ANNUAL REPORT AND
RELINQUISHMENT REPORT

EXPLORATION LICENCES
7967 AND 9149

AUGUST 1997

D FOLLINGTON
PNC EXPLORATION (AUSTRALIA) PTY LTD.
SYDNEY OFFICE
This report summarises exploration work carried out within Exploration Licences 7967 and 9149, for the four years of tenure, which was terminated on 24th March 1997. The principal target was unconformity-related uranium mineralisation, and in the Arunta Block, two possible unconformities are present. In addition, documented uranium occurrences in the Arunta Block range from pegmatite-related, to skarn-related, to fault-controlled; indicating that uranium has been mobile in the system. A number of highly uraniferous granites are also known. These similarities led to a reconnaissance exploration programme in 1992.

Following the discovery of the Yambla mineralisation during 1992, potential host sequences were taken up under licence. Exploration involved a range of techniques including follow-up of anomalies generated from airborne geophysical surveys, and grid-based evaluation of significant identified prospects. This
This report summarises exploration work carried out within Exploration Licences 7967 and 9149, for the four years of tenure, which was terminated on 24th March 1997. The principal target was unconformity-related uranium mineralisation, and in the Arunta Block, two possible unconformities are present. In addition, documented uranium occurrences in the Arunta Block range from pegmatite-related, to skarn-related, to fault-controlled; indicating that uranium has been mobile in the system. A number of highly uraniferous granites are also known. These similarities led to a reconnaissance exploration programme in 1992.

Following the discovery of the Yambla mineralisation during 1992, potential host sequences were taken up under licence. Exploration involved a range of techniques including follow-up of anomalies generated from airborne geophysical surveys, and grid-based evaluation of significant identified prospects. This evaluation including detailed mapping, sampling, trenching, ground-based geophysical surveys, and subsequent drilling. Additional research focussed on the age dating of mineralisation from various prospects, and the study of the uraninite distribution at the Yambla Prospect.

As the result of extensive prospect work during the 1993, 1994 and 1995 field seasons, it was recommended that several EL 7967 prospects be drill tested in the following order of priority:

1. Yambla
2. Pony
3. Haddock

Little exploration was warranted on EL 9149, and consequently no recommendations have been made for further work in this area.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Location and Access</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Tenure</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Previous Exploration</td>
<td>2</td>
</tr>
<tr>
<td>1.4 Exploration Target</td>
<td>2</td>
</tr>
<tr>
<td>2.0 REGIONAL GEOLOGY</td>
<td>3</td>
</tr>
<tr>
<td>2.1 Structure and Metamorphism</td>
<td>3</td>
</tr>
<tr>
<td>2.2 Stratigraphy</td>
<td>4</td>
</tr>
<tr>
<td>2.3 Igneous Rocks</td>
<td>4</td>
</tr>
<tr>
<td>3.0 EXPLORATION WORK</td>
<td>5</td>
</tr>
<tr>
<td>3.1 Reconnaissance Surveys</td>
<td>6</td>
</tr>
<tr>
<td>3.2 Geological Mapping and Sampling</td>
<td>6</td>
</tr>
<tr>
<td>3.3 Trenching</td>
<td>6</td>
</tr>
<tr>
<td>3.4 Drilling</td>
<td>7</td>
</tr>
<tr>
<td>3.5 Radiometric Surveys</td>
<td>7</td>
</tr>
<tr>
<td>3.6 Rehabilitation Works</td>
<td>7</td>
</tr>
<tr>
<td>4.0 RESULTS</td>
<td>8</td>
</tr>
<tr>
<td>4.1 Prospect Work</td>
<td>8</td>
</tr>
<tr>
<td>4.2 Aerial Surveys</td>
<td>8</td>
</tr>
<tr>
<td>4.3 Prospecting and Mapping</td>
<td>8</td>
</tr>
<tr>
<td>4.3.1 Yambla Prospect</td>
<td>9</td>
</tr>
<tr>
<td>4.4 Geophysics</td>
<td>9</td>
</tr>
<tr>
<td>4.5 Age Dating</td>
<td>10</td>
</tr>
<tr>
<td>4.6 Assessment of Yambla Uraninite Distribution</td>
<td>10</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Project Location Map</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>Geological map showing Precambrian rocks of north and western Australia</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>Regional Map of the Arunta Inlier</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>Structural Elements of the Harts Range Area</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>Simplified Geology of the Harts Range</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>Part EL 7967 Geology</td>
<td>9</td>
</tr>
<tr>
<td>9.</td>
<td>Yambla Simplified Geology and Trench Locations</td>
<td>9</td>
</tr>
<tr>
<td>10.</td>
<td>Schematic Relationships - Yambla</td>
<td>9</td>
</tr>
<tr>
<td>11.</td>
<td>Geology Map - Yambla Grid</td>
<td>9</td>
</tr>
<tr>
<td>12.</td>
<td>Yambla Drill Holes South - North Cross-Section</td>
<td>9</td>
</tr>
</tbody>
</table>

