Index Plan Pre-Tanami Gold NL Exploration Tanami Gold NL Exploration 1998-2001	1:50,000 1:1,000 1:500 1:500 1:500 1:500 1:50,000 1:50,000				
APPE	NDICES						
Appen Appen Appen	dix 2	Drillhole Collar Logs Drillhole Assay Logs Drillhole Geology Logs					

1.0 SUMMARY

This report describes the exploration activity and results achieved on EL 8164 for the eighth year ending 14 December 2001 and summarises exploration during eight years of tenure to 14 December 2001. Tanami Gold N.L. (TGNL), on behalf of its wholly owned subsidiary Tanami Exploration NL (A.B.N 45 063 213 598), negotiated an option to purchase EL 8164 from Centralfield Minerals Pty Ltd (Centralfield) in October 1998. TGNL has carried out exploration programs on the tenement between October 1998 and November 2001.

Exploration completed by TGNL has included:

- Review of all previous exploration;
- Acquisition of Landsat TM/Spot imagery;
- Sampling and assaying of previously unsampled drill core;
- Surface sampling (three programs);
- RAB drilling of geochemical/geological target areas;
- Regional mapping compilation of the district;
- RC percussion drilling of the Golden Goose Prospect; and
- Rehabilitation of drill sites and sample disposal.

Exploration during the eighth year of tenure comprised the drilling of seven RC percussion drillholes for a total of 1,254 metres.

2.0 TENURE

EL 8164, Winnecke, (formerly called Rankins) was granted over an area of 100 graticular blocks to Roebuck (80%) and Centralfield (20%) on 15 December 1993. The area of the licence was reduced to 50 blocks on January 9 1996 and further reduced to 25 blocks on 15 December 1997. The current area remains at 25 blocks in accordance with a waiver of reduction granted on 9 December 1998 by the Department of Mines and Energy pursuant to section 28 of the Mining Act.

NFM negotiated and lodged a "Heads of Agreement" for a Joint Venture covering this tenement and the adjacent EL 9528, EL(A) 9529 and EL(A) 9774. Under the terms of this agreement, effective from 18 August 1995, NFM managed exploration on the properties and could earn a 70% equity in the Joint Venture by expending \$500,000 on exploration of the properties within a four year period.

NFM notified Roebuck and Centralfield on 9 September 1997 that expenditure of \$500,000 had been exceeded, confirming that NFM was entitled to a 70% equity in the Joint Venture and triggering the commencement of Joint Venture operations (requiring Roebuck and Centralfield to elect whether to contribute to the Joint Venture or dilute). Subsequently, in February 1998, both NFM and Roebuck withdrew from the Joint Venture, and EL 8164 was transferred to Centralfield.

Since executing an option agreement to purchase EL 8164 from Centralfield on 12 October 1998, TGNL has managed exploration on the tenement. A sale agreement covering EL 8164, EL 9528, EL(A) 9529 and EL(A) 9774 was executed in May 1999. Transfers of Centralfield's interest to Tanami Exploration NL in respect of EL 8164 and EL 9528 were registered on 23 June 1999.

3.0 LOCATION AND ACCESS

EL 8164 is located approximately 70 kilometres northeast of Alice Springs (Fig. 1) on the Alice Springs 1:250 000 map sheet (SF53-14) and the Laughlen 1:100 000 map sheet (5751). Access from Alice Springs is north via the Stuart Highway and then east via the unsealed road leading to "The Garden", "Ambalindum" and "Claraville" Stations, and The Arltunga Goldfield. This road passes to the north of the tenement area, which can be conveniently accessed via a station track leading southwest from "The Garden" Station.

4.0 GEOLOGY

Regional and prospect geology has been described in detail in previous Annual Reports.

4.1 Regional Geology

The Winnecke Goldfield is located in the southeast of the Strangways Range Region, within the eastern section of the Arunta Block. The Strangways Range Region (Shaw and Langworthy, 1984) consists of mainly Proterozoic crystalline and metamorphic rocks of the Arunta Block unconformably overlain by strongly folded outliers of the Heavitree Quartzite and Bitter Springs Formation of Adelaidean age.

4.2 EL 8164 Geology

EL 8164 covers an area of intense and complex shearing. The area is dominated by wide, laterally continuous east-west trending shear zones. These zones swing to the north at the western end of the licence, influenced by the Pinnacles Fault and swing to the south at the eastern part of the licence when merging with the Woolanga Lineament. These shears are responsible for vertically juxtaposing the remnant, weakly sheared metamorphic blocks, with a north over south movement.

The Winnecke shear zone is composed of mylonitic Heavitree Quartzite and sheared schistose basement rocks immediately to the north. To the south are biotite gneisses of middle amphibolite facies.

A portion of Dr Puquan Ding's regional geology compilation of the Harts Range District is presented as Plate 1 for the Winnecke area. The target rocks within the tenement are annotated Pzr and informally termed the Winnecke Shear Zone (WSZ) by the Company.

5.0 EXPLORATION SUMMARY

A detailed review of exploration carried out over EL 8164 is given in the November 1999 submission to the Department for the extension term of the licence for years seven and eight. This information is summarised below. During year seven, exploration was limited to a surface sampling program as detailed in the Annual Report. During year eight, the Company completed a seven hole RC percussion drill program at the Golden Goose Prospect.

5.1 Exploration Prior to the Grant of EL 8164

Prospecting and small scale mining has been undertaken on the Winnecke Goldfield intermittently since the discovery of gold near Winnecke's Depot in 1902. Exploration in the modern era has not been extensive. Most work was undertaken by companies in joint venture with Range Resources Limited on former EL 4326 between 1984 and 1987. Australian Anglo-American Limited (AAL) conducted exploration in the vicinity of old workings at Golden Goose (Golden Goose, Junction and Coorong Prospects) and Russell's Gully (Ciccone, Big Gun and Patsy's No.3 and No. 5 workings) as described in the Modat database.

AAL undertook geological mapping and soil sampling in the vicinity of the old workings, and mapped and sampled accessible workings. The sampling of old workings returned numerous anomalous gold assays, with a best intersection of 18 metres @ 3.76g/t Au from a cross-cut in the upper part of the Golden Goose Mine.

In 1984, AAL completed four shallow diamond drillholes at the Golden Goose and one diamond drillhole at Coorong (Pigott, 1985). Results were disappointing (although only 60% of the core was sampled)

Following the withdrawal of AAL from the joint venture, MacMahon Construction Pty Ltd undertook exploration at the Golden Goose, completing 18 RC percussion drillholes and 13 costeans. Results were generally disappointing. The drilling returned a maximum assay of 1 metre @ 5.5g/t Au. The best results from the costean program came from Costean 7 namely, 7metres @ 2.28g/t Au and 3 metres @ 5.80g/t Au.

CRA Exploration undertook exploration in the Sliding Rock Well – Sloans Gully area at the western end of the Winnecke Goldfield. Exploration included:

- helicopter reconnaissance sampling;
- grab sampling, rock chip sampling and Gemco auger sampling at Sloans Gully;
- diamond drilling; and
- an airborne magnetic/radiometric survey.

The main target was a shear zone in Heavitree Quartzite. The various forms of surface sampling returned a best assay of 1.0g/t Au. Core drilling returned best intersections of 5 metres @ 2.58g/t Au and 2.65 metres @ 2.95g/t Au.

5.2 Exploration by Roebuck and NFM on EL 8164 - Years 1 to 4

Exploration undertaken on EL 8164 by Roebuck and NFM has been previously reported by Warne (1994), Lovett and Beckwith (1995), Lovett (1997) and Longmire and Adrichem (1997). This work is summarised below.

Roebuck undertook orientation and geochemical sampling in 1993–1994, and examined known prospects and old workings.

NFM undertook first pass regional surface geochemical sampling programs in 1996 – 1997, including stream sediment sampling (SSS) as the main regional tool and composite rock chip sampling (CRC) in areas of outcrop in the vicinity of old workings and in areas of distinct alteration.

Of the 997 SSS samples collected, 105 samples (10.5%) returned assays \geq 10ppb Au, 27 samples (2.7%) \geq 100ppb Au, and 2 samples >1000ppb Au (2.10ppm and 1.65ppm). Anomalous values were clearly clustered in several groups.

Of the total of 1,121 CRC samples collected, 20 (1.8%) returned values > 10g/t Au, 61 (5%) $\geq 1.0g/t$ Au, 134 (12%) ≥ 100 ppb Au, and 306 (27%) ≥ 10 ppb Au. NFM noted that many of the high grade samples were taken from old workings.

The combined stream sediment and composite rock chip samples would appear to be indicative of a major gold bearing system within which it is likely that economic deposits could occur. The five highest CRC assays ranged from 320g/t Au down to 67.9g/t Au. The CRC sample results support the anomalous zones defined by stream sediment sampling.

NFM also completed a RAB drill program comprising 114 holes for 5,067 metres at several prospects. Apart from 5 traverses of holes in the vicinity of the Golden Goose workings, the holes targeted specific rockchip anomalies from or adjacent to old workings.

The overall results were disappointing with the best intersection 3 metres @ 23.8g/t Au being returned from a hole 200 metres west of the Golden Goose. Other anomalous results included 1 metre @ 14.2g/t at Ringneck; 3 metres @ 1.25g/t, 100 metres east of Coorong; and 2 metres @ 0.91g/t at Golden Eagle.

Costeans were excavated at the Raven, Ringneck and Bee Eater Prospects. At Raven the costeans were designed to test CRC anomalies. Costean RAC001 returned 2m @ 2.88g/t Au and Costean RAC002 returned 47m @ 42ppb Au. At Ringneck the three costeans were designed to test composite rock chip anomalies. The best results were 17 metres @ 119ppb from RIC001 and 27 metres @ 77ppb from RIC002. At Bee Eater results from the 11 costeans were generally very low. Best results were 11 metres @ 129ppb Au from 44 to 55 metres in BEC002 and 3 metres @ 133ppb Au from 47 to 50 metres in BEC003.

5.3 Exploration by Tanami Gold NL - 1998, Year-5

Following a review of previous exploration data, TGNL concluded an option agreement with Centralfield on 12 October 1998 and commenced field work soon after. By early December selected portions of AAL drill core from the Golden Goose and Coorong 1984 diamond drilling program had been sampled and assayed, and rock chip sampling and first pass RAB drilling completed on selected targets on EL 8164.

Following inspection of the diamond core at the Northern Territory Department of Mines and Energy (NTDME) Core Library in Alice Springs, selected intervals of previously unsampled core from three holes (GG01, GG02, and GG05) were cut and sampled. Samples were analysed for gold by Australian Laboratory Services (ALS) in Alice Springs. These samples returned low gold assays with a maximum value of 34 ppb Au.

Rock chip samples were collected from old workings and prospecting pits, quartz veins and selected lithologies.

From a total of 57 samples collected, 9 samples returned gold assays greater than 1.0g/t Au (maximum: 6.97g/t Au). The results confirmed the presence of significant but erratic gold values within old workings and prospecting pits.

In November 1998 a RAB drill program totalling 84 holes for a total of 2,072 metres was completed. The program was designed to test several potential targets in accessible areas and to gather geological information from the oxide zone in these areas. The target areas included:

- gold anomaly 200m west of Golden Goose (3m at 23.8g/t returned from previous RAB drilling);
- carbonate alteration zone and transgressive quartz vein systems surrounding the Golden Goose;
- old workings not previously drill tested, in the vicinity of the Golden Goose (Golden Goose North and Battery Hill);
- old workings at Golden Eagle previously tested by limited RAB drilling;
- old workings at Webb's Gully not previously drill tested; and
- old workings at Old Times (Bee Eater Prospect) not previously drill tested.

The results were below expectations with a best assay of 3 metres @ 1.6 g/t. There were no other assays above 1.0 g/t Au.

5.4 Exploration by Tanami Gold NL - 1999, Year-6

All available NTDME aeromagnetic data was reprocessed and used to produce a 1:1 000 000 scale compilation of the Tanami-Arunta area. The compilation includes the Alice Springs 1:250 000 Sheet and the Laughlen 1:100 000 Sheet which cover the tenement area.

The Company also acquired both Spot and Landsat TM digital data for the tenement as part of a larger study area covering all of the Company's tenements on Laughlen, Riddoch and Quartz 1:100 000 map areas.

A brief surface reconnaissance sampling program was undertaken over the WSZ on EL 8164 and adjacent EL 9528 during December 1999. Rock chip, lag and stream sediment samples were collected. The primary aim of the reconnaissance program was to assess those parts of the WSZ not previously visited by TGNL personnel. Hence, most of the samples were collected on EL 9528. Only 26 samples were collected on EL 8164. The work was reported in detail by Mayer (2000). Ten samples returned gold assays in excess of 10 parts per billion (maximum 112ppb).

5.5 Exploration by Tanami Gold NL - 2000, Year-7

The Company decided to defer the planned RAB drilling program on EL 8164. The main reason for the deferral was logistical. An extended wet season, culminating in extensive rains and floods associated with the tropical low formed by former cyclone Rosita, substantially delayed drilling on all TGNL project areas in central Australia.

Work eventually commenced on the WA Tanami properties and progressively moved eastwards over the NT Tanami and Arunta properties. The exploration crew arrived in Alice Springs in early December and it was decided that with the impending wet season it would be unwise to commence drilling on EL 8164.

Field work undertaken during December 2000 concentrated on surface assessment of the shear zone and drill target areas within EL 8164. The target areas were selected on the basis of geological interpretation of Spot/Landsat images in conjunction with a reassessment of geochemical anomalism generated by previous sampling programs.

The aims of the field program were to:

- · determine the best drill access to the target areas;
- determine the amount of access and site preparation required ahead of drilling; and
- collect appropriate surface samples to help in assessment of the target areas.

Sampling completed during December included composite rock chip sampling (104 samples), soil sampling (54 samples), +2mm lag sampling (3 samples), and stream sediment samples (6 samples). Gold assays were disappointing, with only a few weakly anomalous values returned from composite rock chip and soil samples (maximum values 28ppb and 12ppb, respectively). No gold was detected in lag or stream sediment samples. Arsenic values were generally low with the exception of a single soil sample (60ppm) and a cluster of composite rock chip samples (maximum 240ppm) in quartz-haematite veins in sheared biotite-quartz schist and gneiss.

