BILLITON AUSTRALIA
THE METALS DIVISION OF
THE SHELL COMPANY OF AUSTRALIA LIMITED

PARTIAL RELINQUISHMENT
REPORT FOR

EL 7666 - COOMARIE WEST

AUTHORS: Grant Williamson
 Stewart Capp

DATE: June, 1994

REPORT NO.

COPY NO.

DISTRIBUTION:

Original: NT Dept. of Mines and Energy
Copy 1: Billiton - Melbourne
Copy 2: Billiton - Darwin
CONTENTS

SUMMARY

1.0 Introduction
 1.1 Tenement Status
 1.2 Location and Access
 1.3 Physiography

2.0 Geology
 2.1 Regional Geology
 2.2 Local Geology
 2.2.1 Stratigraphy
 2.2.2 Regolith

3.0 Previous Investigation

4.0 Exploration

5.0 Environmental

6.0 References
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Tanami Tenements - Location Map EL 7666</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Geology</td>
</tr>
<tr>
<td>Figure 3</td>
<td>1993 Surface sample lines, samples locations and results</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Surface sample lines and Regolith Map</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Sample location map and results</td>
</tr>
</tbody>
</table>

APPENDICES

<table>
<thead>
<tr>
<th>Appendix 1</th>
<th>Sample Record Sheets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix 2</td>
<td>Assay Reports</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

1.1 Tenement Status

This report details all work completed and results gained by Billiton Australia, The Metals Division of the Shell Company of Australia Limited on 6 relinquished blocks of EL 7666 between 13th March 1992 and 12th March 1994.

The Exploration Licence (E.L.) 7666 - Coomarie West was granted to The Shell Company of Australia Limited on the 13th March 1992 and consisted of 12 blocks. On the 13th of March 1994 50% of the licence was relinquished in order to meet the statutory requirements of the mining act. A total of 6 blocks were relinquished, these being: 17/41, 17/42, 17/43, 18/41, 18/42 and 18/43.

1.2 Location and Access

EL 7666 is situated approximately 700 kms north west of Alice Springs or about 250 km south east of Halls Creek, WA.

Access to the tenement is poor, it is situated 30km south of the Tanami track. Access within the tenement is restricted to rare bush tracks and cross country navigation. (Refer to Figure 1.)

1.3 Physiography

EL 7666 consists mainly of an undulating to flat landscape with varying degrees of sand cover. Subcrop is apparent on some low ridges.

The main vegetation found in the area consists of spinifex, acacias and stunted eucalypts.

Average rainfall for the area is 200mm/year which falls between the months of December and February.

2.0 GEOLOGY

2.1 Regional Geology

The Granites-Tanami complex consists of Archean - ? Early Proterozoic metasediments, metavolcanics and unmetamorphosed sedimentary and volcanic rocks with intrusive Early Proterozoic and Carpentarian granites.

The Block appears to be separated from the Halls Creek Province to the northwest by a concealed northeast trending major fault, with the Block thought to merge southward into the Arunta Block.
The above concealed fault is thought to be the boundary between the unmetamorphosed Carpentarian and Adelaidean sedimentary rocks of the Birrindudu Basin and an unnamed basin. Palaeozoic marine sediments of the Wiso and Canning Basins unconformably overlie the Precambrian rocks to the east and west respectively.

2.2. Local Geology

2.2.1 Stratigraphy

The lithologies of the Killi Killi Beds (Atk) form the western portion of the Tanami Complex in the region and are equivalent to the Mt Charles Beds found towards the east. These are the oldest rocks which occur in the area. They consist of fine grained, thinly bedded to laminated cherts, phyllitic, psammitic and silicified siltstone, interbedded greywacke, siltstone and shale, schistose to amphibolitic grade metamorphic rocks; altered basic volcanics and occasional acid lavas and pyroclastics (Refer Figure 2).

Lithological and lithogeochemical information indicates a shallow marine, predominantly stable depositional environment for the Killi Killi Beds. The rocks have undergone regional greenschist facies metamorphism.