LIST OF APPENDICES

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Correspondence from Chief Government Geologist (NTDME)</td>
</tr>
<tr>
<td>2.</td>
<td>Correspondence from Station Manager (Ambalindum Station)</td>
</tr>
<tr>
<td>3.</td>
<td>Correspondence from Senior Geologist - Uranium (Paladin Resources N.L.)</td>
</tr>
</tbody>
</table>
Promising uranium mineralisation (named the Yambla Prospect), was discovered during reconnaissance work in the Harts Range region in the eastern Arunta Inlier, some 200 kilometres east of Alice Springs, at the end of the 1992 field season (Figure 1). During the summer of 1992, several short field trips were made to examine the mineralisation and to outline its occurrence. The mineralisation appeared to be a high temperature vein-type occurrence, hosted in a para-amphibolite of the Irindina Gneiss. The veins consist of uraninite, with minor secondary uranium (compreignacite) on uraninite fragment surfaces, and appear to be intimately associated with vein quartz, apatite and ilmenite. Uraninite veins were discovered over an area of approximately 400 metres by 100 metres, but was still open to the north and south.

Following the discovery of the Yambla Prospect, PNCA applied for, and subsequently granted on 26th March 1993, seven Exploration Licences covering approximately 2,214 square kilometres. These included EL 7967, of approximately 280 square kilometres (87 blocks). Following the granting of a number of other tenements, on 1st August 1995 the Boots tenement (EL 9149) was granted, consisting of approximately 58 square kilometres (18 blocks).

The Aboriginal Areas Protection Authority (AAPA) in Darwin was contacted with regard to site clearance matters in the Arunta Region. An application was made for an Authority Certificate in January 1993, covering approximately 90 square kilometres of EL 7967, containing the Yambla vein mineralisation. Two Aboriginal site surveys were undertaken by their Alice Springs office in March 1993, and an Authority Certificate covering non ground disturbing work in this area, and costeasting and drilling at the Yambla prospect was received in early May 1993.

A 10,000 line kilometre radiometric/magnetic survey was flown over portions of the project area in late March, which generated a substantial number of uranium and total count anomalies worthy of follow-up in 1993.

Field work during the 1993, 1994 and 1995 field seasons largely involved follow-up of airborne anomalies and grid-based evaluation of Yambla and other significant prospects. Of particular note was the detailed evaluation of 33 trenches excavated at the Yambla and a number of other prospects within EL 7967. No work was conducted during the 1996 field season, immediately following which, a brief field visit facilitated completion of necessary rehabilitation of exploration areas.

