

NORMANDY WOODCUTTERS LIMITED

ACN 000 828 535

WOODCUTTERS MINE 80km Stuart Highway, via Darwin, Northern Territory 0800 PMB 60, Winnellie, Northern Territory, Australia 0821

Telephone (08) 8976 0088 Facsimile (08) 8976 0108

DEPARTMENT OF

Mines & energy

Title:

ANNUAL REPORT

EXPLORATION LICENCE 4423

WOODCUTTERS AREA NORTHERN TERRITORY

31.01.97 TO 30.01.98

Project Name:

WOODCUTTERS

Map Sheets:

DARWIN SD 52-04 1:250,000

Commodities:

COPPER, LEAD, ZINC, GOLD

Author:

K.A. WILLIAMS

Date:

26 February 1998

Volumes:

VOLUME 1 OF 1

Accepted by:

Distribution:

I. NT Department of Mines and Energy

2. Normandy Woodcutters Limited

3. Normandy Exploration, Adelaide

R98/2

The contents of this report remain the property of Normandy Woodcutters Limited and may not be published in whole or in part nor used in a company prospectus without the written consent of the Company.

CONTENTS

SUMMARY

- 1. INTRODUCTION
- 2. CONCLUSIONS
- 3. PREVIOUS EXPLORATION
- 4. WORK CARRIED OUT AND RESULTS
- 5. GEOLOGY AND MINERALISATION
- 6. EXPENDITURE FOR YEAR SEVEN
- 7. PROPOSED WORK PROGRAMME AND BUDGET FOR YEAR EIGHT
- 8. REFERENCES

LIST OF FIGURES

1. EL 4423 Location Plan

1:1,000,000

2. Woodcutters Area Tenement Plan

1:50,000

LIST OF TABLES

1. History of Mineral Exploration in the Woodcutters Area

LIST OF APPENDICES

Appendix A Diamond Drill Hole Logs - S1212

LIST OF ENCLOSURES

Enclosure 1 Diamond Drill Hole S1212

Report No:

22883

Title:

- ANNUAL REPORT

EXPLORATION LICENCE 4423

WOODCUTTERS AREA, NORTHERN TERRITORY

31.01.97 - 30.01.98

Author:

K.A. Williams

Date:

26 February 1998

SUMMARY

The Woodcutters silver-lead-zinc mine is located adjacent to EL 4423 and consequently the area has been subject to intense exploration activity for base metals.

The licence area is only one graticular block and most of this is covered by Mineral Leases.

Whites Formation sediments underlie most of the licence and comprise carbonaceous dolomitic slates with minor carbonate interbeds (dololutite) and rare, thin but continuous tuff beds. The Whites Formation is underlain by Coomalie Dolomite which consists of massive crystalline dolomite and magnesite. Base metal mineralisation occurs as numerous irregular lenses of sulphides within the Whites Formation and generally fills steeply dipping N-S axial plane faults within the Woodcutters structure (anticline).

Nicron Resources Ltd has previously carried out historical data compilation, diamond drilling, airborne magnetic/radiometric surveys and a test seismic reflection profile. All of this data was compiled and used to re-interpret the geology of the region.

Field work conducting during Year Six of tenure comprised RAB drilling around the interpreted position of the Seismic Anticline. This work outlined a coherent but weak zinc geochemistry anomaly with restricted coincident lead highs.

During Year Seven the seismic data was re-interpreted. This work has resulted in the recognition of thrust tectonics in the development of the Woodcutters and Seismic Anticlinal structures. This re-interpretation is likely to generate new exploration targets.

During Year Eight previously drilled diamond hole S1212 was re-entered to test structures postulated by the recently developed thrust tectonic model.

1. INTRODUCTION

Exploration Licence 4423 was granted to Nicron Resources Limited on 31st January 1990 for a period of six years. The licence now comprises one block, and is located approximately 2km west of the Woodcutters Pb-Zn-Ag Mine (Figure 1). Mineral leases cover a majority of the licence (Figure 2).

The licence is considered to be prospective for base metal mineralisation.

The purpose of this report is to cover work conducted in the eighth year of tenure and propose a work programme and expenditure for the following year. A two year extension of the Exploration Licence has been granted and expires on 30th January 1998. An application for the renewal of EL 4423 for a further two years has been submitted.

2. CONCLUSIONS

- 1 RAB drilling in 1995 over a BMR C horizon Pb anomaly failed to verify its position.
- There is a broad, low order coherent bedrock Zn geochemistry anomaly coincident with a restricted Pb bedrock anomaly south of the interpreted position of the Seismic Anticline.
- Further RAB drilling is required to close off the northern strike extent of the coincident Pb and Zn geochemical anomalies.
- 4. The importance of thrust tectonics in the development of the Seismic Anticline has been recognised.
- 5. Diamond drilling confirmed the structures postulated by the thrust tectonics model.

