ANNUAL REPORT FOR

EXPLORATION LICENCE 4424

MANTON DAM AREA

26 May 1988 to 25 May 1989

bу

W.R. Ormsby B. Sc(Hons)

οf

EUPENE EXPLORATION ENTERPRISES PTY LTD

for

WOODCUTTERS JOINT VENTURE

ANNUAL REPORT PAGE: 2

for WOODCUTTERS
JOINT VENTURE
JUNE, 1989

TABLE OF CONTENTS

- 1. INTRODUCTION
- 2. SUMMARY
- 3. CONCLUSIONS
- 4. PREVIOUS EXPLORATION
- 5. PRESENT EXPLORATION
- 6. GEOLOGY AND MINERALISATION
- 7. EXPENDITURE: YEAR 3
- 8. PROPOSED PROGRAM AND EXPENDITURE: YEAR 4
- 9. REFERENCES

APPENDIX 1 Assay Results

FIGURE 1 EL4424 Location Map

ENCLOSURE 1 Geology and Sample Location Map, EL4424

1. INTRODUCTION

Exploration licence 4424 was granted to the Woodcutters Joint Venture on 26 May, 1986 for a period of 6 years. The licence originally comprised 5 blocks and was reduced to 4 blocks on 25 May, 1988. A further 2 blocks have been nominated for relinquishment on 25 May, 1989. Prior to this relinquishment most of the westernmost three blocks were pegged under Mineral Claims.

EL4424 is situated approximately 1km north of the Woodcutters silver-lead-zinc mine on the western side of the Stuart Highway (figure 1).

The licence is considered to be prospective for base metals and gold.

This report covers the work conducted in the third year of tenure of EL4424. Work completed included literature research, reconnaissance and follow-up, rock and stream sediment sampling, and extension of the Woodcutters Mine Grid baseline.

2. SUMMARY

Exploration licence 4424 is predominantly underlain by slates and dololulites of the Lower Proterozoic Whites Formation and slates, siltstones and quartzites of the overlying Wildman Stiltstone.

Previous exploration in the 1960s by the BMR was aimed at uranium and base metals. Subsequent work by Geopeko Ltd. in the early 1980s concentrated on following up the BMR base metal anomalies. Five main lead geochemical anomalies were located, three of which occur along the projected northern strike extensions of the Woodcutters Pb-Zn-Ag Mine. None of the previous exploration evaluated the area for gold mineralisation, and the easternmost section was not tested for base metals.

Exploration in the current year aimed mainly to test as much of the area as possible for gold mineralisation. After extensive literature research, reconnaissance stream sediment and rock sampling was carried out. Anomalous gold values from the area to the east of the Stuart Highway were followed up by infill drainage and rock sampling. This area was also evaluated for base metals to complete the base metal coverage of the licence.

The final gold and base metal results were generally disappointing, although the high prospectivity of the previously determined lead geochemical anomalies remains. The Woodcutters Mine grid baseline was reflagged and extended and surveying was carried out to enable accurate location control for future work and the pegging of mineral claims. Mineral claims were applied for over the westernmost three blocks prior to the relinquishment of two blocks on 25 May, 1989.

3. CONCLUSIONS

- 1) Previous exploration by the BMR and Geopeko Ltd. has adequately explored the entire licence area for base metals except for a section east of the Stuart Highway. This area was included in the current exploration programme and no additional anomalies were found.
- 2) Five lead geochemical anomalies were located by the BMR. The two main anomalies (L1 and L2) were confirmed by Geopeko. Drilling to date on both the L1 and L2 anomalies has produced some encouraging results, but is insufficient to fully evaluate them.
- The northern strike extensions of the Woodcutters type Pb-Zn-Ag mineralisation are inferred to pass through the western three blocks of EL4424, as delineated by the L1, L2 and L6 anomalies.

 This area is considered to be highly prospective for Pb-Zn-Ag mineralisation and has been covered by mineral claim applications.
- 4) Previous exploration has not tested the licence for gold.
- 5) Exploration in year three downgraded the gold potential of the licence although several possible targets remain in poorly outcropping areas.

for WOODCUTTERS
JOINT VENTURE
JUNE. 1989

4. PREVIOUS EXPLORATION

Modern exploration of the area began in 1964 when the BMR carried out reconnaissance auger drilling along traverses at 731.5m (2400ft) intervals with holes 61m (200ft) apart and averaging 5m (17ft) deep to weathered bedrock (Dodson and Shatwell, 1965). This work covered the entire exploration licence except for the range of hills east of the Stuart Highway. Targets were uranium and base metals, and bottom hole samples were analysed by emission spectograph for Cu, Pb, Zn, Ni, Co and Mo. All holes were radiometrically probed at 0.3m (1ft) intervals. A series of north-south trending Pb-Zn anomalies with subsidiary Ni-Co and low order radiometric anomalies were located in the central portion of EL4424.