1.1 LOCATION AND ACCESS

EL's 7967 and 9149 are located in the Harts Range region, approximately 200 kilometres east of Alice Springs (Figure 1). Access to the area from Alice Springs, is by public and station roads via either Arltunga, then Claraville Homestead and Brumby Bore; or north then east via the Stuart and Plenty Highways.
PNC's base camp was 4 kilometres WNW of Harding Springs. Claraville, Mt.Riddock and Indiana Homesteads occur within the general region, and all have serviceable airstrips. Most other outlying airstrips are not maintained.

Access within the tenement area is by a limited network of well maintained station tracks, and some overgrown prospectors' tracks. Much of the area is inaccessible by vehicle, due to the very rugged terrain. Relief is typically 100 to 200 metres, but reaches 400 metres on nearby EL's.

1.2 TENURE

EL's 7967 and 9149 covered areas of 280 and 58 square kilometres respectively, though EL 7967 was later reduced to 138 square kilometres. EL 7967 was granted on March 26, 1993; and EL 9149 was granted on January 8, 1995. Both EL's were subsequently relinquished on March 24, 1997.

1.3 PREVIOUS EXPLORATION

Previous exploration documented in NTDME reports and open file data, has been chiefly aimed at mica, gemstones, base metals (mainly in Division 1), and gold near Arltunga (in Division 3 and associated structures). The majority of exploration has been carried out by prospectors, and thus little systematic exploration has been previously undertaken. Previous exploration for uranium in the region of the Arunta Block has focused on the marginal and internal late Proterozoic basins, and not at the early Proterozoic Arunta Block.

1.4 EXPLORATION TARGET

Research by PNC Perth (New Projects), has identified the following characteristics of the Arunta Block which are similar to those sequences hosting unconformity-related uranium mineralisation (ie. the existence of an earlier (felsic) basement with overlying pelitic and calcareous meta-sediments, often in the form of a mantled gneiss dome, that is in turn unconformably overlain by a sandstone sequence. In the Arunta Block, two possible unconformities were present, at the base of Division 3 (ca. 1800 Ma, ie. a metamorphosed Kombolgie equivalent); or the base of the late Proterozoic basins (Amadeus, Ngalia and Georgina Basins (ca 1000 Ma, ie. Coolbro age). In addition, documented uranium occurrences in the Arunta Block range from pegmatite-related, to skarn-related (Mary Kathleen-type ?), to fault-controlled; indicating that uranium has been mobile in the system. A number of highly uraniferous granites are also known. These similarities led to a reconnaissance exploration programme in 1992.
Following the discovery of the Yambla mineralisation during 1992, potential host sequences were taken up under licence. Exploration in the Harts Range area had identified four distinct styles of mineralisation on the basis of mineralogy and stratigraphic associations. All appear to be older than the Alice Springs Event (ca. 350 - 400 Ma). The four types are the Yambla-type, the Moondyne-type, the Garnet-type and the Pegmatite-type; as documented previously (PNC Perth, The Harts Range Project, 1993 Annual Report, Section 3.0). The focus of initial exploration efforts were the Yambla and Moondyne-type sequences. Based upon subsequent results, and the similarities between several types of targets, exploration targets were then classified as either: Uraninite type as occurs at the Yambla Prospect; Epidote type, previously known as the Moondyne type and the Garnet type; Retrogressed type; or the Pegmatite type (PNC Perth, The Harts Range Project, 1995 Annual Report, Section 3.0).

2.1 REGIONAL GEOLOGY

The Harts Range Project area is situated at the SE corner of the Arunta Inlier. This inlier, comprising a complex assemblage of high grade metamorphic rocks of both sedimentary and igneous origin, is located at the southern margin of the North Australian Craton, and may straddle the boundary with the Central Australian Craton further to the south (Figure 2). The relationship between these two Cratons is masked by the Neoproterozoic Amadeus Basin.

The Arunta Inlier merges with the Palaeoproterozoic Granites-Tanami Block to the NW, and is bound on all other sides by Palaeozoic Basins (ie: the Canning, Wiso, Georgina and Eromanga Basins)(Figure 3).