Copper anomalism (maximum 5900ppm) is associated with this cluster of arsenic-anomalous rock chip samples. An additional anomalous copper assay (5800ppm) was returned from a composite rock chip sample of mullock from an old well. The mullock consisted of partly oxidised to fresh amphibolite with quartz-calc-silicate (epidote) veins and minor malachite. This sample also returned the highest lead value (535ppm).

5.6 Exploration by Tanami Gold NL - 2001, Year-8

Previous drilling vertically below the Golden Goose workings had failed to return significant intercepts to ± 75 metres vertical depth. In March 2001 Dr Puquan Ding and Dr Qi Deng mapped the surface outcrops and shallow workings at Golden Goose with a view to demonstrating a possible plunge or preferred direction to the mineralised quartz vein system.

The interpretation derived from the mapping program was of a 'structural corridor' trending 50 to 60° T and plunging 40°-60° to the northeast. An RC percussion drill program totalling 7 holes for 1,254 metres was drilled in May 2001 to test this interpretation.

Extensive zones of intensive quartz veining were intersected marking the structural features mapped by Dr Ding and Dr Deng. No significant gold values were returned from the assaying of 316 samples.

A plan showing the disposition of the drill holes relative to the workings is given as Plate 2. The drill sections are presented as Plates 3 to 7. Drill hole collar logs, assay logs and geology logs are presented as Appendices 1 to 3 respectively.

The drill samples were assayed by Australia Laboratory Services in Alice Springs. Gold analysis was by atomic absorption method PM203 with a detection limit of 20 ppb. Arsenic analysis was carried out by the G102 method with a detection limit of 20 ppm.

6.0 YEAR-8 EXPLORATION EXPENDITURE

Exploration expenditure during the year to 14 December 2001 is as follows:

Salaries/wages	48,842
Contract geologists	1,300
Drilling: RC Percussion	66,060
Assays	7,528
Aeromagnetic survey: data acquisition & interpretation	1,936
Camp/field supplies	8,653
Travel/accommodation	11,006
Computing/drafting	6,552
Freight	553
Vehicles/fuel	8,041
Administration/overheads	16,220
	\$176,691

7.0 TENEMENT RELINQUISHMENT

Exploration carried out by North Flinders during the first four years of tenure (see Plate 8) failed to return any significant gold values from drill programs.

Regional to semi-detailed surface geochemical sampling and limited drilling by Tanami Gold (see Plate 9) failed to delineate any further zones of interest outside the areas worked by North Flinders. The Company considers that the tenement has been adequately tested and accordingly have relinquished the ground.

8.0 REHABILITATION

North Flinders Mines Limited completed a rehabilitation program by back-filling all trenches and by ripping drill sites with the accompanying dispersal of RAB drill cuttings.

Tanami Gold has removed all RC percussion sample bags from the site dumping them down an abandoned mine shaft at the Golden Goose workings. The owner of the Gardens Station has been contracted to rip the drill sites at the Golden Goose and to remove all PVC collar pipes from site. This program will also clean-up the drill collars and sites left by the previous tenement holders.

9.0 REFERENCES AND ANNUAL REPORT BIBLIOGRAPHY

- **Freytag, I.B., 1994.** *EL8164 Rankins N.T. Review of past work and Exploration Opportunities,* Roebuck Resources NL unpublished report.
- **Longmire, R.A. and Adrichem, S.M., 1997.** Fourth Annual Report for EL8164 (Rankins) for the Year to 14 December 1997, Normandy NFM Limited unpublished report.
- **Longmire, R.A. and Adrichem, S.M., 1998.** Second Relinquishment Report for EL8164 (Rankins) (15/12/1993 14/12/1997), Normandy NFM Limited unpublished report.
- Lovett, D.R. and Beckwith, A.F., 1995. Supplementary Annual Report for EL8164 (Rankin) for the Period to December 1995, North Flinders Mines Limited unpublished report.
- Mayer, T.E., 1999. EL8164 Annual Report for period ending 14 December 1998.
- Mayer, T.E., 2000. EL8164 Annual Report for period ending 14 December 1999.
- Mayer, T.E., 2001. EL8164 Annual Report for period ending 14 December 2000.
- **Lovett, D.R., 1997.** Annual Report for EL8164 (Rankin) for the Year to 14 December 1996, North Flinders Mines Limited unpublished report.
- **Pigott, G.F., 1985.** EL4326 Winnecke Annual Report to the NTDME for the Period Ending 4 September 1985, Australian Anglo American Limited unpublished report.
- Shaw, R.D. and Langworthy, A.P., 1984. 1:100 000 Geological Map Commentary, Strangways Range region, Northern Territory, Bur. Miner. Resour. Geol. Geophys. Aust.
- Warne, S.B., 1994. Rankins, N.T. EL8164 Reconnaissance Exploration Report, June 1994, Roebuck Resources NL unpublished report.
- Warne, S.B., 1996. Rankins, N.T. EL8164 First Relinquishment Report, December 1995, Roebuck Resources NL unpublished report.

APPENDIX 1
DRILLHOLE COLLAR LOGS

Logs.xls
=
<u>m</u>
ᅙ
Ü
Ω.
$\overline{\mathbf{c}}$
Ř
$\overline{}$
×
7
ũ
ᇫ
Q
4

K	TANAMI GOLD NL 2001 ANNUAL REF	'ANAMI GOLD NL :001 ANNUAL REPORT	RT			RCF CO	RCP DRILLING COLLAR LOGS	ING GS	i i		>	VINNECKE EL 8164
Hole	AMG(84)	MG(84) Zone 52	Local	Local Grid	AHD	AMG	Local	Dip	Depth	Tenement	Date	Geologist
Number	Easting	Northing	Easting	Northing	귙	Azimuth	Azimuth		(EOH)	Number		
RCP001	433510	7419390	1936.4	2062.2	747	315	270	ω	196	EL8164	02/05/2001	TEM
RCP002	433524	7419377	1955.5	2062.9	746	315	270	09-	178	EL8164	04/05/2001	æ
RCP003	433561	7419409	1959.0	2111.7	763	315	270	09-	238	EL8164	05/05/2001	OB OB
RCP004	433476	7419507	1829.6	2120.9	755	135	8	09-	135	EL8164	07/05/2001	ď
RCP005	433520	7419452	1899.6	2113.1	751	225	180	09	149	EL8164	09/05/2001	9
RCP006	433533	7419263	2042.4	1988.7	750	290	245	09-	201	EL8164	11/05/2001	å
RCP007	433447	7419430	1863.5	2046.0	753	180	135	9	148	EL8164	01/05/2001	σp

Ą.

APPENDIX 2

DRILLHOLE ASSAY LOGS

RCP DRILLING ASSAY LOGS

WINNECKE EL 8164

62.00	LOUI AITH	JAL INE! O!	` '	•				
Hole Number	Sample Number	Deptt From	ı (m) To	Au ppm Ave	Au ppm	Au ppm rpt1	As ppm	Medium
						ipti		
RCP001	C0041	0	4	0.02	0.02		<20	T/R
RCP001	C0042	4	8	0.14	0.13	0.14	<20	R
RCP001	C0043	8	12	0.02	0.02		<20	R
RCP001	C0044	12	16	0	<0.02		<20	R
RCP001	C0045	16	20	0	<0.02	<0.02	<20	R
RCP001	C0046	20	24	0	<0.02		<20	R
RCP001	C0047	24	28	0	<0.02		<20	R
RCP001	C0048	28	32	0	<0.02		<20	R
RCP001	C0049	32	36	0	<0.02		<20	R
RCP001	C0050	36	40	0	<0.02		<20	R
RCP001	C0051	40	44	0	<0.02		<20	R
RCP001	C0052	44	48	0	<0.02		<20	R
RCP001	C0053	48	52	0	<0.02		<20	R
RCP001	C0054	52	56	0	<0.02		<20	R
RCP001	C0055	56	60	0	<0.02		<20	R
RCP001	C0056	60	64	0.03	0.03		<20	R
RCP001	C0057	64	68	0	<0.02		<20	R
RCP001	C0058	68	72	0	<0.02	<0.02	<20	R
RCP001	C0059	72	76	0	<0.02		<20	R
RCP001	C0060	76	80	0.02	0.02		<20	R
RCP001	C0061	80	84	0	<0.02		<20	R
RCP001	C0062	84	88	0	<0.02		<20	R
RCP001	C0063	88	92	0	<0.02		30	R
RCP001	C0064	92	96	0	<0.02		<20	R
RCP001	C0065	96	100	0	<0.02	<0.02	<20	R
RCP001	C0066	100	104	0	<0.02		<20	R
RCP001	C0067	104	108	0	<0.02		<20	R
RCP001	C0068	108	112	0	<0.02		<20	R
RCP001	C0069	112	116	0	<0.02		<20	R
RCP001	C0070	116	120	0	<0.02		<20	R
RCP001	C0071	120	124	0	<0.02		<20	R
RCP001	C0072	124	128	0	<0.02		<20	R
RCP001	C0073	128	132	0	<0.02		<20	R
RCP001	C0074	132	136	0	<0.02		<20	R
RCP001	C0075	136	140	0	<0.02	<0.02	<20	R
RCP001	C0076	140	144	0	<0.02		<20	R
RCP001	C0077	144	148	0	<0.02		<20	R
RCP001	C0078	148	152	0	<0.02		<20	R
RCP001	C0079	152	156	0	<0.02		<20	R
RCP001	C0080	156	160	0	<0.02		<20	R
RCP001	C0081	160	164	0	<0.02		<20	R
RCP001	C0082	164	168	0	<0.02		30	R
RCP001	C0083	168	172	0	<0.02		40	R
RCP001	C0084	172	176	Ö	<0.02		20	R
RCP001	C0085	176	180	0	<0.02		<20	R
RCP001	C0086	180	184	0	<0.02	<0.02	<20	R
RCP001	C0087	184	188	0	<0.02	.0.02	<20	R
RCP001		188	192	0	<0.02		20	R
	C0088	192	196	0	<0.02		30	R
RCP001	C0089			0	<0.02		<20	T/R
RCP002	C0090	0	4	0	<0.02		<20	R
RCP002	C0091	4	8		<0.02	<0.02	<20	R
RCP002	C0092	8	12	0		~0.02		R
RCP002	C0093	12	16	0	<0.02		<20	
RCP002	C0094	16	20	0	<0.02		<20 <30	R
RCP002	C0095	20	24	0	<0.02		<20 <20	R
RCP002	C0096	24	28	0	<0.02		<20	R
RCP002	C0097	28	32	0	<0.02		<20	R
RCP002	C0098	32	36	0	<0.02		20	R
RCP002	C0099	36	40	0	<0.02		<20	R
RCP002	C0100	40	44	0	<0.02	<0.02	<20	R
RCP002	C0101	44	48	0	<0.02		<20	R
RCP002	C0102	48	52	0.02	0.02		<20	R
RCP002	C0103	52	56	0	<0.02		<20	R
V D D C	MIDIVA DAD	A 1	- I -					OF 4 OF 0

APPENDIX 2 - RCP Assay Logs.xls

PAGE 1 OF 6

RCP DRILLING ASSAY LOGS

				-		. •		
Hole	Sample	Dept	h (m)	Au ppm	Au ppm	Au ppm	As	Medium
Number	Number	From	То	Ave		rpt1	ppm	
DODOO2	00104	5.0	60	•	<0.02		-20	В
RCP002	C0104	56	60	0	<0.02 <0.02		<20 <20	R
RCP002	C0105	60	64	0			<20	R
RCP002	C0106	64	68	0	<0.02		<20	R
RCP002	C0107	68	72	0	<0.02		<20	R
RCP002	C0108	72	76	0	<0.02		<20	R
RCP002	C0109	76	80	0	<0.02		<20	R
RCP002	C0110	80	84	0	<0.02		20	R
RCP002	C0111	84	88	0	<0.02		<20	R
RCP002	C0112	88	92	0	<0.02		<20	R
RCP002	C0113	92	96	0	<0.02		<20	R
RCP002	C0114	96	100	0	<0.02	<0.02	20	R
RCP002	C0115	100	104	0	<0.02		<20	R
RCP002	C0116	104	108	0	<0.02		<20	R
RCP002	C0117	108	112	0	<0.02		<20	R
RCP002	C0118	112	116	0	<0.02	.0.00	<20	R
RCP002	C0119	116	120	0	<0.02	<0.02	<20	R
RCP002	C0120	120	124	0	<0.02		<20	R
RCP002	C0121	124	128	0	<0.02		20	R
RCP002	C0122	128	132	0	<0.02		<20	R
RCP002	C0123	132	136	0	<0.02		<20	R
RCP002	C0124	136	140	0	<0.02		<20	R
RCP002	C0125	140	144	0	<0.02		<20	R
RCP002	C0126	144	148	0	<0.02		<20	R
RCP002	C0127	148	152	0	<0.02	<0.02	<20	R
RCP002	C0128	152	156	0	<0.02		50	R
RCP002	C0129	156	160	0	<0.02		20	R
		160	164	0	<0.02		70	R
RCP002	C0130							
RCP002	C0131	164	168	0	<0.02		30	R
RCP002	C0132	168	172	0	<0.02		<20	R
RCP002	C0133	172	176	0	<0.02		<20	R
RCP002	C0134	176	178	0	<0.02		20	R
RCP003	C0135	0	4	0	<0.02	<0.02	<20	R/T
RCP003	C0136	4	8	0	<0.02		<20	R
RCP003	C0137	8	12	0	<0.02		20	R
RCP003	C0138	12	16	0	<0.02		<20	R
RCP003	C0139	16	20	0	<0.02		20	R
RCP003	C0140	20	24	0	<0.02		<20	R
RCP003	C0141	24	28	0	<0.02		<20	R
RCP003	C0142	28	32	0	<0.02		<20	R
		32	36		<0.02		<20	R
RCP003	C0143			0				
RCP003	C0144	36	40	0	<0.02		<20	R
RCP003	C0145	40	44	0	<0.02		<20	R
RCP003	C0146	44	48	0	<0.02		20	R
RCP003	C0147	48	52	0	<0.02		<20	R
RCP003	C0148	52	56	0	<0.02		<20	R
RCP003	C0149	56	60	0	<0.02	<0.02	20	R
RCP003	C0150	60	64	0	<0.02		<20	R
RCP003	C0151	64	68	0	<0.02		<20	R
RCP003	C0152	68	72	0.02	0.02		20	R
RCP003	C0153	72	76	0	<0.02		20	R
RCP003	C0154	76	80	0	<0.02		<20	R
RCP003	C0155	80	84	0	<0.02		<20	R
								R
RCP003	C0156	84	88	0	<0.02		<20 20	
RCP003	C0157	88	92	0	<0.02		20	R
RCP003	C0158	92	96	0	<0.02		<20	R
RCP003	C0159	96	100	0	<0.02	<0.02	<20	R
RCP003	C0160	100	104	0	<0.02		<20	Ŗ
RCP003	C0161	104	108	0	<0.02		<20	R
RCP003	C0162	108	112	0	<0.02		<20	R
RCP003	C0163	112	116	0	<0.02		<20	R
RCP003	C0164	116	120	0	<0.02		<20	R
RCP003	C0165	120	124	0	<0.02		<20	R
RCP003	C0166	124	128	ō	<0.02		<20	R
	NDIV 2 DCD			ū	V.VE			