Detailed electromagnetic and radiometric surveys were also conducted in 1964 by the BMR (Duckworth, 1965). No "large conducting bodies" were found within 30m of the surface, nor were any very pronounced radiometric anomalies located.

Follow-up detailed geochemical and radiometric surveys in 1965 involved auger drilling on traverses at 122m (400ft) intervals with holes spaced 61m (200ft) apart (Shatwell, 1966). Bottom hole samples were assayed for Cu and Pb by AAS. The results identified five main lead anomalies (L1, L2, L3, L4 and L6) on the current EL4424 area and four areas of slightly anomalous radioactivity.

In 1966, further detailed geochemical and radiometric investigations were carried out on the L1, L2, L3 and L6 anomalies with auger drilling on 61m spaced traverses and holes 30m (100ft) apart (Semple, 1967). All samples were assayed by AAS for Cu, Pb, Zn, Ni and Co and the holes were probed for radioactivity. All the lead anomalies except for L3 were confirmed, and another (L7) was identified, but the shapes changed in detail. The lead anomalies were found to be associated with high order Zn anomalies and irregularly distributed Cu, Co and Ni anomalies.

The BMR drilled 14 diamond drill holes between 1966 and 1968 on EL 4424. Five holes were located on the L1 anomaly, a further four on the L2 anomaly, three in the L6 area and two in the L3 area. Drilling on the L1 and L2 anomalies intersected encouraging minor lead and zinc mineralisation. Unfortunately the results of this drilling do not appear to have been presented in report form, and further work is required to fully assess the data.

In 1981, Geopeko Ltd commenced exploration for Pb, Zn and Ag in the current EL4424 area (Ruddock, 1982a). Reverse circulation drilling was conducted on a new metric grid on the L1 & L2 anomalies. Samples were collected at 3m intervals and assayed for Cu, Pb and Zn. The results confirmed the areal extent of the anomalies and found the L2 anomaly to be open to the north. Further work focussed on the L1 anomaly and included a SIROTEM geophysical survey and the drilling of a diamond drill hole (\$250). Hole number \$250 was designed to test beneath an encouraging intersection in BMR hole no. \$93, however the hole deviated severely to the north and failed to lift sufficiently to fully evaluate the target area. No significant results were reported.

Geopeko re-assayed cores from BMR holes \$92, \$93, \$95 and \$96 (Ruddock, 1982b). All samples were half cores taken over 1m intervals each successive 5m and were assayed by AAS for Cu, Pb, Zn and Ag. Results ranged up to 1060ppm Pb (\$92), 1275ppm Zn (\$95), and 330ppm Cu (\$93). All silver results were below the detection limited. Geopeko Ltd. also compiled all the existing geochemical and drilling data on to metric scale plans and cross sections. The geochemical data from the entire Woodcutters area was reviewed by Radford (1982) and the geophysical data compiled by Hoschke (1982). No geophysical methods were found to be successful in directly locating mineralisation in the Woodcutters Mine area. Geopeko Ltd. concluded that lithologies within the Whites Formation contain very low grade sub-economic

for WOODCUTTERS JOINT VENTURE JUNE, 1989

concentrations of Pb-Zn or Pb-Zn-Cu sulphide mineralisation (Ruddock, 1982b) and consequently carried out no further work on the current EL4424 area.

In 1986, the Woodcutters Joint Venture drilled one diamond drill hole (L1/S6) on the L1 anomaly (Nicholson, 1987). No significant mineralisation was encountered although the hole was terminated prematurely before reaching the mineralisation intersected in \$93 due to wet ground conditions. During 1987 the L1/S6 hole was logged and assayed and the Woodcutters Mine Grid was extended to the L1 area (Sliwa, 1988).

5. PRESENT EXPLORATION

Exploration during year 4 was initially aimed at evaluating previous geochemical work in the area to ascertain whether further reconnaissance sampling was warranted. The results of these investigations are summarised in the previous section. It was concluded that all except for the far eastern margin of EL4424 (east of the Stuart Highway) has been adequately tested for base metals by the BMR and Geopeko Ltd., resulting in the known geochemical anomalies. None of the previous reconnaissance has however evaluated the area for gold and this therefore became the major exploration objective for year four.