2.1 STRUCTURE AND METAMORPHISM

The Arunta Inlier comprises a complex assemblage of sedimentary, igneous and high grade metamorphic rocks transected by a network of regional and local scale EW and NW-SE anastomosing faults (Figure 4). These structures are a focus for repeated north over south thrusting during the Proterozoic, and again during the Carboniferous Alice Springs Orogeny. The latter event is characterised by intense retrogression focussed along the EW structures, particularly in the Central Province, and by more diffuse but widespread retrogression in the Harts Range region. Complex interleaving of metamorphic basement and Amadeus cover sequences, has occurred along the southern margin of the Arunta Inlier (Southern Province). Metamorphic grades typically range from prograde greenschist to granulite facies in the Northern Province, and amphibolite to granulite facies in the Central and Southern Provinces, in the latter areas, greenschist facies metamorphism is restricted to zones of retrogression.
Geological map showing Precambrian rocks of north and western Australia (after Palfreyman et al. 1976 and Myers & Hocking 1988). The subdivision of the Proterozoic era is based on that proposed by Dunn et al. (1966), and refined by Page (1988), the ~1850 Ma Barramundi Orogeny forming the break between Early and mid-Proterozoic (see Page 1988).
Fig. Regional map of the Arunta Inlier.
2.2 STRATIGRAPHY

A stratigraphic framework developed for the Proterozoic rocks of the area, is based on classifying the older units into Division 1 rocks, the younger units into Division 2 rocks, and the post-orogenic platform cover sediments into Division 3 rocks. Division 1 (Strangways Metamorphic Complex: PS), Division 2 (Harts Range Group: PH), and Division 3 have been further sub-divided into formations, and rarely members, many of which are only informal. Based upon detailed local knowledge of the geology, along with the interpretation of airborne magnetic and spectrometric data where available, the local stratigraphy has been further subdivided and defined as detailed in previous documentation (PNC Perth, The Harts Range Project, 1993 Annual Report, Section 2.0).

Division 1, comprising the Strangways Metamorphic Complex (PS) and other granulite facies rocks, in the oldest recognised suite in the Arunta Block. The Strangways Metamorphic Complex is a complex package of lithologies that, broadly speaking, comprise a lower bi-modal volcanic suite (eg. Ongeva Granulite), followed by pelitic and calcareous sediments (eg. Cadney Metamorphics), interlayered with marginal felsic gneiss. The felsic gneisses can be further subdivided into Bungitina equivalents, which contain interlayered mafic granulites, and Entia equivalents, which are predominantly felsic gneisses and granites. In the tenement area, the Strangways metamorphic Complex is represented by Bungitina Metamorphics (PSb) along the south-western margin, and by the Entia Gneiss (Pse) forming the core of the Entia Dome (Figure 5).

Division 2, locally represented by the Harts Range Group, is a sequence of predominantly pelitic and semi-pelitic gneisses, and amphibolites, with calcareous gneisses locally of importance. The Harts Range Group is divided into the lower Irindina Gneiss (PHi), and the upper Brady Gneiss (PHb). Further overlying or equivalent units probably occur in the poorly exposed areas to the east and north-east. The sequence overlies Division 1 with a tectonically-altered unconformity, which in places in intruded by the Bruna Gneiss. It is structurally simpler and less metamorphosed (amphibolite v. amphibolite/granulite facies), than Division 1.

Division 3 rocks have been identified in at least three age groups, as detailed in previous documents (PNC Perth, The Harts Range Project, 1995 Annual Report, Section 2.0). The possibility of the Harts Range Group as a cover sequence, is an important consideration at the Yambla Prospect.