RCP DRILLING ASSAY LOGS

WINNECKE EL 8164

	LOUI AITIN	JAL ILLI O	1	•	OUT LOC			
Hole	Sample Number	Depti	h (m) To	Au ppm Ave	Au ppm	Au ppm	As	Medium
Number		From		Ave		rpt1	ppm	
RCP003	C0167	128	132	0	<0.02		<20	R
RCP003	C0168	132	136	0	<0.02		<20	R
RCP003	C0169	136	140	0	<0.02	<0.02	<20	R
RCP003	C0170	140	144	0	<0.02		<20	R
RCP003	C0171	144	148	0	<0.02		<20	R
RCP003	C0172	148	152	0	<0.02		20	R
RCP003	C0173	152	156	0	<0.02		<20	R
RCP003	C0174	156	160	0	<0.02		<20	R
RCP003	C0175	160	164	0	<0.02		30	R
RCP003	C0176	164	168	0	<0.02		<20	R
RCP003	C0177	168	172	0	<0.02		<20	R
RCP003	C0178	172	176	0	<0.02		<20	R
RCP003	C0179	176	180	0	<0.02		<20	R
RCP003	C0180	180	184	0	<0.02		<20	R
RCP003	C0181	184	188	0	<0.02		<20	R
RCP003	C0182	188	192	0	<0.02		<20	R
RCP003	C0183	192	196	0	<0.02		<20	R
RCP003	C0184	196	200	0	<0.02		<20	R
RCP003	C0185	200	204	0	<0.02		<20	R
RCP003	C0186	204	208	0	<0.02		<20	R
RCP003	C0187	208	212	0	<0.02		<20	R
RCP003	C0188	212	216	0	<0.02 <0.02		<20	R
RCP003	C0189	216	220	0	<0.02		<20 <20	R R
RCP003	C0190	220	2 24 2 26	0 0	<0.02		<20 <20	R
RCP003	C0191	224	230	0	<0.02		<20	R
RCP003 RCP003	C0192 C0193	226 230	234	0	<0.02	<0.02	<20 <20	R
RCP003	C0194	234	238	0	<0.02	~0.02	<20	R
RCP003	C0194 C0195	0	4	0.03	0.03		<20	R/T
RCP004	C0196	4	8	0.03	<0.02		<20	R
RCP004	C0197	8	12	0	<0.02		<20	R
RCP004	C0198	12	16	0	<0.02		<20	R
RCP004	C0199	16	20	0.03	0.03		<20	R
RCP004	C0200	20	24	0.03	<0.02		<20	R
RCP004	C0201	24	28	Ö	<0.02		<20	R
RCP004	C0202	28	32	0	<0.02		<20	R
RCP004	C0203	32	36	0.03	0.03	0.02	<20	R
RCP004	C0204	36	40	0	<0.02	0.02	<20	R
RCP004	C0205	40	44	0	<0.02		<20	R
RCP004	C0206	44	48	0.02	0.02		<20	R
RCP004	C0207	48	52	0.04	0.04		<20	R
RCP004	C0208	52	56	0.17	0.17	0.16	<20	R
RCP004	C0209	56	60	0.04	0.04		<20	R
RCP004	C0210	60	64	0.06	0.05	0.06	<20	R
RCP004	C0211	64	68	0.04	0.04		<20	R
RCP004	C0212	68	72	0.07	0.07		<20	R
RCP004	C0213	72	76	0	<0.02		<20	R
RCP004	C0214	76	80	0	<0.02		<20	R
RCP004	C0215	80	84	0	<0.02		<20	R
RCP004	C0216	84	88	0	<0.02		<20	R
RCP004	C0217	88	92	0	<0.02		<20	R
RCP004	C0218	92	96	0	<0.02		<20	R
RCP004	C0219	96	100	0	<0.02		<20	R
RCP004	C0220	100	104	0	<0.02	<0.02	<20	R
RCP004	C0221	104	108	0	<0.02		<20	R
RCP004	C0222	108	112	0	<0.02		<20	R
RCP004	C0223	112	116	0	<0.02		<20	R
RCP004	C0224	116	120	0	<0.02		<20	R
RCP004	C0225	120	124	0	<0.02		<20	R
RCP004	C0226	124	128	0	<0.02		<20	R
RCP004	C0227	128	132	0	<0.02		<20	R
RCP004	C0228	132	135	0	<0.02		<20	R
RCP005	C0229	0	4	0	<0.02		<20	R/T
4000	MIDIV A DAG	A						

APPENDIX 2 - RCP Assay Logs.xls

PAGE 3 OF 6

RCP DRILLING ASSAY LOGS

WINNECKE EL 8164

	2001711111	7/L 1/L1 0		•	.00/11 =00			
Hole Number	Sample Number	Dept From	h (m) To	Au ppm Ave	Au ppm	Au ppm rpt1	As ppm	Medium
					-0.00			_
RCP005	C0230	4	8	0	<0.02		<20	Ŕ
RCP005	C0231	8	12	0	<0.02		<20	R
RCP005	C0232	12	16	0	<0.02		<20	R
RCP005	C0233	16	20	0	<0.02		<20	R
RCP005	C0234	20	24	0.02	0.02	-0.00	<20	R
RCP005	C0235	24	28	0	<0.02	<0.02	20	R
RCP005	C0236	28	32	0	<0.02		<20	R
RCP005	C0237	32	36	0	<0.02		<20	R
RCP005	C0238	36	40	0	<0.02		<20	R
RCP005	C0239	40	44	0	<0.02		<20	R
RCP005	C0240	44	48	0	<0.02		20	R
RCP005	C0241	48	52	0	<0.02		20	Ŕ
RCP005	C0242	52	56	0	<0.02		<20	R
RCP005	C0243	56	60	0	<0.02	<0.02	<20	R
RCP005	C0244	60	64	0	<0.02		<20	R
RCP005	C0245	64	68	0	<0.02		<20	R
RCP005	C0246	68	72	0	<0.02		<20	R
RCP005	C0247	72	76	0	<0.02		<20	R
RCP005	C0248	76	80	0	<0.02		<20	R
RCP005	C0249	80	84	0	<0.02		<20	Ŕ
RCP005	C0250	84	88	0	<0.02		<20	R
RCP005	C0251	88	92	0	<0.02		<20	R
RCP005	C0252	92	96	0	<0.02		<20	R
RCP005	C0253	96	100	0	<0.02	<0.02	<20	R
RCP005	C0254	100	104	0	<0.02		<20	R
RCP005	C0255	104	108	0	< 0.02		<20	R
RCP005	C0256	108	112	0	<0.02		20	R
RCP005	C0257	112	116	0	<0.02		<20	R
RCP005	C0258	116	120	0	<0.02		<20	R
RCP005	C0259	120	124	0	<0.02		<20	R
RCP005	C0260	124	128	0	<0.02		<20	R
RCP005	C0261	128	132	0	<0.02		<20	R
RCP005	C0262	132	136	0	<0.02		<20	R
RCP005	C0263	136	140	0.02	0.02		<20	R
RCP005	C0264	140	144	0.03	0.03		<20	R
RCP005	C0265	144	148	0	<0.02	<0.02	<20	R
RCP005	C0266	148	149		<0.02	0.02	<20	R
RCP006	C0267	0	4	0	<0.02		<20	R/T
RCP006	C0268	4	8	0	<0.02		<20	R
RCP006	C0269	8	12	ō	<0.02		<20	R
RCP006	C0270	12	16	ő	<0.02		<20	R
RCP006	C0271	16	20	ō	<0.02		<20	R
RCP006	C0271	20	24	0	<0.02		<20	R
RCP006	C0272	24	28	0	<0.02		<20	R
			32					
RCP006	C0274	28		0	<0.02		<20 <20	R
RCP006	C0275	32	36	0	<0.02	-0.00	<20	R
RCP006	C0276	36	40	0	<0.02	<0.02	<20	R
RCP006	C0277	40	44	0	<0.02		<20	R
RCP006	C0278	44	48	0	<0.02		<20	R
RCP006	C0279	48	52	0	<0.02		<20	R
RCP006	C0280	52	56	0	<0.02		<20	R
RCP006	C0281	56	60	0	<0.02		<20	R
RCP006	C0282	60	64	0	<0.02		<20	R
RCP006	C0283	64	68	0	<0.02		<20	R
RCP006	C0284	68	72	0	<0.02		<20	R
RCP006	C0285	72	76	0	<0.02		<20	R
RCP006	C0286	76	80	0	<0.02	<0.02	<20	R
RCP006	C0287	80	84	0.02	0.02		40	R
RCP006	C0288	84	88	0	<0.02		<20	R
RCP006	C0289	88	92	0	<0.02		20	R
RCP006	C0290	92	96	0	<0.02		<20	R
RCP006	C0291	96	100	0	<0.02		<20	R
RCP006	C0292	100	104	0	<0.02		<20	R
ADDE	UDIV 2 DCD	A	1_					

APPENDIX 2 - RCP Assay Logs.xls

PAGE 4 OF 6

RCP DRILLING ASSAY LOGS

	2001711111	J/ LE ! \L. O !	• • • • • • • • • • • • • • • • • • • •	• '				
Hole	Sample	Depti		Au ppm	Au ppm	Au ppm	As	Medium
Number	Number	From	То	Ave		rpt1	ppm	
RCP006	C0293	104	108	0	<0.02		<20	R
RCP006	C0294	108	112	0	<0.02		<20	R
RCP006	C0295	112	116	0	<0.02	<0.02	<20	R
RCP006	C0296	116	120	0	<0.02		<20	R
RCP006	C0297	120	124	0	<0.02		<20	R
RCP006	C0298	124	128	0.02	0.02		<20	R
RCP006	C0299	128	132	0	<0.02		<20	R
RCP006	C0300	132	136	0	<0.02		<20 <20	R R
RCP006	C0301	136	140	0 0	<0.02 <0.02		<20 <20	R R
RCP006 RCP006	C0302 C0303	140 144	144 148	0	<0.02		<20	R
RCP006	C0304	148	152	0	<0.02		<20	R
RCP006	C0305	152	156	0	<0.02		<20	R
RCP006	C0306	156	160	Ö	<0.02		<20	R
RCP006	C0307	160	164	0.02	0.02		<20	R
RCP006	C0308	164	168	0	<0.02		<20	R
RCP006	C0309	168	172	0	<0.02		<20	R
RCP006	C0310	172	176	0	<0.02	<0.02	<20	R
RCP006	C0311	176	180	0	<0.02	0.02	<20	R
RCP006	C0312	180	184	0	<0.02		<20	R
RCP006	C0312	184	188	Ö	<0.02		<20	Ŕ
RCP006	C0314	188	192	Ö	<0.02		<20	R
RCP006	C0315	192	196	Ö	<0.02		<20	R
RCP006	C0315	196	201	0	<0.02		<20	R
RCP000	C0001	0	4	0.07	0.02	0.05	<20	T/R
	C0001		8	0.02	0.02	0.03	<20	R
RCP007		4		0.02	<0.02		<20	R
RCP007	C0003	8	12 16		<0.02		<20	R
RCP007	C0004	12		0	<0.02		<20	R
RCP007	C0005	16	20	0			<20	R
RCP007	C0006	20	24	0	<0.02	40.00		R
RCP007	C0007	24	28	0	<0.02	<0.02	<20	R
RCP007	C0008	28	32	0	<0.02		<20	
RCP007	C0009	32	36	0	<0.02		<20	R
RCP007	C0010	36	40	0	<0.02		<20	R
RCP007	C0011	40	44	0	<0.02		<20	R
RCP007	C0012	44	48	0	<0.02		<20	R
RCP007	C0013	48	52	0	<0.02		<20	R
RCP007	C0014	52	54	0	<0.02		<20	R
RCP007	C0015	54	56	0.02	0.02		<20	R
RCP007	C0016	56	58	0	<0.02		<20	R
RCP007	C0017	58	60	0	<0.02		<20	R
RCP007	C0018	60	62	0	<0.02	<0.02	<20	R
RCP007	C0019	62	64	0	<0.02		<20	R
RCP007	C0020	64	68	0	<0.02		<20	R
RCP007	C0021	68	72	0	<0.02		<20	R
RCP007	C0022	72	76	0	<0.02		<20	R
RCP007	C0023	76	80	0	<0.02		<20	R
RCP007	C0024	80	84	0	<0.02		<20	R
RCP007	C0025	84	88	0	<0.02		<20	R
RCP007	C0026	88	92	0	<0.02		<20	R
RCP007	C0027	92	96	0	<0.02		<20	R
RCP007	C0028	96	100	0	<0.02		<20	R
RCP007	C0029	100	104	0	<0.02	<0.02	<20	R
RCP007	C0030	104	108	0	<0.02		<20	R
RCP007	C0031	108	112	0	<0.02		<20	R
RCP007	C0032	112	116	0	<0.02		<20	R
RCP007	C0033	116	120	0	<0.02	<0.02	<20	R
RCP007	C0034	120	124	0	<0.02		<20	R
RCP007	C0035	124	128	0	<0.02		<20	R