The lithologies of the Tanami complex are extensively intruded by late early Proterozoic to Carpentarian granites. The granites are spatially related to the known gold mineralization but a direct correlation between the mineralization and granitic intrusions has not to date been established.

Unconformably overlying the Killi Killi Beds are conglomerates and sandstones of the Gardiner Sandstone(Pdg), a lower member of the Carpentarian Birrindudu Group. The Gardiner Sandstone forms shallow dipping, extensive strike ridges and plateaus throughout isolated areas in the block.

The exploration tenement is extensively covered by Tertiary (?) laterite, silcrete, calcrete and Quaternary alluvial and aeolian sands and clays.

2.2.2 Regolith

The predominant regolith types of the Tanami region are considered to have formed from deep lateritic weathering which have been subsequently modified due to secondary ferruginisation, silicification and lowered water tables. It is inferred that laterite once extended across the entire area although was probably best developed over the mafic rocks and least well developed on granites and sandstones.

The ferruginous lateritic horizons observed in the tenement area to date are found on basement highs and have an approximate maximum thickness of 6m under which the zone generally passes gradationally into saprolite, within 10m of the surface.

Most of the area is covered by transported sand cover, therefore possibly diluting and hiding any anomalies (Refer to Figure 3).
4.0 EXPLORATION

During 1992 exploration was limited to two regional soil traverses conducted along existing tracks in the area (Figure: 3). Samples were separated with a magnet into magnetic and non-magnetic fractions, these were assayed separately. A total of 58 samples were collected, none of which exceeded an anomalous threshold of >3ppb Au.

Five regional soil traverses were completed over the relinquished blocks during 1993, totalling 12 kilometres. A total of 91 surface samples were collected at 100m intervals along the lines. Figure: 4 shows sample locations.

Sample media varied depending on the regolith found at each sample point. In areas of subcropping laterite or Killi Killi beds good sample could be collected, as could gravel wash areas close to subcrop. However many areas had poor sample quality with a regolith dominated by sand with only traces or no pisolithic material (Refer Figure 4). The policy adopted was to sample areas even if only a small amount of pisolithic material could be gathered.

The samples were sieved to +1mm - 10mm to remove aeolian material thus concentrating ferruginous components of the sample. Appendix 1 has sample record sheets from Coomarie West. Samples were submitted to Amdel Laboratories where each sample was crushed then analysed for Au by fire assay (1 ppb detection limit).

None of the samples collected on the relinquished blocks returned a result above the anomalous threshold of >3ppb Au.

5.0 ENVIRONMENTAL

As exploration in the reporting period was non-intrusive (no drilling, earthworks or camp establishment) no rehabilitation has been required.

6.0 REFERENCES

CAPP S C and KOERBER D 1993
Annual Report for Exploration on EL 7666 - Coomarie West Billiton Australia Report (Unpubl.)

WILLIAMSON G and CAPP S C 1994
Annual Report for Exploration on EL 7666 - Coomarie West Billiton Australia Report (Unpubl.)
<table>
<thead>
<tr>
<th>SAMPLE NO.</th>
<th>LOCATION/DEPTH (m)</th>
<th>INTERVAL (m)</th>
<th>DESCRIPTION/REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>289010</td>
<td>512 269 E 77 87 880 N</td>
<td>600</td>
<td>No mag Fos.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>289020</td>
<td>511 647 E 77 87 999 N</td>
<td>1800</td>
<td>No mag Fos.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>289030</td>
<td>511 030 E 77 86 274 N</td>
<td>2800</td>
<td>(three clips)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>289040</td>
<td>512 143 E 77 86 610 N</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>289050</td>
<td>512 610 E 77 86 228 N</td>
<td>1000</td>
<td></td>
</tr>
</tbody>
</table>