2.3 IGNEOUS ROCKS

The Arunta Inlier has a complex and virtually continuous history of igneous activity. There are at least six major recorded felsic igneous intrusive episodes. Of these the Ngadarunga Granite (1880 Ma), the Napperby-Huckitta-Jervois Granites (1780-1760 Ma), and the Yarangunyi Granite (1600-1570 Ma), and the most extensive and geologically significant.
Field work during the 1993 field season included:
- helicopter-supported follow-up of 338 airborne radiometric anomalies resulting from the previous aerial survey;
- follow-up of the Yambla uraninite vein mineralisation found in late 1993;
- regional geological reconnaissance;
- acquisition and processing of approximately 5,000 line kilometres of airborne radiometrics/magnetics by Geoterrex in December 1993;
- the clearance of five areas by the AAPA in March 1994.

Follow-up of the 338 radiometric anomalies resulted in the discovery of a number of interesting prospects. The survey also showed a distinct anomaly over the Yambla prospect. The Yambla uraninite mineralisation was the focus of the majority of the field work, and included the construction of six trenches of 0.3 to 1.2 metres in depth, across the main zone of surface mineralisation. This work has shown the uraninite mineralisation to be within a relatively narrow (approximately 50 metres wide) zone, extending over a strike length of approximately one kilometre. The uraninite mineralisation occurs as discreet "eggs" of 2-8 centimetres in diameter, hosted within weathered para-amphibolite. The vein mineralisation appears to be intimately associated with white scapolite and albrite alteration, plus vein quartz, apatite and ilmenite.

Field work during the 1994 field season included:
- helicopter-supported follow-up of 639 airborne radiometric anomalies;
- further follow-up of the Yambla uraninite mineralisation;
- regional geological reconnaissance and radiometric prospecting over all tenements;
- acquisition and processing of approximately 2,600 line kilometres of airborne radiometrics/magnetics in December 1994;
- the clearance of further areas by the Aboriginal Areas Protection Authority where ground disturbance was planned.

Significant results include the confirmation of uraninite mineralisation over a strike length of one kilometre at Yambla, the discovery of two new uraninite prospects, and the discovery of hydrothermal uranium mineralisation in three other areas.

Field work during the 1995 field season included:
- Ground follow-up of results of the December 1994 airborne radiometric/magnetic survey, forming the basis of the exploration work.
- Further trenching and preliminary drill assessment of alteration and uranium mineralisation at Yambla.
- Further assessment of key prospects defined in 1993-4, involving detailed mapping, grid-based geophysics and trenching (Figures 6 & 7).
Preliminary assessment by mapping, geophysics and selected trenching of previously untested 1994 prospects, and assessment of new anomalies located during general prospecting.

In addition, there was subsidy of geochronological studies of selected mineralisation styles utilising the SHRIMP technique. Preliminary PIMA analysis on altered-mineralised rock at Yambla was also conducted. Several Aboriginal Site clearance surveys were also completed, through the Alice Springs office of the AAPA.

Immediately following the 1996 field season, during which time no exploration activities were undertaken on the concerned tenements, EL 7967 was rehabilitated where necessary. EL 9149 required no rehabilitation measures, as no ground-disturbing work had been undertaken there, nor any campsite established.

3.1 RECONNAISSANCE SURVEYS

Promising uranium mineralisation (named the Yambla Prospect)(EL 7967), was discovered during reconnaissance work in the eastern Arunta Inlier, at the end of the 1992 field season. During the summer of 1992, several short field trips were made to examine the mineralisation and to outline its occurrence.

3.2 GEOLOGICAL MAPPING AND SAMPLING

Detailed mapping at 1:1,000 scale was conducted over the following grids within EL 7967 during 1994: Casper, Culay, Felspar, Goanna, Horse, Pony, Quartz, Ryoma, Yambla North, Yambla South, Garnet, and Moondyne-Swallow.

During 1995 the central portion of the Yambla grid covering the Yambla amphibolite outcrop (Figure 8), was refurbished prior to mapping the surface expression of the alteration envelope (Yambla Trend).