RCP DRILLING ASSAY LOGS

Hole	Sample	Depti	h (m)	Au ppm	Au ppm	Au ppm	As	Medium
Number	Number	From	То	Ave		rpt1	ppm	
RCP007	C0036	128	132	0	<0.02		<20	R
RCP007	C0037	132	136	0	<0.02		<20	R
RCP007	C0038	136	140	0	<0.02		<20	R
RCP007	C0039	140	144	0	<0.02		<20	R
RCP007	C0040	144	148	0	<0.02		<20	R

APPENDIX 3

DRILLHOLE GEOLOGY LOGS

RCP DRILLING GEOLOGY LOGS

	ZUU I AITITUA		/IX I	OLOLOG!	LOGO	•
Hole	Depth (n	n)	Regolith	Lithology	Alteration	Comments
Number	From	To	regonal	Liulology	Alteration	Omments
Mulliper	FIOIII	10				
RCP001	0	1	COL	GRV/SOL		
RCP001	1	2	COL	GRV/SOL		
RCP001	2	3	COL	GRV/SOL		
RCP001	3	4	SAP	CLY		
RCP001	4	5	SAP	CLY		
				CSR		
RCP001	5	6	SAP		CS	
RCP001	6	7	SAP	CLY/CSR	qv/cs	
RCP001	7	8	SAP	CLY/CSR	cs	
RCP001	8	9	SAP	CLY/CSR/VQU	qv/cs	
RCP001	9	10	SAP	CSR/GNS	qv/cs	
RCP001	10	11	SAP	CSR/VQU	qv/cs	
RCP001	11	12	WTH	CSR/VQU	qv	
RCP001	12	13	SAP	GNS?	qv	
RCP001	13	14	SAP	CSR	qv/cs	
RCP001	14	15	SAP	CSR	qv/cs	
RCP001	15	16	SAP	CSR	qv/cs	
	16	17	SAP	CSR	qv/cs	
RCP001					•	
RCP001	17	18	SAP	CSR	qv/cs	
RCP001	18	19	SAP/WTH	CSR	qv/cs	
RCP001	19	20	SAP/WTH	CSR	qv/cs	
RCP001	20	21	SAP/WTH	CSR	qv/cs	
RCP001	21	22	SAP/WTH	CSR	qv/cs	
RCP001	22	23	SAP/WTH	CSR	qv/cs	
RCP001	23	24	SAP/WTH	CSR	cs/(qv)	
RCP001	24	25	SAPWTH	CSR	cs/(qv)	
RCP001	25	26	SAPWTH	CSR	cs/(qv)	
RCP001	26	27	SAPWTH	CSR	cs/(qv)	
RCP001	27	28	SAP/WTH	CSR	cs/(qv)	
				CSR		
RCP001	28	29	SAP/WTH		cs	
RCP001	29	30	SAPWTH	CSR	cs	
RCP001	30	31	SAP	SCH?		
RCP001	31	32	SAP	SCH?		
RCP001	32	33	SAP	SCH?		
RCP001	33	34	SAP	CLY		
RCP001	34	35	SAP	CLY		
RCP001	35	36	SAP	CLY		
RCP001	36	37	SAP	CLY	(dv)	
RCP001	37	38	SAP	CLY		
RCP001	38	39	SAP	CLY		
RCP001	39	40	SAP	CLY		
RCP001	40	41	SAP	CLY		
	41		SAP	CLY		
RCP001		42				
RCP001	42	43	SAP	CLY		
RCP001	43	44	SAP	CLY		
RCP001	44	45	SAP	CLY		
RCP001	45	46	SAP	CLY		
RCP001	46	47	SAP	CLY		
RCP001	47	48	SAP	CLY		
RCP001	48	49	SAP	CLY		
RCP001	49	50	SAP	CLY	(qv)	
RCP001	50	51	SAP	CLY	(qv)	
RCP001	51	52	SAP	CLY	qv	
RCP001	52	53	SAP	CLY	•	
RCP001	53	54	SAP	SCH?		
RCP001		5 4 55	SAP	SCH?	an r	
	54				qv ær	
RCP001	55	56	SAP	SCH?	qv ~-	
RCP001	56	57	SAP	SCH?	qv	
RCP001	57	58	SAP	SCH/VQU	qv	
RCP001	58	59	SAP	SCH?	qν	
RCP001	59	60	SAP	SCH?	qv	
RCP001	60	61	SAP	SCH?	qν	
RCP001	61	62	SAP	SCH?	qν	
RCP001	62	63	SAP	SCH?	qv	
RCP001	63	64	SAP	SCH?	qv	
				==/	•	

RCP DRILLING GEOLOGY LOGS

Hole	Depti	h (m)	Regolith	Lithology	Alteration	Comments
Number	From	(, To	riogonia.			
RCP001	64	65	SAP	SCH?	qv	
RCP001	65	66	SAP	SCH?	dv.	
RCP001	66	67	SAP	SCH/VQU	dv.	
RCP001	67	68	SAP	SCH?	qv	
RCP001	68	69	SAP	SCH?/VQU	qv	
RCP001	69	70	SAP	SCH?	qv	
RCP001	70	71	SAP	SCH?	qv	
RCP001	71	72	SAP	GNS?	qv	
RCP001	72	73	SAP	GNS?	qv	
RCP001	73	74	SAP	GNS?	qv	
RCP001	74	75	SAP	GNS?	qv	
RCP001	75	76	SAP	GNS?	qv	
RCP001	76	77	SAP	SCH?	qv	
RCP001	77	78	SAP	CLY/GNS?	qv	
RCP001	78	79	SAP	GNS/QZT	(qv)	
RCP001	79	80	SAP/WTH	GNS/QZT	(qv)	
RCP001	80	81	SAP/WTH	GNS/QZT		
RCP001	81	82	SAP/WTH	QZT	(qv)	
RCP001	82	83	WTH	QZT	(qv)	
RCP001	83	84	WTH	CLY	(qv)	
RCP001	84	85	SAP	CLY/QZT		
RCP001	85	86	SAP/WTH	QZT	(qv)	
RCP001	86	87	WTH	QZT/CLY	(qv)	
RCP001	87	88	SAP/WTH	QZT/CLY	(qv)	
RCP001	88	89	SAPWTH	QZT/CLY	(vp)	
RCP001	89	90	SAP/WTH	QZT/CLY	(vp)	
RCP001	90	91	SAP/WTH	QZT/CLY	(qv)	
RCP001	91	92	WTH	QZT	(qv)	
RCP001	92	93	WTH	QZT	(vp)	
RCP001	93	94	WTH	QZT	(vp)	
RCP001	94	95	WTH	QZT	(vp)	
RCP001	95	96	SAP/WTH	CLY/QZT	qv	
RCP001	96	97	SAP/WTH	CLY/QZT	qv	
RCP001	97	98	WTH	QZT	qν	
RCP001	98	99	SAPWTH	CLY/QZT	qν	
RCP001	99	100	SAP/WTH	CLY/QZT	qv	
RCP001	100	101	SAP/WTH	CLY/QZT	qv	
RCP001	101	102	WTH	QZT	qv —-	
RCP001	102	103	WTH	QZT	qv	
RCP001	103	104	WTH	QZT	qv (m.)	
RCP001	104	105	SAPWTH	CLY/QZT	(qv)	
RCP001	105 106	106	SAPAATH	CLY/QZT CLY/QZT	qv «v	
RCP001 RCP001	106 107	107 108	SAP/WTH SAP/WTH	CLY/QZT CLY/QZT	qv	
RCP001	108	109	WTH	QZT		
RCP001	109	110	WTH	QZT	(vp)	
RCP001	110	111	WTH	QZT	(qv)	
RCP001	111	112	WTH	QZT	(qv)	
RCP001	112	113	WTH	QZT	(vp)	
RCP001	113	114	SAP	CLY	(4*7	
RCP001	114	115	SAP	CLY		
RCP001	115	116	SAP	CLY		
RCP001	116	117	SAP	CLY		
RCP001	117	118	SAP	CLY	(qv)	
RCP001	118	119	SAP	CLY	(17	
RCP001	119	120	SAP	CLY	qv	
RCP001	120	121	SAP	CLY	qv	
RCP001	121	122	SAP	CLY	, qv	193
RCP001	122	123	SAP	CLY	qν	
RCP001	123	124	SAP	CLY	qν	
RCP001	124	125	SAP	CLY	qν	
RCP001	125	126	SAP	CLY	qv	
RCP001	126	127	SAP	CLY	qv/hm	
RCP001	127	128	SAP	CLY/SCH	qv	

RCP DRILLING GEOLOGY LOGS

WINNECKE EL 8164

Comments

	ZUU I AININU.	AL NEFC	N. i	GLOLOGI	LUGS	
Hole	Depth	(m)	Regolith	Lithology	Alteration	
	From	To	Regular	Lidiology		
Number	From	10				
RCP001	128	129	SAP	SCH	qv	
RCP001	129	130	SAP	SCH	-	
RCP001	130	131	SAP	CLY	(qv)	
		132	SAP	SCH	qv	
RCP001	131				•	
RCP001	132	133	SAP	SCH	qν	
RCP001	133	134	SAP	SCH	qν	
RCP001	134	135	SAP	SCH/CLY	qv	
RCP001	135	136	SAP	SCH	qv	
RCP001	136	137	SAP	SCH	qν	
RCP001	137	138	SAP	SCH	qv	
	138	139	SAP	SCH	qv	
RCP001						
RCP001	139	140	SAP	SCH	dΛ	
RCP001	140	141	SAP	SCH	qv	
RCP001	141	142	SAP	SCH/VQU	qv	
RCP001	142	143	SAP	SCH/VQU	qν	
RCP001	143	144	SAP	SCH/VQU	qv	
RCP001	144	145	SAP	SCH/VQU	qv	
RCP001	145	146	SAP	SCH/VQU	qv	
RCP001	146	147	SAP	SCH/VQU	qv	
RCP001	147	148	SAP	SCH/VQU	qv	
RCP001	148	149	SAP	SCH/VQU	qν	
RCP001	149	150	SAP	SCH/VQU	qν	
RCP001	150	151	SAP	SCH/VQU	qν	
RCP001	151	152	SAP	SCH/VQU	qv	
RCP001	152	153	SAP	SCH/VQU	qv	
				SCH/VQU	<u>-</u>	
RCP001	153	154	SAP		qv	
RCP001	154	155	SAP	SCH/VQU	qν	
RCP001	155	156	SAP	SCH/VQU	qv	
RCP001	156	157	SAP	SCH/VQU	qv/hm	
RCP001	157	158	SAP	SCH/VQU	qv	
RCP001	158	159	SAP/WTH	SCH/VQU	qv	
RCP001	159	160	SAP/WTH	SCH/VQU	qv	
RCP001	160	161	SAP/WTH	SCH/VQU	7	
RCP001	161	162	SAP/WTH	SCH/VQU		
RCP001	162	163	SAP/WTH	SCH/VQU		
RCP001	163	164	SAP	CLY		
RCP001	164	165	SAP/WTH	CLY/GNS		
RCP001	165	166	SAP/WTH	CLY/GNS		
RCP001	166	167	SAPWTH	CLY/GNS		
RCP001	167	168	SAP/WTH	CLY/CSR	cs	
	168	169	SAP/WTH	CLY/CSR	CS	
RCP001				CLY/CSR/SCH		
RCP001	169	170	SAPWTH		cs	
RCP001	170	171	SAP/WTH	CLY/CSR/SCH	CS	
RCP001	171	172	SAP/WTH	CLY/CSR/SCH	cs	
RCP001	172	173	SAP/WTH	CSR	cs	
RCP001	173	174	SAP/WTH	CSR	cs	
RCP001	174	175	SAPWTH	GNS	cs	
RCP001	175	176	SAP/WTH	CSR	cs	
		177	SAP/WTH	CSR	cs	
RCP001	176					
RCP001	177	178	SAP/WTH	CSR/QZT	CS	
RCP001	178	179	SAP	CSR	cs	
RCP001	179	180	SAP	CSR	cs	
RCP001	180	181	SAP/WTH	CSR	cs	
RCP001	181	182	SAP/WTH	CSR	cs	
RCP001	182	183	SAP/WTH	CSR	cs	
		184	SAPWTH	CSR	cs	
RCP001	183					
RCP001	184	185	WTH	CSR/GNS	CS	
RCP001	185	186	SAP	SCH/VQU	dΛ	
RCP001	186	187	SAP/WTH	GNS	qv	
RCP001	187	188	SAP	CLY/VQU	qv	
RCP001	188	189	SAP	CLY/VQU	qv	
RCP001	189	190	POX/FR	CSR	cs	
RCP001	190	191	POX/FR	CSR	cs	
		192	POX/FR	CSR	cs	
RCP001	191	182	TOMER	OOK	V-0	