Reconnaissance stream sediment sampling and rock sampling was initially carried out over as much of the licence area as possible. Exploration was hampered by the general scarcity of outcrop and suitable drainages. Anomalous gold results from the far eastern block were followed up by infill stream/drainage sampling and further rock sampling.

Reconnaissance Rock Sampling

Initially, eighteen 4 to 5kg rock samples were collected from throughout the licence area and assayed for Au (fire assay), Cu, Pb, Zn and Ag. The results are listed in Appendix 1 and sample locations are shown in Enclosure 1. All samples returned low gold values ((0.1ppm) except for sample number 26618 which gave the slightly anomalous result of 0.312ppm from a selective sample of gossanous and hematitic quartz breccia and quartz veinlets.

Sample 26618 was obtained from the far eastern block of EL4424, along a low range of hills east of the Stuart Highway.

Several samples resulted in anomalous high lead and zinc values (>1000ppm), however these were all located in known anomalous areas.

Reconnaissance Stream Sediment Sampling

A total of ten 5kg bulk cyanide leach (BCL) stream sediment samples and three minus 40 mesh stream silt samples were collected (Enclosure 1 and Appendix 1). Six of the BCL samples were considered to be slightly anomalous with values ranging from 2.3ppb to 3.8ppb Au. Five of these samples (B21,B22, B25, B26 and B27) were obtained from creeks draining the range of hills to the east of the Stuart Highway. The sixth sample (B23) originated from a creek draining a similar stratigraphic horizon to the west of EL4424. The only slightly anomalous -40mesh sample (No.111) resulted in 17ppb Au and drained the same area as BCL sample B23.

As a result of the reconnaissance work, follow-up drainage silt sampling and rock sampling took place along the range of hills situated to the east of the Stuart Highway. This area was largely not covered by the BMR and Geopeko programs, therefore sampling was also targeted at base metals.

Follow-up Rock Sampling

Seventeen 4 to 5 kg rock samples were collected from outcrop and float in the follow-up area and assayed for Au (fire assay), Cu, Pb, Zn and Ag (Enclosure 1 and Appendix 1). Most of the gold results were very low. The highest, and only slightly anomalous result (0.399ppm Au, sample No.22634) was obtained from a hematitic and limonitic shale float sample with common pyrite pseudomorphs. Maximum values for the base metals were 140ppm Cu, 50ppm Pb and 410ppm Zn. None of these are considered to be significantly anomalous. The silver values were all \$0.5ppm.

Follow-up Stream Sediment Sampling

Thirty seven -40mesh silt samples were obtained from drainages and gullies in the follow-up area and assayed for Au (fire assay/carbon rod), Cu, Pb, Zn and As (Enclosure 1 and Appendix 1). The gold results were generally low (<0.006ppm) except for two slightly anomalous values of 0.014ppm (sample No.'s 133 and 139). The base metal and arsenic results were also generally low

EL 4424 by: W.R. ORMSBY B.Sc(Hons) ANNUAL REPORT PAGE: 11 for WOODCUTTERS JOINT VENTURE JUNE, 1989

((1880ppm) and the best combined values of 315ppm Cu, 155ppm Zn and 160ppm Pb (Sample No.138) were obtained from a creek originating from outside the exploration licence.

In addition to sampling, further work on EL4424 comprised reflagging and extending the Woodcutters Mine baseline to cover the entire length of the licence, and surveying of the 130°07' longitudinal line for location control.

6. GEOLOGY AND MINERALISATION

EL4424 is largely underlain by carbonaceous slates and dololutites of the Lower Proterozoic Whites Formation. The Whites Formation is conformably overlain by very similar carbonaceous shales and siltstones with minor quartzite interbeds of the Wildman Stiltstone. Wildman Stiltstone outcrop is restricted to the range on the eastern side of the Stuart Highway (Enclosure 1), although subcrop is inferred along the western margin of the licence.

Outcrop is generally very poor, and most of the area is overlain by Cainozoic sands, silts, clays and laterite. Regional geology and drill hole information suggests that a major, approximately north-south trending anticline passes through the central portion of the licence. The overall fold plunge is inferred to change form north in the southern part of EL4424 to south in the northern section. More detailed geology, particularly in the L1 anomaly area is discussed in the year two Annual Report (Sliwa, 1988).

The northern strike extensions of the Woodcutters type Pb-Zn-Ag mineralisation are inferred to pass through the western three blocks of EL4424, as delineated by the L1, L2 and L6 lead anomalies. The drilling to date has been insufficient to fully evaluate the known geochemical anomalies and some encouraging results have been obtained. Given the stratigraphic, structural and geochemical similarities with the Woodcutters Mine area, the westernmost three blocks of EL4424 are considered to be highly prospective for Pb-Zn-Ag mineralisation. Consequently, most of this area has been applied for under mineral claims to enable longer term exploration and development.