3.3 TRENCHING

A total of 33 trenches, including 16 on the main Yambla grid, were excavated during 1994. The Yambla trenches were located along the full length of the 1.5 kilometre-long Yambla Trend. Typical dimensions of these trenches, excavated at Yambla and other significant prospects, were 12 x 1 x 1.5 metres. The trenches were mapped at a scale of 1:50 or less. During the 1995 field season, the number of trenches excavated at Yambla was increased to 22.
3.4 DRILLING

At Yambah Prospect, a programme of diamond drilling was carried out with two main aims. Firstly, two profiles were drilled to test the down-dip stratigraphy of the Yambah Amphibolite, to test the western side of the Trench Fault, and to attempt to locate the margins of the alteration/mineralisation zone. Secondly, several holes were placed to test immediately below surface mineralisation, to investigate the extent and depth of white alteration. This was hoped to confirm the style of mineralisation, and to gain some estimate of the degree of weathering and possible leaching of near-surface uranium. (Refer to Figure 5).

3.5 RADIOMETRIC SURVEYS

Scintillometer (lead-shielded SRAT-SPP2) readings were taken on 0.25 metre centres from all trenches with anomalies, and at 0.5 metre centres for trenches without known anomalies. Results of radiometric surveys conducted at each prospect within EL 7967, are detailed in previous reports type (PNC Perth, The Harts Range Project, 1995 Annual Report, Section 4.I).

3.6 REHABILITATION WORKS

A five day field trip was undertaken at the end of March 1997, in order to rehabilitate EL 7967. This work included:

- The removal of 77 core trays (438 metres of NQ core from 5 1995 drill holes) to the NTDMNE core storage depot in Alice Springs, as requested by the Chief Government Geologist in his earlier correspondence (Refer Appendix 1).
- Inspection and final clean-up where necessary, of the Yambah base camp site. All camp buildings/facilities were left standing, as responsibility for the camp has been transferred to Ambalindum Station, according to the request of the Station Manager (Refer Appendix 2). Similarly, the station also requested in writing that all drill site access roads on the Yambah Prospect left open, hence these were not rehabilitated.
- Inspection and final clean-up where necessary of the thirteen diamond drill hole sites at the Yambah Prospect.

Previously, during the 1995 field season, all drill hole collars had already been capped below ground level, mud pits back-filled and sites cleared of rubbish. All costeans/trenches on EL7967 had also been back-filled during previous years. An inspection of several of these former costean sites found them in good condition, with substantial regrowth of grasses.
The remaining core (591 metres from 8 drill holes) from the 1995 drilling programme, not required by the NTDME, was left on site in the existing core shed at the request of Paladin Resources NL, which had recently applied for a licence covering the Yambla Prospect. Paladin agreed to take full responsibility for this core and storage shed (Refer Appendix 3).

As a consequence of these works and agreements, all rehabilitation required on EL's 7967 and 9149, was completed.

Within EL 7967, grid-based exploration was conducted at Yambla and seven other prospects as detailed in previous reports (PNC Perth, The Harts Range Project, 1995 Annual Report, Section 4.1). This generally included mapping and sampling, trenching, and geophysics where appropriate. In addition, Yambla was also the subject of a diamond drilling programme, also detailed previously. This totalled 1028.3 metres in 13 holes with an average depth of 79 metres. The Hof Prospect on tenement boundaries (EL 7967 and EL 7991) was also the subject of gridding, trenching and sampling.

4.1 PROSPECT WORK

The main focus of prospect work was the Yambla Prospect, though the Pony, Hof, Bonnie and Haddock prospects were also the subject of considerable work. Lesser amounts of work were undertaken on new grids at Zephyr and Yambla. Infill and follow-up work on old grids was conducted at Culay, Garnet, Swallow, and Moondyne. Details of prospect work are outlined in previous reports (PNC Perth, The Harts Range Project, 1995 Annual Report, Section 5.4).