Note: All samples show no significant mineralization.
<table>
<thead>
<tr>
<th>SAMPLE NO</th>
<th>LOCATION / DEPTH (m)</th>
<th>INTERVAL (m)</th>
<th>DESCRIPTION / REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1300</td>
<td>1400</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1500</td>
<td>1600</td>
<td>S12 05E 786011N</td>
</tr>
<tr>
<td>3</td>
<td>1700</td>
<td>1800</td>
<td>No mesh</td>
</tr>
<tr>
<td>4</td>
<td>1700</td>
<td>1800</td>
<td>S12 05E 786011N</td>
</tr>
<tr>
<td>5</td>
<td>1900</td>
<td>2000</td>
<td>$51 30E 788778N</td>
</tr>
<tr>
<td>6</td>
<td>2000</td>
<td></td>
<td><5ph Au STANDARD</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SAMPLE NO</th>
<th>LOCATION / DEPTH (m)</th>
<th>INTERVAL (m)</th>
<th>DESCRIPTION / REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>289060</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>289070</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>289080</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>289090</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>289100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMPLE NO</td>
<td>LOCATION/DEPTH (m)</td>
<td>INTERVAL (m)</td>
<td>DESCRIPTION/REMARKS</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------</td>
<td>--------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>518715-7187545</td>
<td>C, NW</td>
<td>0m - 100m</td>
<td>5cm</td>
</tr>
<tr>
<td>518715-7187545</td>
<td>C, NW</td>
<td>200m</td>
<td>5cm</td>
</tr>
<tr>
<td>518715-7187545</td>
<td>C, NW</td>
<td>300m - 400m</td>
<td>10cm</td>
</tr>
<tr>
<td>518715-7187545</td>
<td>C, NW</td>
<td>500m</td>
<td>0cm</td>
</tr>
<tr>
<td>352410</td>
<td></td>
<td>600m</td>
<td>0cm</td>
</tr>
<tr>
<td>352410</td>
<td></td>
<td>700m</td>
<td>0cm</td>
</tr>
<tr>
<td>518715-7187625</td>
<td>C, NW</td>
<td>800m</td>
<td>0cm</td>
</tr>
<tr>
<td>352420</td>
<td></td>
<td>900m</td>
<td>0cm</td>
</tr>
<tr>
<td>352420</td>
<td></td>
<td>1000m</td>
<td>0cm</td>
</tr>
<tr>
<td>352450</td>
<td></td>
<td>1000m</td>
<td>0cm</td>
</tr>
</tbody>
</table>

No 352450

<table>
<thead>
<tr>
<th>SAMPLE NO</th>
<th>LOCATION/DEPTH (m)</th>
<th>INTERVAL (m)</th>
<th>DESCRIPTION/REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>51876450</td>
<td>C, NW</td>
<td>0m - 100m</td>
<td>10cm</td>
</tr>
<tr>
<td>51876450</td>
<td>C, NW</td>
<td>200m</td>
<td>15cm</td>
</tr>
<tr>
<td>51876450</td>
<td>C, NW</td>
<td>300m</td>
<td>10cm</td>
</tr>
<tr>
<td>51876450</td>
<td>C, NW</td>
<td>400m</td>
<td>10cm</td>
</tr>
<tr>
<td>51876450</td>
<td>C, NW</td>
<td>500m</td>
<td>10cm</td>
</tr>
<tr>
<td>51876450</td>
<td>C, NW</td>
<td>600m</td>
<td>10cm</td>
</tr>
</tbody>
</table>