The potential for gold mineralisation has been downgraded by the results of the current exploration programme, although by analogy with exploration in adjoining areas, two main targets remain: (1) along the western margin of the licence near the Wildman Siltstone - Whites Formation contact, and (2) along the inferred extensions

ANNUAL REPORT PAGE: 13 for WOODCUTTERS
JOINT VENTURE
JUNE, 1989

of a NE-SW trending fault located to the east of the northernmost block (see Enclosure 1). Both of the abovementioned target areas are difficult to assess due to the scarcity of outcrop.

=======

7. EXPENDITURE - YEAR 3

Expenditure	Ьv	the	Woodcutters	Joint	Venture	for	Year	3	includes:-
FYDGIIGYCGI C		C I I C	WOOGCGLECI 3	JULIE	TOILUIG		1041	~	*!!O * @ G C O *

Consultant Geologist Fees	\$4,440.00
Surveying Fees	\$5,000.00
Field Assistant	\$814.00
Vehicles	\$765.00
Assays	\$1,870.10
Aerial Photographs	\$100.00
Supplies, maps etc	\$150.00
Drafting	\$300.00
Overheads	\$2,015.87
	\$15,454.97

8. PROPOSED PROGRAM AND EXPENDITURE - YEAR 4

The proposed work programme for Year 4 mims to:-

- 1) Complete the reconnaissance of the area for gold.
- 2) Re-interpret the existing drilling data utilising knowledge gained from exploration at the Woodcutters Mine.
- To further evaluate the L1 lead anomaly by diamond drilling.
 - Specifically the work programme for Year 4 includes:-
- Further reconnaissance gold exploration in the areas not accessed during the previous year. Rock samples (4-5kg) and -40 mesh drainage silt samples will be collected and assayed for Au (fire assay), Cu, Pb, Zn, Ag and As.
- The existing diamond drill holes on the L1, L2 and L3 lead anomalies will be located and tied into the Woodcutters Mine Grid.
- Re-examination/logging and selective assaying of existing diamond drill core, particularly from the L1 lead anomaly.
- Re-interpretation and evaluation of existing drilling data with emphasis on structural and stratigraphic interpretation.
- The drilling of at least one diamond drill hole on the L1 lead anomaly.

The minimum proposed expenditure for the above programme is \$20,000.

9. REFERENCES

- DODSON, R. G. & SHATWELL, D. O., 1965 Geochemical and Radiometric Survey Rum Jungle. Northern Territory 1964. *BNR Geology and Geophysics Records:* 1965/254.
- DUCKWORTH, K., 1965 Rum Jungle East (Woodcutters and Coomalie Gap West Areas) Geophysical Surveys, Northern Territory 1965. BNR Geology and Geophysics Records: 1966/99.
- HOSCHKE, T., 1982 Woodcutters Area, N.T., Compilation of Geophysical Survey Data for Geopeko Ltd. *Unpublished Geopeko Report*
- NICHOLSON, P. M., 1987 Annual Report for Exploration Licence 4424

 Manton Dam Area, 26th May, 1986 to 27th May, 1987. Unpublished

 Report for the Woodcutters Joint Venture. N.T. Department of

 Mines and Energy Library.
- RADFORD, N. W., 1982 A Historical Review of the Geochemical Data pertaining to The Woodcutters Project (M.R.771) for Geopeko Ltd.

 Unpublished Geopeko Report.
- RUDDOCK, I., 1982a Annual Report on the Mining Reserve 771 Woolnough Catchment Reserve: Woodcutters Project, for the period 25th March, 1981 - 25th March, 1982. *Unpublished Geopeko Ltd. Report*.
- RUDDOCK, I., 1982b Final Report on Mining Reserve 771 Woolnough

 Catchment Reserve: Woodcutters Project, for the period 25th March

 1982 25th September, 1982. Unpublished Geopeko Report.
- SEMPLE, I. G., 1967 Geochemical and Radiometric Investigations,

 Prospects L1, L2, L3 and L6, Northern Part of Woodcutters Area,

 Rum Jungle East, Northern Territory, 1966. BNR Record 1967/42.
- SHATWELL, D. O., 1966 Geochemical and Radiometric Investigations, Rum Jungle East Area, 1965 (Coomalie Gap West and Woodcutters Areas).