RCP DRILLING GEOLOGY LOGS

	_			4 *** 4	A 24 49	0
Hole	-	th (m) _	Regolith	Lithology	Alteration	Comments
Number	From	То				
RCP001	192	193	POX/FR	CSR	cs	
RCP001	193	194	POX/FR	CSR	cs	
RCP001	194	195	POX/FR	CSR	cs	
RCP001	195	196	POX/FR	CSR	CS	
RCP002	0	1	SAP	SCH		
RCP002	1	2	SAP	SCH		
RCP002	2	3	SAP	SCH		
RCP002	3	4	SAP	SCH		
RCP002	4	5	SAP	CSR	qv	
RCP002	5	6	SAP	CSR/GNS	qv	
RCP002	6	7	SAP	CSR/GNS	qv	
RCP002	7	8	SAP	CSR/GNS	qv	
RCP002	8	9	SAP	SCH/CLY	qv	
RCP002	9	10	SAP	SCH/CLY	qv	
	10	11	SAP	SCH/CLY	qv	
RCP002	11	12	SAP	CLY	4*	
RCP002		13	SAP	CLY		
RCP002	12		SAP	CLY/SCH		
RCP002	13	14		CLY/GNS		
RCP002	14	15	SAP		en t	
RCP002	15	16	SAP	CLY/GNS	dΛ	
RCP002	16	17	SAP	CLY		
RCP002	17	18	SAP	CSR		
RCP002	18	19	SAP	CSR		
RCP002	19	20	SAP	CSR		
RCP002	20	21	SAP	SCH		
RCP002	21	22	SAP	SCH		
RCP002	22	23	SAP	SCH		
RCP002	23	24	SAP	CLY	qv	
RCP002	24	25	SAP	CLY	qv	
RCP002	25	26	SAP	CLY	qν	
RCP002	26	27	SAP	CLY	qv	
RCP002	27	28	WTH	CSR	•	
RCP002	28	29	WTH	CSR		
RCP002	29	30	WTH	CSR	qv	
RCP002	30	31	WTH	CSR	4'	
		32	WTH	VQU	qv	
RCP002	31			GNS		
RCP002	32	33	WTH		qv	
RCP002	33	34	WTH	VQU	qv	
RCP002	34	35	WTH	SLT	qv	
RCP002	35	36	WTH	CSR	qv	
RCP002	36	37	WTH	CSR	qv	
RCP002	37	38	WTH	CSR	qv	
RCP002	38	39	WTH	GNS	qv	
RCP002	39	40	WTH	GNS	qν	
RCP002	40	41	SAP	CLY		
RCP002	41	42	SAP	CLY		
RCP002	42	43	SAP	GNS/CLY		
RCP002	43	44	SAP	GNS/CLY		
RCP002	44	45	SAP	GNS/CLY		
RCP002	45	46	SAP	GNS		
RCP002	46	47	SAP	GNS		
	47	48	SAP	SCH	qv/ser	
RCP002				SCH		
RCP002	48	49	WTH		qv/ser	
RCP002	49	50	WTH	SCH	qv/ser	
RCP002	50	51	WTH	SCH	qv/ser	
RCP002	51	52	WTH	SCH	qv/ser	
RCP002	52	53	WTH	SCH	qv/ser	
RCP002	53	54	WTH	SCH/CSR	qv/ser	
RCP002	54	55	WTH	SCH/CSR	qv/ser	
RCP002	55	56	WTH	SCH/CSR	qv/ser	
RCP002	56	57	WTH	SCH/CSR	qv/ser	

RCP DRILLING GEOLOGY LOGS

7000	2001 7111107	AL IXLI O	/1X1	OLULUU.	2000	•
Hole	Depth (m)	Regolith	Lithology	Alteration	Comments
Number	From	To	•			
			10.000	0011/000	-4	
RCP002	57	58	WTH	SCH/CSR	qv/ser	
RCP002	58	59	WTH	SCH/CSR	qv/ser	
RCP002	59	60	WTH	SCH/CSR	qv/ser	
RCP002	60	61	WTH	SCH	qv/ser	
RCP002	61	62	WTH	GNS	qv/ser	
RCP002	62	63	WTH	SCH	qv/ser	
RCP002	63	64	WTH	SCH	qv/ser	
RCP002	64	65	WTH	SCH	qv/ser	
RCP002	65	66	WTH	SCH	qv/ser	
RCP002	66	67	WTH	SCH/GNS	qv/ser	
RCP002	67	68	WTH	SCH	qv/ser	
RCP002	68	69	WTH	SCH/GNS	qv/ser	
RCP002	69	70	WTH	SCH/GNS	qv/ser	
RCP002	70	71	WTH	VQU	γp	
RCP002	71	72	WTH	VQU	qv	
RCP002	72	73	WTH	GNS	qν	
RCP002	73	74	WTH	GNS	qν	
RCP002	74	75	WTH	GNS	qv	
RCP002	75	76	WTH	GNS	qv	
RCP002	76	77	WTH/SAP	CLY/GNS	qv	
	70 77	78	WTH/SAP	CLY/GNS	qv	
RCP002	77 78	79	SAP	CLY	qv	
RCP002			SAP	CLY		
RCP002	79	80			qv	
RCP002	80	81	SAP	CLY/GNS	qv	
RCP002	81	82	SAP	CLY/GNS	qv	
RCP002	82	83	SAP	CLY/GNS	qv	
RCP002	83	84	SAP	CLY/GNS	qν	
RCP002	84	85	SAP	CLY/GNS	qv	
RCP002	85	86	SAP	CLY/GNS	qν	
RCP002	86	87	SAP	CLY/GNS	qv	
RCP002	87	88	SAP	CLY/GNS	dΛ	
RCP002	88	89	SAP	CLY/GNS	qν	
RCP002	89	90	SAP	CLY/GNS	qν	
RCP002	90	91	WTH	GNS	qν	
RCP002	91	92	WTH	GNS	qv	
RCP002	92	93	WTH	SCH	qv/ser	
RCP002	93	94	WTH	SCH/GNS	qv/ser	
RCP002	94	95	WTH	GNS	qv	
RCP002	95	96	WTH	GNS	qv	
RCP002	96	97	SAP	GNS	qv	
RCP002	97	98	SAP	GNS	qv	
RCP002	98	99	SAP	CLY	qv	
RCP002	99	100	SAP	CLY/SCH	qv/ser	
RCP002	100	101	SAP	CLY/SCH	qv/ser	
RCP002	101	102	SAP	CLY/SCH	qv/ser	
RCP002	102	103	SAP	CLY		
RCP002	103	104	SAP	CLY		
RCP002	104	105	SAP	CLY	qv	
RCP002	105	106	SAP	CLY	qv	
		107	SAP	CLY	qv	
RCP002	106 107		WTH	SLT	qv qv	
RCP002	107	108		SLT		
RCP002	108	109	WTH		qv	
RCP002	109	110	WTH	SLT	qv	10
RCP002	110	111	SAP	CLY		
RCP002	111	112	SAP	CLY		
RCP002	112	113	SAP	CLY		
RCP002	113	114	SAP	CLY		
RCP002	114	115	SAP	CLY		
RCP002	115	116	SAP	CLY		
RCP002	116	117	SAP	CLY	qv	

RCP DRILLING GEOLOGY LOGS

	ZUU'I AININU	JAL KEPU)K I	GEOLOG	1 2003	
Hole	Depti	h (m)	Regolith	Lithology	Alteration	Comments
Number	From	То				
RCP002	117	118	SAP	CLY	qv	
RCP002	118	119	SAP	CLY	qv	
RCP002	119	120	SAP	CLY/SCH	qv/ser	
RCP002	120	121	SAP	CLY/SCH	qv/ser	
RCP002	121	122	SAP	CLY/SCH	qv/ser	
RCP002	122	123	SAP	CLY/SCH	qv/ser	
RCP002	123	124	SAP	GNS	qv/ser	
RCP002	124	125	WTH	SCH	qv/ser	
RCP002	125	126	WTH	SCH	qv/ser	
RCP002	126	127	WTH	SCH	qv/ser	
RCP002	127	128	WTH	SCH	qv/ser	
RCP002	128	129	WTH	GNS	qv	
RCP002	129	130	WTH/SAP	CLY/GNS	· ·	
RCP002	130	131	WTH	GNS		
RCP002	131	132	WTH	GNS		
RCP002	132	133	WTH	QZT	ser	
RCP002	133	134	WTH	QZT	ser	
RCP002	134	135	WTH	QZT	ser	
RCP002	135	136	WTH	QZT	ser	
RCP002		137	WTH	QZT	301	
	136 137	138	WTH/SAP	QZT		
RCP002	138	139	WTH	CSR		
RCP002		140	WTH	CSR		
RCP002	139	140	WTH	CSR		
RCP002	140	142	WTH	CSR		
RCP002	141	142	WTH	CSR		
RCP002 RCP002	142 143	144	WTH	CSR		
RCP002 RCP002	144	145	WTH	CSR/DOL?		
RCP002	145	146	WTH	CSR/DOL?		
RCP002	145	147	WTH	CSR		
		147	WTH	CSR		
RCP002	147	149	WTH	CSR		
RCP002	148	150	WTH	CSR		
RCP002	149		WTH	CSR		
RCP002	150	151	WTH/SAP	CSR/DOL		
RCP002	151	152	FR	CSR/DOL		
RCP002	152	153 154	FR	CSR		
RCP002	153		FR	CSR		
RCP002	154	155 156	FR	CSR		
RCP002	155	156		CSR		
RCP002	156	157	FR FR	CSR		
RCP002	157	158	FR	CSR		
RCP002	158	159				
RCP002	159	160	FR	CSR CSR		
RCP002	160	161	FR			
RCP002	161	162	FR	CSR		
RCP002	162	163	FR	CSR		
RCP002	163	164	FR	CSR		
RCP002	164	165	FR	CSR		
RCP002	165	166	FR	CSR		
RCP002	166	167	FR	CSR		
RCP002	167	168	FR	CSR		
RCP002	168	169	FR	CSR		
RCP002	169	170	FR	CSR		
RCP002	170	171	FR	CSR		
RCP002	171	172	FR	CSR		
RCP002	172	173	FR	CSR		
RCP002	173	174	FR	CSR		
RCP002	174	175	FR	CSR		
RCP002	175	176	FR	CSR		
RCP002	176	177	FR •	CSR		

RCP DRILLING GEOLOGY LOGS

FANCE COST	ZUU I AININ	DAL ILLI O	17.1	OLOLOGI	LOGO	
Hole	Dept	h (m)	Regolith	Lithology	Alteration	Comments
Number	From	То		5,		
			rn.	000		
RCP002	177	178	FR	CSR		
RCP003	0	1	AEO	CLY/GRV		
RCP003	1	2	SAP	CLY/GRV		
RCP003	2	3	SAP	CLY/GRV		
RCP003	3	4	SAP	CLY		
RCP003	4	5	SAP	CLY		
RCP003	5	6	SAP	CLY	qν	
RCP003	6	7	SAP	CLY	qv	
RCP003	7	8	SAP	CLY	qv	
RCP003	8	9	SAP	CLY		
RCP003	9	10	SAP	CLY	qv	
RCP003	10	11	SAP	CLY		
RCP003	11	12	SAP	CLY	qv	
RCP003	12	13	SAP	CLY		
RCP003	13	14	SAP	CLY	qv	
RCP003	14	15	SAP	CLY	qv	
RCP003	15	16	SAP	GNS/CLY	qν	
RCP003	16	17	WTH/SAP	GNS/CLY	qv	
RCP003	17	18	WTH/SAP	GNS/CLY	qv	
RCP003	18	19	WTH/SAP	CLY	qv	
RCP003	19	20	SAP	CLY	qv	
RCP003	20	21	SAP	CLY	q۷	
	21	22	SAP	CLY	4*	
RCP003		23	SAP	CLY		
RCP003	22		SAP	CLY		
RCP003	23	24	SAP	CLY		
RCP003	24	25	SAP	CLY		
RCP003	25	26 2 7			au.	
RCP003	26	27	SAP	CLY/SCH	qv	
RCP003	27	28	SAP	CLY		
RCP003	28	29	SAP	CLY		
RCP003	29	30	SAP	CLY		
RCP003	30	31	SAP	CLY/GNS	qv	
RCP003	31	32	SAP	CLY		
RCP003	32	33	SAP	CLY		
RCP003	33	34	SAP	CLY		
RCP003	34	35	SAP	CLY		3
RCP003	35	36	SAP	CLY	qv	
RCP003	36	37	SAP	CLY		
RCP003	37	38	SAP	CLY/GNS		
RCP003	38	39	SAP	CLY/GNS		
RCP003	39	40	SAP	CLY/GNS		
RCP003	40	41	SAP	CLY		
RCP003	41	42	SAP	CLY		
RCP003	42	43	SAP	CLY		
RCP003	43	44	SAP	CLY		
RCP003	44	45	SAP	CLY/SCH/GNS		
RCP003	45	46	SAP	CLY/SCH/GNS	qv	
RCP003	46	47	SAP	CLY	qv	
RCP003	47	48	SAP	CLY	qv	
RCP003	48	49	SAP	CLY	ser	
RCP003	49	50	SAP	CLY	qν	
RCP003	50	51	SAP	CLY/SCH	qv/ser	
RCP003	51	52	SAP	CLY/SCH	qv/ser	
RCP003	52	53	SAP	CLY/SCH	qv/ser	
RCP003	53	54	SAP	CLY/SCH	qv/ser	
RCP003	54	55	SAP	CLY/SCH	qv/ser	
RCP003	55	56	SAP	CLY/SCH	qv/ser	
RCP003	56	57	SAP	CLY/SCH	qv/ser	
RCP003	57	57 58	SAP	CLY/SCH	qv/ser	
RCP003	5 <i>7</i> 58	56 59	SAP	CLY/SCH	qv/ser	
KC7003	50	29	SAP	OC1/OOM	4woci	