RA & Troy 352237 → 352450
<table>
<thead>
<tr>
<th>SAMPLE NO</th>
<th>LOCATION/DEPTH (m)</th>
<th>INTERVAL (m)</th>
<th>DESCRIPTION/REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>800m</td>
<td>10m</td>
<td>Fresh Alk rock chips + pyrite (wash from NW)</td>
</tr>
<tr>
<td>2</td>
<td>900m</td>
<td>5m</td>
<td>Fresh Alk rock chips (wash at site)</td>
</tr>
<tr>
<td>3</td>
<td>1000m</td>
<td>5m</td>
<td>Fresh Alk rock chips (nearby Alk chip lenses)</td>
</tr>
<tr>
<td>4</td>
<td>1100m</td>
<td>5m</td>
<td>As Above</td>
</tr>
<tr>
<td>5</td>
<td>1200m</td>
<td>10m</td>
<td>Sand and Fresh Alk rock float (wash from NW)</td>
</tr>
<tr>
<td>6</td>
<td>1300m</td>
<td>5m</td>
<td>As Above</td>
</tr>
<tr>
<td>7</td>
<td>1400m</td>
<td>0m</td>
<td>As Above (case 1500m 5/3/90 178819)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NO</th>
<th>LOCATION/DEPTH (m)</th>
<th>INTERVAL (m)</th>
<th>DESCRIPTION/REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>352490</td>
<td>3600m</td>
<td>0m</td>
<td>Sand with fine sand and small pebbles (Float)</td>
</tr>
<tr>
<td>1</td>
<td>3700m</td>
<td>0m</td>
<td>As Above</td>
</tr>
<tr>
<td>2</td>
<td>3900m</td>
<td>0m</td>
<td>Sand with fine sand and small pebbles (wash from NW)</td>
</tr>
<tr>
<td>513765-7</td>
<td>4000m</td>
<td>0m</td>
<td>As Above</td>
</tr>
<tr>
<td>3</td>
<td>4200m</td>
<td>0m</td>
<td>Sand with fine sand and small pebbles (wash from NW)</td>
</tr>
<tr>
<td>512235-7</td>
<td>4400m</td>
<td>0m</td>
<td>As Above</td>
</tr>
<tr>
<td>4</td>
<td>4500m</td>
<td>0m</td>
<td>Sand with fine sand and small pebbles (wash from NW)</td>
</tr>
<tr>
<td>512230-7</td>
<td>4600m</td>
<td>10m</td>
<td>Fresh Alk rock chips + pyrite (poss. subcrop)</td>
</tr>
<tr>
<td>5</td>
<td>5000m</td>
<td>0m</td>
<td>As Above</td>
</tr>
<tr>
<td>6</td>
<td>5100m</td>
<td>0m</td>
<td>Fresh Alk rock chips + pyrite (wash from NW)</td>
</tr>
<tr>
<td>7</td>
<td>5300m</td>
<td>0m</td>
<td>Fresh Alk rock chips + pyrite (wash from NW)</td>
</tr>
<tr>
<td>8</td>
<td>5500m</td>
<td>5m</td>
<td>Fresh Alk rock chips (nearby Alk chip lenses subcrop)</td>
</tr>
<tr>
<td>352500</td>
<td>5700m</td>
<td>0m</td>
<td>As Above</td>
</tr>
<tr>
<td>9</td>
<td>6000m</td>
<td>0m</td>
<td>As Above</td>
</tr>
<tr>
<td>10</td>
<td>6100m</td>
<td>0m</td>
<td>Pebbles and Fresh Alk rocks (wash from N)</td>
</tr>
<tr>
<td>SAMPLE NO</td>
<td>LOCATION / DEPTH (m)</td>
<td>INTERVAL (cm)</td>
<td>DESCRIPTION / REMARKS</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------</td>
<td>---------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>1</td>
<td>6200m</td>
<td>0cm</td>
<td>Fine dark rock chips (foot wash from N)</td>
</tr>
<tr>
<td>2</td>
<td>4300m</td>
<td>0cm</td>