 BMR Record 1966/34.
- SLIWA, R., 1988 Annual Report for Exploration Licence 4424, Manton Dam Area, 26th May, 1987 to 25th May, 1988. Unpublished Report for the Woodcutters Joint Venture. N.T. Department of Mines and Energy Library.

APPENDIX 1

ASSAY RESULTS

RECONNAISSANCE ROCK SAMPLING

A Division of Inchcape Inspection and Testing Services, Australia, Pty. Ltd.

A division of MacDonald Hamilton & Co. Pty. Ltd. (Inc NSW)

(089) 84 3849

CONTRACTOR SERVICES

2000 - 19

SAMPLE NUMBERS

Cnr Coonawarra & Mataram Rds, Winnellie

Fax: (089) 84 3984

Company of the Compan

and the second s

AND STREET OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF

নালালে লাভ ক্ষিত্ৰক কৰা কৰিব নালালিক ক্ষিত্ৰী কৰিব ক্ষিত্ৰী ক্ষিত্ৰী কৰিব ক্ষিত্ৰী কৰিব ক্ষিত্ৰী কৰিব ক্ষিত্ৰী ক্ষিত্ৰী কৰিব ক্ষিত্ৰী ক্ষিত্ৰী কৰিব ক্ষিত্ৰী ক্ষিত্ৰী ক্ষিত্ৰী কৰিব ক্ষিত্ৰী কৰিব ক্ষিত্ৰী কৰিব ক্ষিত্ৰী কৰিব ক্ষিত্ৰী কৰিব ক্ষ

ANALYTICAL REPORT No.

330.0.14.03217

THIS REPORT MUST BE READ IN CONJUNCTION WITH THE ACCOMPANYING ANALYTICAL DATA

>5Q(4)84

Algregoransys i vi

INVOICE TO:

WOODCUTTERS JOINT VENTURE PRIVATE MAIL BAG 60

WINNELLIE NT Ø821 ORDER No. PROJECT

13530

DATE RECEIVED RESULTS REQUIRED

22/12/88 ASAP SPACES SERVICES OF LOCAL

egitte period to the

Garan Sandaga (no series Alberta)

DATE No. No. OF PAGES REPORTED OF COPIES OF RESULTS

Ø3/Ø1/8夕

 TOTAL No. OF SAMPLES

ELEMENT/METHOD

Au, Au(1), Au(2)/309 26601/21 RO Prep: 006,019,012,014,017

SAMPLE DESCRIPTION

26601/21 RO

111/6

PU

Aq,Cu,Pb,Zn/101

Au, Au: R/326

RESULTS

Sec. S. Classics. : a 7 de 49

WARREN ORMSBY WOODCUTTERS JOINT VENTURE

TO

PRIVATE MAIL BAG 60 WINNELLIE N.T. 0821

- AND THE WORLD CONTROL OF THE STREET

agasta ng masyanika asinani milikatang at ing ga Basika ng palita Maliki milikatan at pipagan manga a gara

RECEIVED – 6 Jan 1987

RESULTS

TO eskester Nedesker

- 35

The second secon

RESULTS

TO

g, sa, galabássássa el A seg til a bassásta again

ec. R. Historia

0102011-0466664444449146667

A Division of Inchcape Inspection and Testing Services Australia Pty. Ltd

ANALYTICAL DATA

REPORT DATE CLIENT ORDER No.

PAĠE

	SAMPLE PREFI	x		REPORT NUM	BER	REPORT DA	IE CELI	NT ORDER NO		AGE
		,	330	0.0.14.0	3217	03/01/	89 - 135	30	1 39	* 2
TUB No.	E SAMPLE No.	Cu	Zn	As	Ag	Au	Au 's	PETTO	JAL OR BY	Au(2)
1	26601	90	385		<0.5	0.019		25		
2	26602	50	35		<0.5	0.013		65		
3	26603	50	10		Ø.5	0.019	<u></u>	15	-	
4	26604	15	45	<u></u>	<Ø.5	0.013	_	200		
5	266Ø5	20	60		<0.5	0.042		425		-
6	26606	45	1600		<0.5	0.018		60		
7	26607	8Ø	2050		<0.5	0.011	_	155		_
8	266 08	15	115		<0.5	0.015	****	55		
9	26609	70	45	-	<0.5	0.008		40		-
10	22-2	÷ 3,	<i>,</i>	,,		11 155		-23		, <u> </u>
11	- <u>:</u> · <u>:</u>	7.25 5	, 43	. 	تقويد	1.3%		, এই কী (
12	11 - 17 -	, 4 0	1		<u>.</u>	5.5		70		
13	26613	10	<5		<0.5	0.050		<5	_	
14	26614	95	95	_	<0.5	0.015	_	20		
15	26615	10	<5		<0.5	0.022		<5	-	
16	26616	5	<5	<u></u>	<0.5	0.022		<5		-
17	26617	30	20		<0.5	0.082	_	15	1149	
18	26618	90	60		1.0	0.312	_	. 45		
19		- 30	235		⟨∅.5	<0.008		20		
2	26620	65	180		ั	<0.008	-	290		
2	1 26621	80	2110	_	0.5	0.040		1700		
2	2 111			13	-		17.0	_		
2	3 112	_		13			3.6			
2	4 113			10			1.0			
2	5 114	_		32		-	4.9		_	