RCP DRILLING GEOLOGY LOGS

WINNECKE EL 8164

Comments

	ZUU I ANNUA	IL KEP	OKI	GLOLOG	LOGS	
Hole	Depth (r	n)	Regolith	Lithology	Alteration	
Number	From	, То	,g	,		
RCP003	59	60	SAP	SCH	qv/ser	
RCP003	60	61	SAP	GNS		
RCP003	61	62	SAP	GNS		
RCP003	62	63	SAP	CLY		
RCP003	63	64	SAP	CLY		
				CLY		
RCP003	64	65	SAP			
RCP003	65	66	SAP	CLY		
RCP003	66	67	SAP	CLY		
RCP003	67	68	SAP	CLY/SCH		
RCP003	68	69	SAP	CLY/GNS		
RCP003	69	70	SAP	CLY/GNS		
RCP003	70	71	SAP	CLY		
RCP003	71	72	SAP	CLY		
RCP003	72	73	SAP	CLY		
RCP003	73	74	SAP	CLY		
RCP003	74	75	SAP	CLY		
			SAP	CLY		
RCP003	75	76 77				
RCP003	76	77	SAP	CLY		
RCP003	77	78	SAP	CLY		
RCP003	78	79	SAP	CLY		
RCP003	79	80	SAP	CLY		
RCP003	80	81	SAP	CLY	qv	
RCP003	81	82	SAP	CLY	qv	
RCP003	82	83	SAP	CLY		
RCP003	83	84	SAP	CLY		
RCP003	84	85	SAP	CLY		
		86	SAP	CLY		
RCP003	85					
RCP003	86	87	SAP	CLY		
RCP003	87	88	SAP	CLY		
RCP003	88	89	SAP	CLY		
RCP003	89	90	SAP	CLY		
RCP003	90	91	SAP	CLY		
RCP003	91	92	SAP	CLY		
RCP003	92	93	SAP	CLY		
RCP003	93	94	SAP	CLY		
RCP003	94	95	SAP	CLY/SAP	qv/ser	
RCP003	95	96	SAP	CLY/SAP	qv/ser	
RCP003	96	97	SAP	CLY/SAP	qv/ser	
RCP003	97	98	SAP	CLY/SAP	qv/ser	
		99		CLY/SCH	qv/ser	
RCP003	98		SAP		•	
RCP003	99	100	SAP	CLY/SCH	qv/ser	
RCP003	100	101	SAP	CLY/SCH	qv/ser	
RCP003	101	102	SAP	CLY/SCH	qv/ser	
RCP003	102	103	SAP	CLY/SCH	qv/ser	
RCP003	103	104	SAP	CLY/SCH	qv/ser	
RCP003	104	105	SAP	CLY/SCH	qv/ser	
RCP003	105	106	SAP	CLY/SCH	qv/ser	
RCP003	106	107	SAP	CLY/SCH	qv/ser	
RCP003	107	108	SAP	CLY/SCH	qv/ser	
RCP003	108	109	SAP	CLY/SCH	qv/ser	
RCP003	109	110	SAP	CLY/SCH	qv/ser	
RCP003	110	111	SAP	CLY/SCH	qv/ser	
RCP003	111	112	SAP	CLY/SCH	qv/ser	
RCP003	112	113	SAP	CLY/SCH	qv/ser	
RCP003	113	114	SAP	CLY/SCH	qv/ser	
RCP003	114	115	SAP	QZT		
RCP003	115	116	WTH	QZT		
RCP003	116	117	WTH	SCH		
RCP003	117	118	WTH	SCH		
RCP003	118	119	WTH	GNS		
A DDENIO						

RCP DRILLING GEOLOGY LOGS

Hole	Depti	h (m)	Regolith	Lithology	Alteration	Comments
Number	From	То				
RCP003	119	120	WTH	GNS		
RCP003	120	121	WTH	GNS		
RCP003	121	122	WTH	GNS/SCH	qv/ser	
RCP003	122	123	WTH	GNS/SCH	qv/ser	
RCP003	123	124	WTH	GNS/SCH	qv/ser	
	124	125	WTH	GNS	qv/ser	
RCP003				GNS	qv/ser	
RCP003	125	126	WTH	SCH	qv/sei	
RCP003	126	127	WTH			
RCP003	127	128	WTH	SCH		
RCP003	128	129	WTH	SCH		
RCP003	129	130	WTH	SCH		
RCP003	130	131	WTH	SCH		
RCP003	131	132	WTH	SCH		
RCP003	132	133	WTH	SCH		
RCP003	133	134	WTH	SCH		
RCP003	134	135	WTH	QZT		
RCP003	135	136	WTH	QZT		
RCP003	136	137	WTH	CSR		
RCP003	137	138	WTH	CSR		
RCP003	138	139	WTH	CSR		
RCP003	139	140	WTH	CSR		
RCP003	140	141	WTH	SCH		
RCP003	141	142	WTH	SCH		
RCP003	142	143	WTH	SCH		
RCP003	143	144	WTH	SCH		
RCP003	144	145	WTH	SCH/GNS		
RCP003	145	146	WTH	SCH/GNS		
RCP003	146	147	WTH	SCH		
RCP003	147	148	WTH	SCH	qv	
RCP003	148	149	WTH	GNS	•	
RCP003	149	150	WTH	GNS		
RCP003	150	151	WTH	SCH		
RCP003	151	152	WTH	SCH		
RCP003	152	153	WTH	SCH		
			WTH	SCH	qv/ser	
RCP003	153 154	154 155	WTH	SCH	qv/ser	
RCP003	155	156	WTH	SCH	qv/ser	
RCP003				SCH	qv/sci	
RCP003	156	157	WTH	SCH		
RCP003	157	158	FR			
RCP003	158	159	FR	SCH		
RCP003	159	160	FR	SCH	qv	
RCP003	160	161	FR	SCH/DOL	qv/ser	
RCP003	161	162	FR	SCH/DOL	qv/ser	
RCP003	162	163	FR	CSR/DOL	qv	
RCP003	163	164	FR 	CSR		
RCP003	164	165	FR	CSR		
RCP003	165	166	FR	CSR		
RCP003	166	167	FR	CSR	qv	
RCP003	167	168	FR	CSR	qv	
RCP003	168	169	FR	CSR		
RCP003	169	170	FR	CSR	qv	
RCP003	170	171	FR	CSR	qν	
RCP003	171	172	FR	CSR	vp	
RCP003	172	173	FR	CSR	qv	
RCP003	173	174	FR	CSR		
RCP003	174	175	FR	SCH	qv/ser	
RCP003	175	176	FR	SCH	qv/ser	
RCP003	176	177	FR	SCH	qv/ser	
RCP003	177	178	FR	SCH	ser	
RCP003	178	179	FR	SCH	ser	
	X 3 - RCP Ge	olony I ogs				PAGE 9 OF 21

RCP DRILLING GEOLOGY LOGS

WINNECKE EL 8164

Comments

	2001 ANNUAL REPORT			GEOLOGY LOGS		
Hole Number	Depti From	h (m) To	Regolith	Lithology	Alteration	
	-					
RCP003	179	180	FR	SCH SCH/CLY	qv/ser	
RCP003	180	181	FR FR	SCH/CLY	qv/ser qv/ser	
RCP003	181 182	182 183	FR	SCH/CLY	qv/ser	
RCP003 RCP003	183	184	FR	SCH/CLY	qv/ser	
RCP003 RCP003	184	185	FR	SCH	qv/ser	
RCP003	185	186	FR	SCH	ser	
RCP003	186	187	FR	SCH	ser	
RCP003	187	188	FR	SCH	qv/ser	
RCP003	188	189	FR	SCH	qv/ser	
RCP003	189	190	FR	SCH	qv/ser	
RCP003	190	191	FR	CSR	qv/ser	
RCP003	191	192	FR	SCH	qv/ser	
RCP003	192	193	FR	SCH	qv/ser	
RCP003	193	194	FR	SCH	qv/ser	
RCP003	194	195	FR	SCH	qv/ser	
RCP003	195	196	FR	CSR/SCH	qv/ser	
RCP003	196	197	FR	SCH	alb/ser	
RCP003	197	198	FR	SCH	alb/ser	
RCP003	198	199	FR	SCH	alb/ser	
RCP003	199	200	FR	SCH	qv/ser	
RCP003	200	201	FR	SCH	qv/ser	
RCP003	201	202	FR	SCH	qv/ser	
RCP003	202	203	FR	CSR/SCH	ser	
RCP003	203	204	FR	CSR/SCH	ser	
RCP003	204	205	FR	SCH	ser	
RCP003	205	206	FR	QZT QZT		
RCP003	206	207	FR FR	QZT		
RCP003	207	208 209	FR	QZT		
RCP003 RCP003	208 209	209	FR	QZT		
RCP003	210	211	FR	QZT		
RCP003	211	212	FR	QZT		
RCP003	212	213	FR	QZT/SCH		
RCP003	213	214	FR	QZT/SCH		
RCP003	214	215	FR	SLT/SST?/QZT		
RCP003	215	216	FR	SLT/SST?/QZT		
RCP003	216	217	FR	SLT/SST?/QZT		
RCP003	217	218	FR	SLT/SST?/QZT		
RCP003	218	219	FR	SLT/SST		
RCP003	219	220	FR	SLT/SST		
RCP003	220	221	FR	QZT		
RCP003	221	222	FR	QZT		
RCP003	222	223	FR	QZT		
RCP003	223	224	FR	QZT		
RCP003	224	225	FR	QZT		
RCP003	225	226	FR	QZT		
RCP003	226	227	FR	QZT		
RCP003	227	228	FR	QZT		
RCP003	228	229	FR FR	QZT QZT		
RCP003 RCP003	229 230	230 231	FR FR	QZT		
RCP003	230 231	231	FR	QZT		
RCP003	231	232	FR	QZT		
RCP003	232	234	FR	QZT		
RCP003	234	235	FR	QZT		
RCP003	235	236	FR	QZT		
RCP003	236	237	FR	QZT/SCH		
RCP003	237	238	FR	QZT		
RCP004	0	1	AEO	SND/GRV		
			_			

APPENDIX 3 - RCP Geology Logs.xls

RCP DRILLING GEOLOGY LOGS

WINNECKE EL 8164

Comments

	2001 ANNU	JAL REPU	RI	GEOLOGY	LUGS
Hole	Depth	(m)	Regolith	Lithology	Alteration
Number	From	To	3	•	
			CAD	CLY	en e
RCP004	1	2	SAP	CLY	qv
RCP004	2	3	SAP	CLY/SCH	qv m
RCP004	3	4	SAP		qv Tr
RCP004	4	5	SAP	CLY/SCH/SST	qv
RCP004	5	6	SAP	SLT/CLY	qv
RCP004	6	7	SAP	CLY	
RCP004	7	8	SAP	CLY	qv
RCP004	8	9	SAP	CLY	qν
RCP004	9	10	SAP	CLY	
RCP004	10	11	SAP	CLY	
RCP004	11	12	SAP	GNS	qν
RCP004	12	13	SAP	GNS	
RCP004	13	14	SAP	GNS	
RCP004	14	15	SAP	SLT	qν
RCP004	15	16	SAP	SLT	qv
RCP004	16	17	SAP	SLT/CLY/SCH	qv/ser
RCP004	17	18	SAP	SLT/QZT	
RCP004	18	19	WTH	QZT	
RCP004	19	20	WTH	QZT/SLT	
RCP004	20	21	WTH	SST	
RCP004	21	22	WTH	CLY	qν
RCP004	22	23	WTH	CLY	qν
RCP004	23	24	WTH	SCH	qv
RCP004	24	25	SAP	CLY/SCH	qv/ser
RCP004	25	26	SAP	CLY/SCH	qv/ser
RCP004	26	27	SAP	CLY	qv/ser
RCP004	27	28	SAP	CLY	qv/ser
RCP004	28	29	SAP	CLY/SCH	qv/ser
RCP004	29	30	SAP	SCH	qv/ser
RCP004	30	31	SAP	CLY/SCH	qv/ser
RCP004	31	32	SAP	CLY/SCH	qv/ser
RCP004	32	33	SAP	CLY/SCH	qv/ser
RCP004	33	34	SAP	CLY/SCH	qv/ser
RCP004	34	35	SAP	CLY/SCH	qv/ser
RCP004	35	36	SAP	CLY/SCH	qv/ser
RCP004	36	37	SAP	CLY/SCH	qv/ser
RCP004	37	38	SAP/WTH	CLY/SCH/GNS	qv/ser
RCP004	38	39	SAP	CLY/SCH	qv/ser
RCP004	39	40	SAP	CLY/SCH	qv/ser
RCP004	40	41	WTH	SCH	qv/ser
RCP004	41	42	WTH	SCH	qv/ser
RCP004	42	43	WTH	SCH	qv/ser
RCP004	43	44	WTH	SCH	qv/ser
RCP004	44	45	WTH	SCH	qv/ser
RCP004	45	46	WTH	SCH	qv/ser
RCP004	46	47	WTH	SCH	qv/ser
RCP004	47	48	WTH	SCH	qv/ser
RCP004	48	49	WTH	SCH	qv/ser
RCP004	49	50	WTH	SCH	qv/ser
RCP004	50	51	WTH	SCH	qv/ser
RCP004	51	52	WTH	SCH	qv/ser
RCP004	52	53	WTH	SCH	qv/ser
RCP004	53	54	WTH	SCH	qv/s e r
RCP004	54	5 5	WTH	SCH	qv/ser
RCP004	55	56	WTH	SCH	qv/ser
RCP004	56	57	WTH	SCH	qv/ser
RCP004	57	58	WTH	SCH	qv/ser
RCP004	58	59	WTH	SCH	qv/ser
RCP004	59	60	WTH	SCH	qv/ser
RCP004	60	61	WTH	SST/SCH	qv/ser

APPENDIX 3 - RCP Geology Logs.xis

RCP DRILLING GEOLOGY LOGS

WINNECKE EL 8164

Comments

	2001 AIIIIO	AL ILLI	/1 X I	020200.	2000
Hole	Depth	(m)	Regolith	Lithology	Alteration
Number	From	To			
RCP004	61	62	WTH	SST/SCH	qv/ser
RCP004	62	63	WTH	SCH	qv/ser
RCP004	63	64	WTH	SCH	qv
RCP004	64	65	WTH	SCH	qν
RCP004	65	66	WTH	SCH	qν
RCP004	66	67	SAP	CLY	qv
RCP004	67	68	SAP	CLY	qν
RCP004	68	69	WTH	SCH	qv/ser
RCP004	69	70	WTH	SCH	qv/ser
RCP004	70	71	WTH	SCH	qv/ser
RCP004	71	72	WTH	SCH	qv/ser
RCP004	72	73	WTH	SCH	qv/ser
RCP004	73	74	WTH	SCH	qv/ser
RCP004	74	75	WTH	SCH	qv/ser
RCP004	75	76	WTH	SCH	qv/ser
			WTH	SCH/CLY	qv/ser
RCP004	76 	77 70			•
RCP004	77	78	WTH	SCH/CLY	qv/ser
RCP004	78	79	WTH	SCH/CLY	qv/ser
RCP004	79	80	WTH	SCH/CLY	qv/ser
RCP004	80	81	WTH	SCH/CLY	qv/ser
RCP004	81	82	WTH	SCH/CLY	qv/ser
RCP004	82	83	WTH	SCH/CLY	qv/ser
RCP004	83	84	WTH	SCH/CLY	qv/ser
RCP004	84	85	WTH	SCH/CLY	qv/ser
RCP004	85	86	WTH	SCH/CLY	qv/ser
RCP004	86	87	WTH	SCH/CLY	qv/ser
RCP004	87	88	WTH	SCH/CLY	qv/ser
RCP004	88	89	WTH	SCH/CLY	qv/ser
RCP004	89	90	WTH	SCH/CLY	qv/ser
RCP004	90	91	WTH	SCH	qv/ser
RCP004	91	92	WTH	SCH	qv/ser
RCP004	92	93	WTH	SCH	qv/ser
RCP004	93	94	WTH	SCH	qv/ser
		95	WTH	SCH	qv/ser
RCP004	94		WTH		•
RCP004	95	96		SCH	qv/ser
RCP004	96	97	WTH	SCH	qv/ser
RCP004	97	98	WTH	SCH	qv/ser
RCP004	98	99	WTH	SCH	qv/ser
RCP004	99	100	WTH	SCH	qv/ser
RCP004	100	101	WTH	SCH	qv/ser
RCP004	101	102	WTH	SCH	qv/ser
RCP004	102	103	WTH	SCH	qv/ser
RCP004	103	104	WTH	SCH	qv/ser
RCP004	104	105	WTH	SCH	qv/ser
RCP004	105	106	WTH	SCH	qv/ser
RCP004	106	107	WTH	SCH	qv/ser
RCP004	107	108	WTH	SCH	qv/ser
RCP004	108	109	WTH	SCH	qv/ser
RCP004	109	110	WTH	SCH	qv/ser
RCP004	110	111	WTH	SCH	qv/ser
RCP004	111	112	WTH	SCH	qv/ser
RCP004	112	113	WTH	CLY/SCH	qv/ser
RCP004	113	114	WTH	CLY/SCH	qv/ser
RCP004	114	115	WTH	CLY/SCH	qv/ser
RCP004		116	WTH	SCH	qv/ser
	115			SCH	
RCP004	116	117	WTH		qv/ser
RCP004	117	118	WTH	SCH	qv/ser
RCP004	118	119	WTH	SCH	qv/ser
RCP004	119	120	WTH	SCH	qv/ser
RCP004	120	121	WTH	CLY/SCH	qv/ser