3. PREVIOUS EXPLORATION

A brief chronology of exploration in the Woodcutters area is presented in Table 1.

Table 1

Early 1950's	Territory Enterprises excavated shallow costeans at Area 44 after surface radiometric prospecting.
1957	BMR airborne radiometric survey found two anomalies on the Woodcutters structure.
1962	BMR surface radiometrics and EM over Area 44.
1964-1968	Intensive geochemical sampling, mapping and geophysics outlined distinct base metal anomalies at Area 44 and L1-L6. These were drilled, but only L5 produced ore-grade intersection.
1969-1971	Detailed drilling and other geochemical and geophysical exploration at L5 by Geopeko defined over 0.7 million tonnes of ore reserve.
1974-1977	Further geochemical and geophysical surveys by Geopeko at Area 44 and Huandot defined earlier anomalies.
1977-1983	Magnum Exploration and then CSR outlined anomalous Pb mineralisation at Flaming Fury.
1980-1982	L5 open cut resource was defined and RC drilling north of L5 and to the north of Area 44 confirmed the extent of the anomalies but did not intersect ore-grades.
1987, 1989	Woodcutters Mine intersected minor Pb-Au mineralisation at Flaming Fury in diamond drill holes, then found significant low grade Pb-Au in costeans.
1989-1990	Deep drilling at L5 revealed large resource.

Prior to the discovery of Woodcutters, exploration interest was centred on Rum Jungle, 12 km to the west (Figure 3). Mineralisation at Rum Jungle first became known during the construction of the overland telegraph line in the 1870's and later the North Australian Railway which passed through what is now Batchelor. Copper minerals were seen and identified, and a green mineral, probably torbernite was reported. It was not until 1949 that uranium mineralisation was identified at Rum Jungle and intensive exploration then located three uranium orebodies, two copper orebodies and one large sub-economic lead-cobalt deposit (Walpole et al, 1968).

In conjunction with this local exploration, regional work by the Bureau of Mineral Resources (BMR) and Territory Enterprises Pty Ltd (the operator of the Rum Jungle mines) identified many areas of uranium and base metal anomalism. A regional "C" horizon geochemical sampling programme by the BMR in 1964 outlined a linear anomaly over what is known to be the Woodcutters structure, and significant anomalies in Area 44.

Initial drilling of the major geochemical anomalies in the Woodcutters area in 1966-67 produced ore grade intersections of lead-zinc-silver mineralisation only at L5, where efforts were then concentrated. In 1968, L5 was put up for tender by the Commonwealth and a consortium of Electrolytic Zinc Company of Australia (EZ) and Peko Wallsend was successful. Intensive drilling and detailed geochemical sampling were successful in outlining a resource, but exploration ceased in 1971 when a feasibility study by the Joint Venture showed that further development work was not justified due to the size of the deposit.

Between 1972 and 1979 the Joint venture acquired ground covering Area 44 and the Woodcutters structure to the north (towards Manton Dam) and south (Huandot). Intermittent surface exploration was carried out with no positive results. Between 1977 and 1983 work by Magnum Exploration and then CSR identified the Flaming Fury anomaly, east of L5. Further development of the L5 deposit occurred from 1980 when shallow drilling designed to test for precious metal rich bodies in oxidised zones, delineated the pod which formed the open-cut resource. In 1983, Nicron Resources purchased the tenements and through the formation of the Woodcutters Joint Venture, proceeded to develop L5 on the basis of an ore reserve of 1,073,000 tonnes at 7.9% Pb, 17.9% Zn and 170 g/t Ag. The open cut pre-strip commenced in December 1984 followed by mill and site infrastructure construction and upgrading of concentrate storage and handling facilities at Darwin Port. The first ore was milled in August 1985.

Work conducted during the first year of tenure (1990-1991) on EL 4423 included historical data compilation, diamond drilling, airborne magnetic/radiometric surveys, a test seismic reflection profile and reinterpretation of the geology and controls of mineralisation in light of the additional information (Butler, 1991).

No mineral exploration was undertaken during the second year of tenure (1991-1992) in portions of the licence not covered by mineral leases or mineral lease applications. Extensive environmental and geotechnical design work was conducted over areas of EL 4423 as part of the mine expansion and ongoing environmental management (Pevely, 1992).

Exploration in year three was designed to evaluate a largely structural stratigraphic target (the Seismic Anticline) which was initially identified from the seismic survey. Work carried out included reinterpretation of previous geological and geophysical data, geological mapping and the drilling of one deep diamond drill hole.