Results in ppm unless otherwise specified

T = element present; but concentration too low to measure

X = element concentration is below detection limit

- = element not determined

AUTHORISED OFFICER

A Division of Inchcape Inspection and Testing Services Australia Pty. Ltd.

ANALYTICAL DATA

	SAMPLE PREF	ıx	^	REPORT NUM			TE CL	ENT ORDER N		AGE
		,	330	0.0.14.0	3217	03/01/	/89 135	530	2 0	F 2
TUBE No.	SAMPLE No.	Cu	Zn	As	Ag	Au	Au	РЬ	Au(1)	Au(2)
1					litten	****	v.	_		****
2	116	-		50	•••		7.6			_
3										
4						:				,
5					i	, ,				
6										
7										
8		. 1								
9						•,				
10					·				II IEV	
11	3						<u>, (</u>	<u> </u>	A	
12							[6		FIVED	15/
13	,1						10	ļ −ε.	IAN 1989	
14							. ,	$\frac{\lambda}{\lambda}$		
15						,		V/737	Harry	y, '
16										
17										
18	٠.				· ·					
19 ——	2.4									
20										
21		· · · · · ·			!					
22										
23	DETECTION	5	5	1	0.5	0.008	1.0	5	0.008	0.008
24	UNITS	PPM	PPM	ppm	PPM	PPM	ppb	FPM	PPM	PPM
25	METHOD	101	101	114	101	.309	326	101	309	309

AUTHORISED OFFICER

RECONNAISSANCE STREAM SEDIMENT
SAMPLING

ANALYSIS REPORT

PINE CREEK: Lot 174 Ward St,Pine Creek 0847
PD Box 41, Pine Creek 0847
Ph (089)761 262 Fax 761 310

WOODCUTTERS JOINT VENTURE

REPORT : PC 015260 1 Page(s) Date : 18/01/89

Client reference : 13531

Cost code | NIL GIVEN

Copies to

Samples : Type Preparation code
Received : 29/12/88 -----

Analysis Code Quality Parameter Detection Units

AuCN BLEGS Prec.±10 % 0.1 ppb

FECEIVED 24 JAN 1989

ANALYSIS REPORT

REFORT : FC 015260

Page 1 of 1

	The second secon	The second control of
Samp	le A.CN*	And the control of th
- B 19	1.1	
- в 20	0.5	
·· B 21	2.5	
- B22	3.1	!
- B 23	2.3	
	<u> </u>	,
- B 25	3.8	
- B 26	2.5	· · · · · · · · · · · · · · · · · · ·
B 27	2.4	
_ B 28	0.6	
- B 29	0.8	

Data in ppm unless otherwise stated * see unit on fly sheet.

i.

FOLLOW-UP ROCK SAMPLING

A Division of Inchcape Inspection and Testing Services, Australia, Pty. Ltd.

A division of MacDonald Hamilton & Co. Pty. Ltd. (Inc NSW) The state of the s

(087) 84 3849

Cor Coonawarra & Mataram Rds, Winnellie

Fax: (087) 84 3984

ANALYTICAL REPORT No.

330.0.14.03377

THIS REPORT MUST BE READ IN CONJUNCTION WITH THE ACCOMPANYING ANALYTICAL DATA ORDER No. PROJECT

INVOICE TO:

WOODCUTTERS JOINT VENTURE PRIVATE MAIL BAG 60

WINNELLIE NT Ø821 14717

DATE RECEIVED RESULTS REQUIRED

18/03/89

ASAP

DATE No. No. OF PAGES OF RESULTS REPORTED OF COPIES 23/03/89

TOTAL No. OF SAMPLES

SAMPLE NU	IMBERS SAMPLE DESCRIPTION	Section of the sectio
22628/44	RO Prep: 829	Au, Au(1), Au(2)/309
22628/44	RO	Cu,Pb,Zn,Ag/1 81
	·	
		•
25 - 1 25 - 1	· · · · · · · · · · · · · · · · · · ·	Complete Com
RESULTS	WARKEN UKMSBY	ラッド 連載的 ななな
· · ·	PRIVATE MAIL BAG 60	
то		
ТО	WINNELLIE N.T. Ø821	操隊 ·
	WINNELLIE N.T. 0821	· of the state of
	WINNELLIE N.T. 0821	reference Section 1
[WINNELLIE N.T. 0821	ingere Section 1 Control of the Control of the Cont

RESULTS

TO

RECEIVED -3 APR 1989

AUTHORISED OFFICER

A Division of Macdonald Hamilton & Co. Pty. Ltd.