4.2 AERIAL SURVEYS

The airborne radiometric and magnetic survey conducted during December 1994 yielded only a small number of low priority anomalies within EL 7967. Anomalies awaiting follow-up from the two previous airborne surveys, involving both tenements (EL's 7967 and 9149), unfortunately yielded no significant anomalies. Terrain effect generally accounted for most of the spurious anomalies, with contrast effects between adjacent rock types causing most of the remainder.

4.3 PROSPECTING AND MAPPING

Within EL 7967, numerous areas in the vicinity of Hof and Bonnie were checked during the mapping of the detailed grids. In particular, the Harding Springs Fault was extensively traversed to find repetitions of the Bonnie showing.
A minor anomaly, one kilometre east of Bonnie was thus located, however the anomalous area was too small (2 square metres) to warrant detailed investigation. The Verdant showing was visited to evaluate the significance of the anomaly identified in 1994, and appears to be related to a pegmatite dyke. Traverses were carried out at Haddock, with two small patches of anomalous carbonate-epidote material being located. Detailed geological descriptions of all trenches within EL 7967, along with geological sections, are given in previous reports (PNC Perth, The Harts Range Project, 1994 Annual Report, Section 4.1).

EL 9149 was the subject of prospecting and mapping on account of its proximity to the Yambla prospect. This work concentrated on several stratigraphic and structural elements as detailed in previous reports (PNC Perth, The Harts Range Project, 1995 Annual Report, Section 4.5.12). No significant radiometric anomalies were located during prospecting, and prospecting of the Boots Fault failed to locate any significant alteration.

4.3.1 YAMBLA PROSPECT

On the main Yambla Grid (Figure 11), a detailed search of the ends of the Yambla Trend was made to locate new hot-spots. New clusters of uraninite/brannerite were located immediately adjacent to mapped hot-spots, but no extensions to the length of the trend were found.

A summary of results from the mapping of the Yambla trenches (particularly Trenches 4 and 7), is provided in previous reports (PNC Perth, The Harts Range Project, 1994 Annual Report, Section 4.1.1).

The results of mapping during the 1995 field season have been compiled on 1:1,000 scale maps: Yambla North, Yambla East, Yambla South, and Yambla Middle. The latter two maps also include a 200 metre-wide extension to the west of the original detailed grid, which was originally mapped at 1:2,000 scale and then re-compiled at 1:1,000 scale.

The internal stratigraphy of the Irindina Gneiss was refined, largely as a result of the 1995 diamond drilling at Yambla (Figure 12)(PNC Perth, The Harts Range Project, 1995 Annual Report, Section 2.2.3). New subdivisions constitute the Riddock and Yambla Amphibolite members, and the underlying Mt.Muriel Member.

4.4 GEOPHYSICS

The Yambla SW extension was covered by detailed ground spectrometrics (10 x 12.5 metre), and ground magnetics (10 x 50 metres). A total count channel spike in the U (ekv) ground spectrometry contour map is due to instrumental error. Extensive ground traversing failed to locate a surface anomaly. The Th-K anomaly through the middle of the grid is due to sandy creek alluvium. Ground magnetics isolated a dipole anomaly associated with Riddock Amphibolite.
Yambla Drill Holes Sth-Nth X-Section
DDH Vertical Projection

NORTH(m)

Elevation (M)

Riddock units
Yambla amph units
Mt Muriel units

Left side: Zone of gamma peaks
Right side: White-Dark alt (0.5m wk --> 5m strong)

AMG CO-ORDINATES USED FOR THIS PROFILE: 512330 7426186 512620 7427250

Vertical exaggeration 2X

CO-ORDINATED DRAFTING SERVICES PTY LTD 4743388
PNG: 3750DRILL.png DGN -11-959MB

Figure 12
4.5 AGE-DATING

During 1995, thirteen samples of mineralisation from various prospects in the Harts Range area were age dated using lead isotopes analysed by the SHRIMP microprobe. A pooled 350 Ma date has been estimated for the Yambla mineralisation by two Pb-Pb and one U-Pb determinations. This age is apparently the age of the present mineralisation.