<td>As above (+ cleaner)</td>
</tr>
<tr>
<td>3</td>
<td>6400m</td>
<td>0cm</td>
<td>Wet microcalcite (cutting nearby)</td>
</tr>
<tr>
<td>4</td>
<td>6600m</td>
<td>5cm</td>
<td>As above</td>
</tr>
<tr>
<td>5</td>
<td>4700m</td>
<td>5cm</td>
<td>Fine rock chips (germ wash from WSW)</td>
</tr>
<tr>
<td>6</td>
<td>6800m</td>
<td>5cm</td>
<td>As above (subcrop)</td>
</tr>
<tr>
<td>7</td>
<td>6900m</td>
<td>5cm</td>
<td>Wet rock chips with fine debris (subcrop)</td>
</tr>
<tr>
<td>8</td>
<td>7000m</td>
<td>5cm</td>
<td>As above</td>
</tr>
<tr>
<td>9</td>
<td>7900m</td>
<td>5cm</td>
<td>Wet rock chips (subcrop)</td>
</tr>
<tr>
<td>10</td>
<td>7200m</td>
<td>5cm</td>
<td>Pisolites</td>
</tr>
<tr>
<td>11</td>
<td>7300m</td>
<td>5cm</td>
<td>Pisolites</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOCATION / DEPTH (m)</th>
<th>INTERVAL (cm)</th>
<th>DESCRIPTION / REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>3400m</td>
<td>Sand with fine, small pisolites and dark chips</td>
</tr>
<tr>
<td>8</td>
<td>3500m</td>
<td>As above</td>
</tr>
<tr>
<td>9</td>
<td>3600m</td>
<td>As above</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOCATION / DEPTH (m)</th>
<th>INTERVAL (cm)</th>
<th>DESCRIPTION / REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3200m</td>
<td>Sand with trace small - medium pisolites</td>
</tr>
<tr>
<td>2</td>
<td>3900m</td>
<td>As above</td>
</tr>
<tr>
<td>3</td>
<td>4100m</td>
<td>As above</td>
</tr>
<tr>
<td>4</td>
<td>4200m</td>
<td>As above</td>
</tr>
<tr>
<td>5</td>
<td>4400m</td>
<td>Sand with trace, small pisolites</td>
</tr>
<tr>
<td>6</td>
<td>4600m</td>
<td>As above</td>
</tr>
<tr>
<td>7</td>
<td>4700m</td>
<td>As above</td>
</tr>
<tr>
<td>8</td>
<td>4900m</td>
<td>As above</td>
</tr>
<tr>
<td>9</td>
<td>5100m</td>
<td>Sand with small - large pisolites (wash from W)</td>
</tr>
<tr>
<td>SAMPLE NO</td>
<td>LOCATION/DEPTH (m)</td>
<td>INTERVAL (m)</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1</td>
<td>5300 m</td>
<td>0 m</td>
</tr>
<tr>
<td>2</td>
<td>5400 m</td>
<td>0 m</td>
</tr>
<tr>
<td>7</td>
<td>3800 m</td>
<td>0 m</td>
</tr>
<tr>
<td>8</td>
<td>3900 m</td>
<td>0 m</td>
</tr>
<tr>
<td>9</td>
<td>4000 m</td>
<td>0 m</td>
</tr>
<tr>
<td>No 352580</td>
<td>STANDARD 519 ppb</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4100 m</td>
<td>0 m</td>
</tr>
<tr>
<td>2</td>
<td>4200 m</td>
<td>0 m</td>
</tr>
<tr>
<td>3</td>
<td>4300 m</td>
<td>0 m</td>
</tr>
<tr>
<td>4</td>
<td>4400 m</td>
<td>0 m</td>
</tr>
<tr>
<td>5</td>
<td>4500 m</td>
<td>0 m</td>
</tr>
<tr>
<td>6</td>
<td>4600 m</td>
<td>0 m</td>
</tr>
<tr>
<td>7</td>
<td>4700 m</td>
<td>0 m</td>
</tr>
<tr>
<td>8</td>
<td>4800 m</td>
<td>0 m</td>
</tr>
</tbody>
</table>