APPENDIX 3 - RCP Geology Logs.xls

APPENDIX 3 - RCP Geology Logs.xis

RCP DRILLING GEOLOGY LOGS

WINNECKE EL 8164

Comments

	ZUU I AININU	AL KEPC)Kı	GEOLOGI	L003
Hole	Depth	(m)	Regolith	Lithology	Alteration
Number	From	To	gena.		•
					2
RCP004	121	122	WTH	CLY/SCH	ser
RCP004	122	123	WTH	CLY/SCH	ser
RCP004	123	124	WTH	CLY/SCH	ser
RCP004	124	125	WTH	GNS/SCH	
RCP004	125	126	WTH	GNS/SCH	
	126	127	WTH	SCH	ser
RCP004					
RCP004	127	128	WTH	SCH	ser
RCP004	128	129	WTH	SCH	qv/ser
RCP004	129	130	FR	CSR	
RCP004	130	131	FR	CSR	
RCP004	131	132	FR	CSR	
RCP004	132	133	FR	CSR/SCH	qv/ser
RCP004	133	134	FR	CSR/SCH	qv/ser
RCP004	134	135	FR	SCH	qv/ser
RCP005	0	1	AEO	SND/GRV	,
RCP005	1	2	SAP	SCH	
				SCH	
RCP005	2	3	SAP		
RCP005	3	4	SAP	SCH	qv
RCP005	4	5	SAP	SCH	qv
RCP005	5	6	SAP	CLY	qv
RCP005	6	7	SAP	CLY/SCH	
RCP005	7	8	SAP	CLY/SCH	
RCP005	8	9	SAP	CLY/SCH	qv
RCP005	9	10	SAP	CLY/SCH	qv
RCP005	10	11	SAP	CLY/SCH	•
RCP005	11	12	SAP	CLY/SCH	qv
				CLY/SCH	
RCP005	12	13	SAP		qν
RCP005	13	14	SAP	CLY/SCH	qν
RCP005	14	15	WTH	SCH	qv/ser
RCP005	15	16	WTH	SCH	qv/ser
RCP005	16	17	SAP	CLY/SCH	qv/ser
RCP005	17	18	SAP	CLY/SCH	qv/ser
RCP005	18	19	SAP	CLY/SCH	qv/ser
RCP005	19	20	SAP	CLY/SCH	qv/ser
RCP005	20	21	SAP	CLY/SCH	qv/ser
RCP005	21	22	SAP	CLY/SCH	qv/ser
	22	23	SAP	CLY/SCH	qv/ser
RCP005					qv/ser qv/ser
RCP005	23	24	SAP	CLY/SCH	
RCP005	24	25	SAP	CLY/SCH	qv/ser
RCP005	25	26	SAP	CLY/SCH	qv/ser
RCP005	26	27	SAP	CLY	qv
RCP005	27	28	SAP	CLY	
RCP005	28	29	SAP	CLY	
RCP005	29	30	SAP	CLY	
RCP005	30	31	SAP	CLY	
RCP005	31	32	SAP	CLY	
RCP005	32	33	SAP	CLY	
	33	34	SAP	CLY	
RCP005					
RCP005	34	35	SAP	CLY/SCH	
RCP005	35	36	SAP	CLY/SCH	
RCP005	36	37	SAP	CLY	
RCP005	37	38	SAP	CLY	
RCP005	38	39	SAP	CLY	
RCP005	39	40	SAP	CLY	
RCP005	40	41	SAP	CLY	
RCP005	41	42	SAP	CLY	
RCP005	42	43	SAP	CLY	
RCP005	43	44	SAP	CLY	
				CLY	
RCP005	44	45 46	SAP		
RCP005	45	46	SAP	CLY	

RCP DRILLING GEOLOGY LOGS

0.00	2001711110	//L \C.		0_0_0.		
Hole	Depth	(m)	Regolith	Lithology	Alteration	Comments
Number	From	То				
RCP005	46	47	SAP	CLY		
RCP005	47	48	SAP	CLY		
RCP005	48	49	SAP	CLY		
RCP005	49	50	SAP	CLY		
RCP005	50	51	SAP	CLY	qv	
RCP005	51	52	SAP	CLY	qv	
RCP005	52	53	SAP	CLY		
RCP005	53	54	SAP	CLY/SLT	qv	
RCP005	54	55 50	SAP	CLY/SLT	qv	
RCP005	55	56 57	SAP SAP	CLY/SLT CLY	qv	
RCP005 RCP005	56 57	57 58	SAP	CLY	qv	
RCP005	58	5 0	SAP	CLY	qv qv	
RCP005	59	60	SAP	CLY	qv qv	
RCP005	60	61	SAP	CLY	qv qv	
RCP005	61	62	SAP	CLY	qv	
RCP005	62	63	SAP	CLY	qv	
RCP005	63	64	SAP	CLY	qv	
RCP005	64	65	SAP	CLY	qv	
RCP005	65	66	SAP	CLY	qv	
RCP005	66	67	SAP	CLY/SLT/SCH	qν	
RCP005	67	68	SAP	CLY	qv	
RCP005	68	69	SAP	CLY/SCH	qv	
RCP005	69	70	SAP	CLY/SCH	qv/ser	
RCP005	70	71	SAP	CLY	qv/ser	
RCP005	71	72	SAP	CLY/SCH	qv/ser	
RCP005	72	73	SAP	CLY/SCH	qv/ser	
RCP005	73	74	SAP	CLY/SCH	qv/ser	
RCP005	74	75 70	SAP	CLY/SLT	qv/ser	
RCP005	75 70	76	SAP	CLY/SLT	qv	
RCP005	76 77	77 78	SAP SAP	CLY/SLT CLY/SLT	qv	
RCP005 RCP005	77 78	76 79	SAP	CLY/SLT	qv qv	
RCP005	79	80	SAP	CLY/SLT	dv.	
RCP005	80	81	SAP	CLY/SLT	qv	
RCP005	81	82	SAP	CLY	qv	
RCP005	82	83	WTH	SLT	·	
RCP005	83	84	WTH	SLT		
RCP005	84	85	WTH	SLT	qv	
RCP005	85	86	WTH	SLT	qv	
RCP005	86	87	WTH	SLT	qv	
RCP005	87	88	WTH	SLT	qv	
RCP005	88	89	WTH	SLT	qv	
RCP005	89	90	WTH	SLT	qv	
RCP005	90	91	WTH	SLT/SCH	qv	
RCP005	91	92	WTH	SLT/SCH	qv	
RCP005	92	93	WTH	SLT/SCH	qv	
RCP005	93	94	WTH	SLT	qν	
RCP005	94	95	WTH	SLT SLT	qv	
RCP005	95 06	96 07	WTH	SLT	qv	
RCP005 RCP005	96 97	97 98	WTH WTH	SLT	qv	
RCP005	98	96 99	WTH	SLT	qv qv	
RCP005	99	100	WTH	SLT	qv qv	24
RCP005	100	101	SAP	CLY	4*	
RCP005	101	102	SAP	CLY		
RCP005	102	103	SAP	CLY		
RCP005	103	104	SAP	CLY/SCH	qv/ser	
RCP005	104	105	SAP	SCH	qv/ser	
RCP005	105	106	SAP	SCH	qv/ser	
ADDENIO	NY 3 . PCP God	Joan Logo	de			DAGE 44 OF 2

RCP DRILLING GEOLOGY LOGS

Hole	Dei	pth (m)	Regolith	Lithology	Alteration	Comments
Number	From	То	•			
RCP005	106	107	SAP	SCH	qv/ser	
RCP005	107	108	SAP	SCH	qv/ser	
RCP005	108	109	WTH	SLT/SCH	qv/ser	
RCP005	109	110	WTH	SLT	qv/ser	
RCP005	110	111	WTH	SLT	qv	
RCP005	111	112	WTH	SLT/CSR	qv	
RCP005	112	113	WTH	CSR	qν	
RCP005	113	114	WTH	CSR		
RCP005	114	115	WTH	CSR/QZT		
RCP005	115	116	WTH	CSR/QZT		
RCP005	116	117	WTH	CSR/QZT		
RCP005	117	118	WTH	CSR/QZT		
RCP005	118	119	WTH	CSR/QZT		
RCP005	119	120	WTH	CSR/QZT		
RCP005	120	121	FR	CSR/QZT		
RCP005	121	122	FR	CSR/QZT		
RCP005	122	123	FR	CSR/QZT		
RCP005	123	124	FR	CSR/QZT		
RCP005	124	125	FR	CSR/QZT		
RCP005	125	126	FR	CSR/QZT		
RCP005	126	127	FR	CSR/QZT		
RCP005	127	128	FR	CSR		
RCP005	128	129	FR	CSR		
RCP005	129	130	FR	CSR		
RCP005	130	131	FR	CSR		
RCP005	131	132	FR	CSR		
RCP005	132	133	FR	CSR		
RCP005	133	134	FR	CSR		
RCP005	134	135	FR FR	CSR CSR		
RCP005	135	136 137	FR	CSR		
RCP005 RCP005	136 137	138	FR	CSR/CLY		
RCP005	138	139	FR	CSR/QZT		
RCP005	139	140	FR	CSR		
RCP005	140	141	FR	CSR		
RCP005	141	142	SAP	CLY		
RCP005	142	143	FR	CSR/QZT		
RCP005	143	144	FR	CSR/QZT		
RCP005	144	145	FR	CSR/QZT		
RCP005	145	146	FR	CSR/QZT		
RCP005	146	147	FR	CSR/QZT		
RCP005	147	148	FR	CSR/QZT		
RCP005	148	149	FR	CSR/QZT		
RCP006	0	1	AEO	CLY/GRV		
RCP006	1	2	SAP	CLY	qν	
RCP006	2	3	SAP	CLY	qv	
RCP006	3	4	SAP	CLY		
RCP006	4	5	SAP	CLY	qν	
RCP006	5	6	SAP	CLY/SCH	qv/ser	
RCP006	6	7	SAP	CLY/SCH	qv	
RCP006	7	8	SAP	CLY/SCH	qν	
RCP006	8	9	SAP	CLY	qν	
RCP006	9	10	SAP	CLY	qv	
RCP006	10	11	SAP	CLY	qv	191
RCP006	11	12	SAP	CLY	qv/ser	
RCP006	12	13	SAP	SLT	qv	
RCP006	13	14	SAP	SLT	qv	
RCP006	14	15	SAP	SLT	qv/ser	
RCP006	15	16	SAP	SLT	qv/ser	
RCP006	16 DOD 0	17	SAP	CLY	qv	

RCP DRILLING GEOLOGY LOGS

	ZUU I AININ	DAL NEPO	/IX I	GLULUG	. 2000	•
Hole	Dept	h (m)	Regolith	Lithology	Alteration	Comments
Number	From	То				
RCP006	17	18	SAP	CLY	γp	
RCP006	18	19	SAP	CLY/SCH	•	
RCP006	19	20	SAP	CLY/SCH		
RCP006	20	21	SAP	CLY	qv	
RCP006	21	22	SAP	CLY	· • •	
RCP006	22	23	SAP	CLY/SCH		
RCP006	23	24	SAP	CLY/SCH		
RCP006	24	25	SAP	CLY		
RCP006	25	26	SAP	CLY		
RCP006	26	27	SAP	CLY		
RCP006	27	28	SAP	CLY		
RCP006	28	29	SAP	CLY		
RCP006	29	30	SAP	CLY/SCH	ser/qv	
RCP006	30	31	SAP	CLY/SCH	ser/qv	
RCP006	31	32	SAP	CLY	·	
RCP006	32	33	SAP	CLY		
RCP006	33	34	SAP	CLY		
RCP006	34	35	SAP	CLY		
RCP006	35	36	SAP	CLY		
RCP006	36	37	SAP	CLY		
RCP006	37	38	SAP	CLY		
RCP006	38	39	SAP	CLY		
RCP006	39	40	SAP	CLY		
RCP006	40	41	SAP	CLY		
RCP006	41	42	SAP	CLY		
RCP006	42	43	SAP	CLY		
RCP006	43	44	SAP	CLY		
RCP006	44	45	SAP	CLY		
RCP006	45	46	SAP	CLY		
RCP006	46	47	SAP	CLY		
RCP006	47	48	SAP	CLY		
RCP006	48	49	SAP	CLY		
RCP006	49	50	SAP	CLY		
RCP006	50	51	SAP	CLY		
RCP006	51	52	SAP	CLY	qv	
RCP006	52	53	SAP	CLY	qv	
RCP006	53	54	SAP	CLY	qv	R
RCP006	54	55	SAP	CLY	qv	
RCP006	55	56	SAP	CLY	·	
RCP006	56	57	SAP	CLY	qv/ser	
RCP006	57	58	SAP	CLY/SCH	qv/ser	
RCP006	58	59	SAP	CLY/SCH	qv/ser	
RCP006	59	60	SAP	CLY/SCH	qv/ser	
RCP006	60	61	SAP	CLY/SCH	qv/ser	
RCP006	61	62	SAP	CLY/SCH	qv/ser	
RCP006	62	63	SAP	CLY/SCH	qv/ser	
RCP006	63	64	SAP	CLY/SCH	qv/ser	
RCP006	64	65	SAP	CLY	qv	
RCP006	65	66	SAP	CLY	qv	
RCP006	66	67	SAP	CLY	qv/ser	
RCP006	67	68	SAP	CLY	qv	
RCP006	68	69	SAP	CLY	qv	
RCP006	69	70	SAP	CLY	•	
RCP006	70	71	SAP	CLY		
RCP006	71	72	SAP	CLY	qv	
RCP006	72	73	SAP	CLY	<u>.</u>	
RCP006	73	74	SAP	CLY		
RCP006	74	75	SAP	CLY		
RCP006	75	76	SAP	CLY/GRT	qv	
RCP006	76	77	SAP	CLY/GRT	•	
		-1				