ANALYTICAL DATA

- mate 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	SAMPLEPREFI	x	A	REPORT NUM	BER	REPORT DA	TE CLI	ENT ORDER No	. F	AGE .
				0.14.0		23/Ø3/	l		1 0	
TUBE No.	SAMPLE No.	Cu	Zn	Ag	Au	'Pb	Au(1)	Au(2)		
1	22628	100	255	⟨Ø.5	<0.008	30				
2	22629	5	5	<0.5	0.022	5				
3	2263 0	50	120	<0.5	<0.008	20				
4	22631	140	200	<∅.5	0.033	35	_			
5	22632	40	30	<∅.5	0.014	5				
6	22633	75	385	⟨∅.5	0.059	35	,			
7	22634	130	225	<0.5	0.399	20	_		-	
8	22635	40	ଧ୍ୟ	<∅.5	0.010	5	_			
9	22636	15	15	<0.5	Ø.008	₹5				
10	22637	5	<5	<∅.5	Ø.ØØ8	<5				
11	22638	25	20	<Ø.5	0.012	35	*****			
12	22639	5	<5	<0.5	<0.008	⟨5		-		
13	22640	1.0	5	<0.5	0.045	<5		****		
14	22641	15	10	<0.5	<0.008	50				!
15	22642	95	410	Ø.5	<0.008	20	-	·		
16	22643	110	180	<0.5	<0.008	10	_			
17	22644	85	170	<0.5	<0.008	<5	11.00			1/00
18									The state of the s	
19								/5.7	RECE	IVED
20								8-	-3 A	R 1989
21		.,,				:				
22		1						-	2077	
23	DETECTION	5	5	0.5	0.008	5	0.008	0.008		
24	UNITS	PPM	PPM	PPM	PPM	PPM	PPM	PPM		
25	METHOD	101	101	101	309	101	309	309		

Results in ppm unless otherwise specified

T = element present; but concentration too low to measure

X = element concentration is below detection limit

= element not determined

AUTHORISED --- OFFICER ---

FOLLOW-UP STREAM SEDIMENT SAMPLING

A Division of Incheaps Inspection and Testing Services, Australia Pty Ltd. A division of MacDonald Hamilton & Page 19

A division of MacDonald Hamilton & Co. Pty. Ltd. (Inc. NSM)

(889) 84 3849

Cnr Coonawarra & Mataram Rds, Winnellie

330.0.14.03385

THIS REPORT MUST BE READ IN CONJUNCTION WITH THE ACCOMPANYING ANALYTICAL DATA

INVOICE TO:

(agriculture)

WOODCUTTERS JOINT VENTURE PRIVATE MAIL BAG 60

WINNELLIE NT 0821 ORDER No. PROJECT 14768

a samplement planting management of the sample of the samp DATE RECEIVED RESULTS REQUIRED

25/03/89 ASAP

No. No. OF PAGES DATE REPORTED OF COPIES OF RESULTS 06/04/89

TOTAL No. OF SAMPLES

	2			41 - 大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大
_	SAMPLE NUN	A	SAMPLE DESCRIPTION	ELEMENT/METHOD
	22645/48		RC Prep; 012,014,017	Au,Au(1),Au(2)/309
	22645/48		RC	Cu,Pb,Zn,Ag/101
	117/153		SO Prep: 017	Cu,Pb,Zn/101
	117/153		SO SO	Au/326,As/114
ı				
			AND	DEMARKO
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 200 - 100	受験的は、3~1993年で発展的研究というできた。1985年では、1985年には、198	REMARKS