SAMPLE NO: 352580

LOCATION/DEPTH (m): Standard 519 ppb

INTERVAL (m): 0 m

DESCRIPTION/REMARKS: Sand with large pebbles (wash from 5), As above, Sand with large pebbles (wash from 5), As above, Sand with large pebbles (wash from 5), As above, Sand with large pebbles (wash from 5), As above.
APPENDIX TWO
Final

ANALYTICAL REPORT

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>Au</th>
<th>AuDpl</th>
</tr>
</thead>
<tbody>
<tr>
<td>289051 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289052 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289053 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289054 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289055 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289056 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289057 -10 +1MM</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>289058 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289059 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289001 MAG FRAC</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289002 MAG FRAC</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289003 MAG FRAC</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289004 MAG FRAC</td>
<td><0.001</td>
<td>0.002</td>
</tr>
<tr>
<td>289005 MAG FRAC</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289006 MAG FRAC</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289007 MAG FRAC</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289008 MAG FRAC</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289009 MAG FRAC</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289010 MAG FRAC</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289011 MAG FRAC</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289012 MAG FRAC</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289013 MAG FRAC</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289014 MAG FRAC</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289015 MAG FRAC</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289016 MAG FRAC</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289017 MAG FRAC</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289018 MAG FRAC</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289019 MAG FRAC</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289020 MAG FRAC</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289021 MAG FRAC</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289022 MAG FRAC</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289023 MAG FRAC</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289024 MAG FRAC</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289025 MAG FRAC</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289026 MAG FRAC</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289027 MAG FRAC</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289028 MAG FRAC</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289029 MAG FRAC</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289030 MAG FRAC</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289031 MAG FRAC</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289032 MAG FRAC</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289033 MAG FRAC</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289034 MAG FRAC</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289035 MAG FRAC</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289036 MAG FRAC</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>289037 MAG FRAC</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289038 MAG FRAC</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289039 MAG FRAC</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>289040 MAG FRAC</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289041 MAG FRAC</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289042 MAG FRAC</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289043 MAG FRAC</td>
<td><0.001</td>
<td>--</td>
</tr>
</tbody>
</table>

UNITS
- ppm
- ppm

DET.LIM
- 0.001
- 0.001

SCHEME
- FA3
- FA3

Page 2 of 3
ANALYTICAL REPORT

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>Au</th>
<th>AuUp1</th>
</tr>
</thead>
<tbody>
<tr>
<td>289001 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289002 -10 +1MM</td>
<td>>0.001</td>
<td>--</td>
</tr>
<tr>
<td>289003 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289004 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289005 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289006 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289007 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289008 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289009 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289010 -10 +1MM</td>
<td><0.001 <0.001</td>
<td>--</td>
</tr>
<tr>
<td>289011 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289012 -10 +1MM</td>
<td><0.002 0.001</td>
<td>--</td>
</tr>
<tr>
<td>289013 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289014 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289015 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289016 -10 +1MM</td>
<td><0.001 <0.001</td>
<td>--</td>
</tr>
<tr>
<td>289017 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289018 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289019 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289020 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289021 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289022 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289023 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289024 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289025 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289026 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289027 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289028 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289029 -10 +1MM</td>
<td><0.001 <0.001</td>
<td>--</td>
</tr>
<tr>
<td>289030 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289031 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289032 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289033 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289034 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289035 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289036 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289037 -10 +1MM</td>
<td><0.001 <0.001</td>
<td>--</td>
</tr>
<tr>
<td>289038 -10 +1MM</td>
<td><0.002 0.002</td>
<td>--</td>
</tr>
<tr>
<td>289039 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289040 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289041 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289042 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289043 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289044 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289045 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289046 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289047 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289048 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289049 -10 +1MM</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289050 -10 +1MM</td>
<td><0.003 0.002</td>
<td>--</td>
</tr>
</tbody>
</table>

UNITS

- ppm
- ppm

DET. LIM

- 0.001 0.001

SCHEME

- FA3 FA3
Final

ANALYTICAL REPORT

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>Au</th>
<th>AuDpl</th>
</tr>
</thead>
<tbody>
<tr>
<td>289044</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289045</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289046</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289047</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289048</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289049</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>289050</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289051</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289052</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289053</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289054</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>289056</td>
<td>L.N.R.</td>
<td>L.N.R.</td>
</tr>
<tr>
<td>289057</td>
<td>L.N.R.</td>
<td>L.N.R.</td>
</tr>
<tr>
<td>289058</td>
<td>L.N.R.</td>
<td>L.N.R.</td>
</tr>
</tbody>
</table>