RCP DRILLING GEOLOGY LOGS

	LOUI MINE	JAL IILI U	131	020200.		
Hole	Dept	n (m)	Regolith	Lithology	Alteration	Comments
Number	From	То				
RCP006	77	78	SAP	CLY/GRT/SCH		
RCP006	78	79	SAP	CLY/DOL		
RCP006	79	80	SAP	CLY/DOL	qv	
RCP006	80	81	SAP	CLY	qν	
RCP006	81	82	SAP	CLY	qv	
RCP006	82	83	SAP	CLY	qv	
RCP006	83	84	SAP	CLY	qv	
RCP006	84	85	SAP	CLY	qv	
RCP006	85	86	SAP	CLY	qv	
RCP006	86	87	SAP	GRT/CLY	qv	
RCP006	87	88	SAP	CLY	vp	
RCP006	88	89	SAP	CLY/GRT	qν	
RCP006	89	90	SAP	CLY/GRT	γp	
RCP006	90	91	SAP	CLY		
RCP006	91	92	SAP	GRT		
RCP006	92	93	WTH	GRT		
RCP006	93	94	SAP	CLY/GRT		
RCP006	94	95	WTH	GRT		
RCP006	95	96	WTH	CSR/GRT		
RCP006	96	97	WTH	CSR/GRT		
RCP006	97	98	WTH	CSR/GRT		
RCP006	98	99	WTH	CSR/GRT		
RCP006	99	100	FR	CSR		
RCP006	100	101	FR	CSR	qν	
RCP006	101	102	WTH/FR	CSR		
RCP006	102	103	WTH/FR	CSR/QZT		
RCP006	103	104	WTH/FR	CSR/QZT		
RCP006	104	105	WTH/FR	CSR/QZT		
RCP006	105	106	WTH/FR	CSR/QZT		
RCP006	106	107	WTH/FR	CSR/QZT		
RCP006	107	108	WTH/FR	CSR/QZT		
RCP006	108	109	WTH/FR	CSR/QZT CSR/QZT		
RCP006	109	110 111	WTH/FR WTH/FR	CSR/QZT		
RCP006 RCP006	110 111	112	WTH/FR	CSR/QZT		
RCP006	112	113	WTH/FR	CSR/QZT		
RCP006	113	114	WTH/FR	CSR/QZT		
RCP006	114	115	WTH/FR	CSR/QZT		
RCP006	115	116	WTH/FR	GRT		
RCP006	116	117	SAP	CLY/DOL		
RCP006	117	118	SAP	CLY/DOL		
RCP006	118	119	SAP	CLY/DOL		
RCP006	119	120	SAP	CLY/SCH	qv	
RCP006	120	121	SAP	CLY/SCH	qv	
RCP006	121	122	SAP	DOL/CLY	qv	
RCP006	122	123	SAP	DOL/CLY	qν	
RCP006	123	124	WTH	SCH		
RCP006	124	125	WTH	SCH	qv	
RCP006	125	126	WTH	SCH		
RCP006	126	127	WTH	SCH	qv	
RCP006	127	128	WTH	SCH		
RCP006	128	129	WTH	SCH		
RCP006	129	130	WTH	SCH		
RCP006	130	131	FRWTH	SCH	qv	
RCP006	131	132	FRWTH	SCH	qv	
RCP006	132	133	FRWTH	SCH	qv	
RCP006	133	134	FRWTH	SCH	qv	
RCP006	134	135	FRWTH	SCH		
RCP006	135	136	FRWTH	SCH		
RCP006	136	137	FRWTH	SCH		
ADDENI	NV 2 DCD CA	alagy Lage	vla			DAGE 47 OF 24

RCP DRILLING GEOLOGY LOGS

4	1000000	2001711110	,, , , , , , , , , , , , , , , , , , ,		0_0_0		
	Hole	Depth	(m)	Regolith	Lithology	Alteration	Comments
	Number	From	То				
	RCP006	137	138	FRWTH	SCH		
	RCP006	138	139	WTH	SCH	qv a	
	RCP006	139	140	WTH	SCH	qv	
	RCP006	140	141	WTH	SCH	qν	
	RCP006	141	142	WTH	SCH	qv	
	RCP006	142	143	FR	SCH	qν	
	RCP006	143	144	FR	SCH		
	RCP006	144	145	WTH	SCH		
	RCP006	145	146	WTH	SCH	qν	
	RCP006	146	147	WTH/SAP	CLY/SCH		
	RCP006	147	148	FŘ	SCH		
	RCP006	148	149	FR	SCH	qv	
	RCP006	149	150	FR	SCH	qv	
	RCP006	150	151	FR	SCH	qv	
	RCP006	151	152	FR	SCH	qν	
	RCP006	152	153	FR	SCH	en.	
	RCP006	153	154	FR FR	SCH SCH	dΛ	
	RCP006	154 155	155 156	FR	SCH		
	RCP006 RCP006	156	157	FR	SCH	qv	
	RCP006	157	158	FR	SCH	qv qv	
	RCP006	158	159	FR	SCH	qv	
	RCP006	159	160	FR	SCH	qv	
	RCP006	160	161	FR	SCH	qv	
	RCP006	161	162	FR	SCH	qv	
	RCP006	162	163	FR	SCH	qv	
	RCP006	163	164	FR	SCH	qv	
	RCP006	164	165	FR	SCH	qv	
	RCP006	165	166	FR	SCH	qv	
	RCP006	166	167	FR	SCH	qv	
	RCP006	167	168	FR	SCH	qv	
	RCP006	168	169	FR	SCH	qv	
	RCP006	169	170	FR	SCH		
	RCP006	170	171	FR	SCH	qv	
	RCP006	171	172	FR	SCH	γp	
	RCP006	172	173	FR	SCH	qν	
	RCP006	173	174	FR	SCH	qν	
	RCP006	174	175	FR	SCH	qν	
	RCP006	175	176	FR	SCH	W	
	RCP006	176	177	FR	SCH	qv	
	RCP006	177	178	FR	SCH	qv 	
	RCP006	178	179	FR	SCH	qv	
	RCP006	179	180 181	FR FR	SCH SCH	qv/ser/ch qv/ser/ch	
	RCP006 RCP006	180 181	182	FR	SCH	qv/ser/ch	
	RCP006	182	183	FR	SCH	qv/ser/ch	
	RCP006	183	184	FR	SCH	qv/ser/ch	
	RCP006	184	185	FR	SCH	qv	
	RCP006	185	186	FR	SCH	qv	
	RCP006	186	187	FR	SCH	qv	
	RCP006	187	188	FR	SCH	qv	
	RCP006	188	189	FR	SCH	qv	
	RCP006	189	190	FR	SCH	qv	
	RCP006	190	191	FR	SCH	qv	
	RCP006	191	192	FR	SCH		
	RCP006	192	193	FR	SCH		
	RCP006	193	194	FR	SCH	qv	
	RCP006	194	195	FR	SCH		
	RCP006	195	196	FR	SCH	qv	
	RCP006	196	197	FR	SCH	qv	
	ADDENIO	IV 3 - DCD Cod	Joay Loge	vle			PAGE 18 OF 21

RCP DRILLING GEOLOGY LOGS

	2001 ANN	JAL REPO	JKI	GEOLOGY	LUGS	-
Hole Number	Depti From	h (m) To	Regolith	Lithology	Alteration	Comments
RCP006	197	198	FR	SCH	qv	
RCP006	198	199	FR	SCH	qv	
RCP006	199	200	FR	SCH	qv	
RCP006	200	201	FR	SCH	qv	
RCP007	0	1	WTH	GNS	cu/qv	
RCP007	.1	2	WTH	GNS/SCH	cu/qv	
RCP007	2	3	WTH	SCH	•	
RCP007	3	4	WTH	SCH	qv/si	
RCP007	4	5	WTH	GNS	qv/si	
RCP007	5	6	WTH	GNS	qv/si	
RCP007	6	7	WTH	GNS/VQU	qv/si	
RCP007	7	8	WTH	GNS/VQU	qv/si	
RCP007	8	9	WTH	GNS	qv/in	
RCP007	9	10	WTH	GNS	qv/in	
RCP007	10	11	SAP	GNS/SCH	qv	
RCP007	11	12	SAP	SCH/CLY	•	
RCP007	12	13	SAP	SCH/CLY	qv	
RCP007	13	14	SAP	SCH/CLY	qv	
RCP007	14	15	SAP	SCH/CLY	qv	
RCP007	15	16	SAP	SCH/CLY	qv	
RCP007	16	17	SAP	CLY	٦.	
RCP007	17	18	SAP	CLY	qv	
RCP007	18	19	SAP	CLY	•	
RCP007	19	20	SAP	CLY		
RCP007	20	21	SAP	CLY		
RCP007	21	22	SAP	CLY		
RCP007	22	23	SAP	CLY		
RCP007	23	24	SAP	CLY	qv	
RCP007	24	25	SAP	CLY	•	
RCP007	25	26	SAP	CLY		
RCP007	26	27	SAP	CLY	qv	
RCP007	27	28	SAP	CLY	qv	
RCP007	28	29	SAP	CLY	1	
RCP007	29	30	SAP	CLY/VQU	qv	
RCP007	30	31	SAP	CLY	•	
RCP007	31	32	SAP	CLY		
RCP007	32	33	SAP	CLY		
RCP007	33	34	SAP	CLY	qv	
RCP007	34	35	SAP	CLY	•	
RCP007	35	36	SAP	CLY		
RCP007	36	37	SAP	CLY		
RCP007	37	38	SAP	SCH	qv	
RCP007	38	39	SAP	SCH	qv	
RCP007	39	40	SAP	SCH	qv	
RCP007	40	41	SAP	SCH	qv/hm	
RCP007	41	42	SAP	SCH	qv	
RCP007	42	43	SAP/WTH	GNS/VQU	qv/hm	
RCP007	43	44	SAP	SCH -	(qv)	
RCP007	44	45	SAP	SCH	(qv)	
RCP007	45	46	SAP	SCH	qv	
RCP007	46	47	SAP/WTH	GNS	qv	
RCP007	47	48	SAP/WTH	GNS/VQU	qv	
RCP007	48	49	WTH	GNS/VQU/QZT	qv	
RCP007	49	50	WTH	GNS/VQU/QZT	qv qv	£
RCP007	50	51	SAP/WTH	GNS/VQU	qv qv	
RCP007	51	52	SAP	GNS/VQU	qv qv	
RCP007	52	53	SAP	GNS/SCH	qν qv	
RCP007	53	54	SAP	GNS/VQU	dv.	
RCP007	54	5 5	SAP	CLY	d∧ d∧	
RCP007	55	56	SAP	CLY/GNS	qv	
ADDEN		-11		321/3/10	4*	

RCP DRILLING GEOLOGY LOGS

WINNECKE EL 8164

Comments

Hole	Depti	h (m)	Regolith	Lithology	Alteration	
Number	From	То				
RCP007	116	117	SAP	CLY/GNS		
RCP007	117	118	SAP	GNS?	CS	
RCP007	118	119	SAP/WTH	CSR	qv/cs	
RCP007	119	120	SAP/WTH	CSR	CS	
RCP007	120	121	SAPAVTH	CSR	CS	
RCP007	121	122	SAP/POX	CSR	cs	
RCP007	122	123	SAP/WTH	CSR	cs	
RCP007	123	124	SAP/WTH	CSR	cs	
RCP007	124	125	SAP	CLY/CSR	cs	
RCP007	125	126	SAP	CSR	cs	
RCP007	126	127	SAP	CSR	cs	
RCP007	127	128	SAP	CSR	cs	
RCP007	128	129	SAP/WTH	CSR/GNS	cs	
RCP007	129	130	SAP	CSR	cs	
RCP007	130	131	SAP	CSR	cs	
RCP007	131	132	SAP	CSR	CS	
RCP007	132	133	SAP	CSR	cs	
RCP007	133	134	SAP	CSR	cs	
RCP007	134	135	SAP	CSR	CS	
RCP007	135	136	SAP	CSR	CS	
RCP007	136	137	SAP/POX	CSR	cs	
RCP007	137	138	SAP	CSR	cs	
RCP007	138	139	SAP	CLY/CSR	cs	
RCP007	139	140	SAP	CSR	cs	
RCP007	140	141	SAP	CLY/CSR	cs	
RCP007	141	142	SAP	CLY/CSR	cs	
RCP007	142	143	WTH/POX	CSR	cs	
RCP007	143	144	WTH/POX	CSR	cs	
RCP007	144	145	WTH	CSR	cs	
RCP007	145	146	WTH	CSR	cs	
RCP007	146	147	WTH	CSR	cs	
RCP007	147	148	WTH/POX	CSR	cs	