RESULTS

TO

WARREN ORMSBY WOODCUTTERS JOINT VENTURE

PRIVATE MAIL BAG 60 WINNELLIE N.T. 0821

A4400488888

y negypter (1997) Her ved greid State (1997) and the control of th

RESULTS TO

RESULTS

TO - 510 d ab

ANALYTICAL DATA

	SAMPLE PREFI	X		REPORT NUME	BER	REPORT DA	TE CLI	ENT ORDER No	Р	AGE
	;		330	0.0.14.0	3385	Ø6/Ø4/			1 0	F 2
TUBE No.	SAMPLE	Cu	Zn	As	Ag	Au	Au	Pb	Au(1)	Au(2)
1	\	I		. 1	1		, ι	•	· I	1
2	•			,	•					
3	• \ • ·			•						
4	Ì					i	-			
5	117	15	90	20			0.002	65		_
6	118	15	100	9	****	· _	0.002	95	_	
7	119	20	65	16	-		0.001	40		
8	120	20	85	1.7		_	<0.001	45		****
9	121	20	35	8	_		<0.001	25		****
10	122	15	40	13			0.002	35	_	_
11	123	15	115	22	u-n	_	0.002	75	****	****
12	124	25	170	19			0.002	115		
13	125	10	55	6	_	*****	<0.001	40		
14	126	20	65	16	****	_	<0.001	45	a+10	Lis
15	127	20	65	12			<0.001	50	****	-
16	128	30	155	12	_		<0.001	90		_
17	129	10	70	8		*****	<u><0.001</u>	40	****	
18	130	20	<5	15	***	_	0.002	15		<u> </u>
19	131	~ 25	10	16	***		0.002	1.5		
20	132	20	15	19	_	JAN	0.001	25		
21	133	40	65	16			0.014	50		
22	134	35	5Ø	15			0.001	35	Head	
23	135	30	40	26			0.002	30		
24	136	30	35	23	_		0.006	35	_	_
25	137	25	25	6			0.002	20	27 0.1 37 0 1 A	

Results in ppm unless otherwise specified

T = element present; but concentration too low to measure

X = element concentration is below detection limit

= element not determined

AUTHORISED

ANALYTICAL DATA REPORT NUMBER REPORT DATE :

	SAMPLEPREFI			3.0.14.0		Ø6/Ø4/	1		2 °	
TUBE No.	SAMPLE No.	Cu	Zn	As	Ag	Au	Au	Pb	Au(1)	Au(2)
1	138	315	155	9			0.001	160		
2	139	20	15	6		****	0.014	100	_	
3	140	20	35	6	-		0.001	20		
4	141	110	80	23		_	0.002	20		***-
5	142	15	5	13	-	****	0.002	25		
6	143	20	15	23		_	<0.001	10		
7	144	30	65	18		,	0.001	45	****	
8	145	15	5Ø	21	***	_	<0.001	30		
9	146	25	15	48	****	_	0.001	15	****	
10	147	25	15	4		****	0.001	1.0		****
11	148	25	<5	12			0.001	10	***	
12	149	20	<5	5		<u>-</u>	0.005	5		
13	150	30	< 5	1.0			0.002	10	***	
14	151	20	5	23			0.004	15		
15	152	25	<5	12	,,,,	aaren	Ø.ØØ3	10		
16	153	20	20	7			0.001	10	_	
17										
18										<u> </u>
19			.,							
20				<u></u>						
21			·.							
22										
23	DETECTION	5	5	1.	0.5	Ø.ØØ8	0.001	5	0.008	0.008
24	UNITS	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM
25	METHOD	101	101	114	101	309	326	101	309	309

Results in ppm unless otherwise specified

The element presents but concentration too low to measure

Xill element concentration is below detection limits.

	. ಫ	<u> </u>				⊒		
·	131 • 05					131° 10'		
					!			
						-		
	· · · · · · · · · · · · · · · · · · ·			7			<u></u>	<u> </u>
				(
				\	,			ľ
13°05'		1///	 	/			 	13° 05
			1	/			1	
				E	A 5678	3		
		EL			l r		<u> </u>	
		4424		!				
,			\/\//	1				
			V////			 	<u> </u>	
•		Y///	1/					
			//					
			ELA					
		1	5678					
	WO	ODCUTTERS O						
		<u> </u>						
			Fi	•				
			EL 4511					
13° 00°			1			·		13* 00
		DATCHELOR ROAD	K	:				
		CHELOR						
•		SATU		·				
,	7							
	N.,				_			
								,
*** *						•		<u> </u>
		Γ				<u></u>		.,
\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			Wſ	DODCU.	TTFRS	MI	NE	
	·		,					
			1	MAP Ref.	NOONA	MAH 8/	5	
		į	•	, . 	·	- + -		٠.
				ļ.				
				ļ.			,	
l				1				iG 1 ·

ENCLOSURE 1

GEOLOGY AND SAMPLE LOCATION MAP

EL4424

CR1989-0383