UNITs ppm ppm
DET.LIM 0.001 0.001
SCHEME FA3 FA3
Analytical Report

Job: 3AD4136
O/N: 10984/HE21/DK

<table>
<thead>
<tr>
<th>Sample</th>
<th>Au</th>
<th>Au</th>
<th>Dpl</th>
</tr>
</thead>
<tbody>
<tr>
<td>352401</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352402</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352403</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352404</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352405</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352406</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352407</td>
<td><1</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>352408</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352409</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352410</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352411</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352412</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352413</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352414</td>
<td><1</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>352415</td>
<td>2</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352416</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352417</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352418</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352419</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352420</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352421</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352422</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352423</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352424</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Units</th>
<th>ppb</th>
<th>ppb</th>
</tr>
</thead>
<tbody>
<tr>
<td>DL</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Scheme</td>
<td>FA3</td>
<td>FA3</td>
</tr>
</tbody>
</table>

Page 1 of 3
<table>
<thead>
<tr>
<th>Sample</th>
<th>Au</th>
<th>Au</th>
<th>Dp1</th>
</tr>
</thead>
<tbody>
<tr>
<td>352446</td>
<td><1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>352447</td>
<td><1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>352448</td>
<td><1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>352449</td>
<td><1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>352450</td>
<td><1</td>
<td></td>
<td><1</td>
</tr>
<tr>
<td>352451</td>
<td><1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>352452</td>
<td><1</td>
<td></td>
<td><1</td>
</tr>
<tr>
<td>352453</td>
<td><1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>352454</td>
<td><1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>352455</td>
<td><1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>352456</td>
<td><1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>352457</td>
<td><1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>352488</td>
<td><1</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>352489</td>
<td><1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>352490</td>
<td><1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Units: ppb ppb
DL: 1 1
Scheme: FA3 FA3
<table>
<thead>
<tr>
<th>Sample</th>
<th>Au</th>
<th>Au</th>
<th>Dpl</th>
</tr>
</thead>
<tbody>
<tr>
<td>352491</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352492</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352493</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352494</td>
<td><1</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>352495</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352496</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352497</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352498</td>
<td><1</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>352499</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352500</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352501</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352502</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352503</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352504</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352505</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352506</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352507</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352508</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352509</td>
<td>2</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352510</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352511</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352512</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352513</td>
<td>2</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352514</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

Units

- **DL**: 1 ppb
- **Scheme**: FA3
<table>
<thead>
<tr>
<th></th>
<th>Au</th>
<th>Au</th>
<th>Dp1</th>
</tr>
</thead>
<tbody>
<tr>
<td>352537</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352538</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352539</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352540</td>
<td>44</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352541</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352542</td>
<td><1</td>
<td></td>
<td><1</td>
</tr>
<tr>
<td>352543</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352544</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352545</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352546</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352547</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352548</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352549</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352550</td>
<td>1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352551</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352552</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

Units: ppb, ppb
DL: 1, 1
Scheme: FA3, FA3

Page 1 of 2
ANALYTICAL REPORT

Sample: Au Au Dpl

<table>
<thead>
<tr>
<th>Sample</th>
<th>Au</th>
<th>Au</th>
<th>Dpl</th>
</tr>
</thead>
<tbody>
<tr>
<td>352576</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352577</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352578</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352579</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352580</td>
<td>490</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352581</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352582</td>
<td><1</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>352583</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352584</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352585</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352586</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352587</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>352588</td>
<td><1</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

Units: ppb ppb

DL:

<table>
<thead>
<tr>
<th>Units</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
</table>

Scheme:

<table>
<thead>
<tr>
<th>Units</th>
<th>FAJ</th>
<th>FA3</th>
</tr>
</thead>
</table>

Page 2 of 2