4.6 ASSESSMENT OF YAMBLA URANINITE DISTRIBUTION

An assessment of the distribution of uraninite "eggs" was undertaken, utilising both the plotted locations of these nodules found during mapping, and from the distribution of nodules within Trench 4 at Yambla (Figure 9). The surface hot-spots exhibited clustering of 20 metres along strike and 12 metres across strike, with a high (70 %) nugget effect. As the distribution of nodules in the trench wall was found to be totally random, a "clustered drillhole approach" was recommended to further test the prospect (ie. clusters of 4-5 holes may be drilled to test the close order continuity of mineralisation) (PNC Perth, The Harts Range Project, 1995 Annual Report, Appendix 9).

The uraninite nodules, up to 11 centimetres in diameter, are almost homogeneous, except for secondary uranium minerals developed on their surface and along micro-fractures. It was found that the uraninite nodules are distributed over a kilometre-long zone trending north-south, parallel to the strike of the host sequence. They were found to be intimately associated with a plagioclase-scapolite phase (white phase), and an amphibole-rich phase (dark phase), in an amphibolite host rock (Figure 10). The uraninite is thought to have been produced by high temperature mineralising fluids, dated at approximately 360 Ma. This mineralising event probably corresponds with the Carboniferous Alice Springs Orogeny, given the results of radiometric age dating, and the chondrite-normalised REE pattern and high thorium content of the uraninite. The latter resemble uraninites from vein type and pegmatite deposits. The white and dark phases probably resulted from metasomatic replacement during injection of a high temperature (above 400 degree) fluid along fracture and metamorphic foliation planes. Around the Yambla area, four orogenic and/or deformation events have been distinguished. Last was the Alice Springs Orogeny, during which low-angle faults and shear zones were formed. The results of this study have since been published in greater detail (Resource Geology, Vol.47, No.2).
APPENDICES
Mr K E Fullwood
Regional Exploration Manager
PNC Exploration (Australia) Pty Ltd
PO Box 1418
BOORAGOON WA 6154

Dear Mr Fullwood

RE: Exploration Licence 7967 - Disposal of Drill Core

I refer to your letter of 14 March 1997 concerning the finalisation of your companies drilling activities on EL 7967.

A thorough review has been made of the annual reports on this licence and we believe that it is important that a representative sample of drill core be retained for future reference.

In accordance with Section 37 of the Mining Act you are requested to deliver to the Mines and Energy Core Store, Power St, Alice Springs, all core from drill holes on the Yamble prospect numbered HRD 0001, HRD 0004, HRD 0008, HRD 0009 and HRD 0012.

The drill core from all other holes may be disposed of, taking account of the environmental requirements for safe disposal.

Please advise Mr Martin Cardona, the Core Store Supervisor (Tel: 8951 5312), in advance of core delivery to ensure that staff are present to accept the core.

Thanking you for your assistance

PAUL LE MESSURIER
Chief Government Geologist
21 March 1997
Dear Mr. Fullwood,

I am writing in relation to the old camp site at Hardy Springs. Now that the site is no longer dry and used for PX exploration, Ambalindum station is more than happy to take over the site, as it will come in handy when mining that area. Also, the tracks put in by PX will come of use to the station as access roads and Mustony tracks. Do we would like to keep them open. Do as a result the station will take over the responsibility of the site at Hardy Springs.

Thank you,
Manager Tim Edwards

Any other queries, feel free to call 089 567 620
15 April 1997

Mr K Futwood
PNC Exploration
37 Shields Crescent
BOORAGOON
WA 6154

Dear Kevin

In regard to conversations in March, Paladin Resources will take over all the responsibility of all the core that remains on site at the Yambla Prospect, ex-EL 7987.

Yours sincerely
Paladin Resources NL

J DRAKE-BROCKMAN
Senior Geologist - Uranium