Traces of sphalerite were intersected by the drilling in the target area. The drilling confirmed the overall structural interpretation of the area, although more faulting than anticipated was encountered. No dololutite units were located and their absence may be the main factor in the failure of this hole to intersect significant mineralisation.

No field work was carried out in Years Four, Five and Seven.

4. WORK CARRIED OUT AND RESULTS

A re-interpretation of the geology of the Woodcutters deposit and surrounding district is largely complete, although the process is ongoing as more information from surface and underground drilling becomes available.

An important step in the process of re-evaluation and development of the new model was the extension of the diamond hole S1212 at Seismic Anticline immediately to the west of Woodcutters (see Enclosure 1).

The thrust tectonic model developed for Woodcutters appears to be repeated at the Seismic Anticline. Hole S1212 was re-entered and extended to test for structures postulated by the model. A number of laminated shears, both concordant and discordant to the bedding, were

found and interpreted to be consistent with the thrust model (see Appendix A).

Diamond hole S1212 was extended by 282m to a total of 850m.

5. GEOLOGY AND MINERALISATION

The Woodcutters Mineral Field lies to the east of the Rum Jungle Complex. The rocks of the Rum Jungle Complex are Archaean in age and act as basement to Lower Proterozoic sedimentary rocks of the Pine Creek Geosyncline. The Lower Proterozoic sediments are unconformably overlain by minor pockets of Middle Proterozoic sandstone and karstic deposits. Tertiary alluvial deposits and laterite cover low lying areas.

The following are descriptions of the stratigraphic units in order of decreasing age:

Rum Jungle Complex

Lithologies consist of granite, gneiss, schist and iron formation.

Beestons Formation (Batchelor Group)

This unit consists of conglomerate, arkose and sandstone and is 100 to 200 metres thick.

Celia Dolomite (Batchelor Group)

Massive crystalline dolomite and magnesite are the main lithologies, with minor interbeds of chert and mudstone. The unit is 100 to 400 metres thick.

Crater Formation and Coomalie Dolomite (Batchelor Group)

These formations are very similar in lithology and thickness to the Beestons Formation and Celia Dolomite respectively.

Whites Formation (Namoona Group)

This unit has a thickness of at least 500m and predominantly comprises carbonaceous dolomitic slate with minor interbeds of impure carbonate (dololutite) and rare thin tuffs. Dololutite units and thin tuff marker beds can be correlated over distances of 2-3km to the north and west of Woodcutters Mine.

Wildman Siltstone (Mount Partridge Group)

Carbonaceous meta-pelite is the predominant lithology with lesser interbedded quartzite. Some intervals of carbonaceous slate contain 20-30% pyrite and lesser pyrrhotite. An amphibolite unit 50-100 metres thick occurs at the base of the Wildman Siltstone or at the top of the Whites Formation. The BMR have mapped this unit to the south of the Woodcutters and subsequent diamond drilling indicates it is probably an intrusive sill.

The Acacia Gap Quartzite Member

The Acacia Gap Quartzite Member occurs about 200 metres above the base of the Wildman Siltstone. It is 50-200 metres thick and comprises several 3-20 metre thick beds of quartzite. Outside the Woodcutters Area, the Wildman Siltstone is overlain by the South Alligator and Finniss River Groups.

Sink holes and karstic surfaces have formed over the carbonate sequences, probably during Middle Proterozoic time. Depressions were filled with clay, gossan-sulphide-quartz breccia and sandstone. The sandstone probably correlates with the Depot Creek Sandstone of the Tolmer Group.

Two main types of base metal mineralisation are recognised within the Woodcutters area:-

- Vein-replacement base metal mineralisation (L5)
- . Stratiform base metal mineralisation (Rum Jungle type)

The L5 vein replacement mineralisation consists of numerous irregular lenses of sulphides which generally fill the steeply dipping north-south axial plane faults within the Woodcutters structure. Thicker sections of the lenses and sometimes the actual presence of mineralisation are controlled by the intersection of these faults with dololutite rich intervals and cross faults. The mineralisation thickness may change rapidly both in the vertical plane and along strike. The orebodies show replacement textures as well as vein-like features. A number of chemical/mineralogical types of ore can be distinguished but the most common sulphide minerals in the lenses are pyrite, arsenopyrite, sphalerite, galena and lead-antimony sulphosalts.

Diamond drilling has intersected stratiform chalcopyrite, sphalerite and galena mineralisation associated with manganese rich stratigraphic intervals in the Lower Whites Formation close to the basal contact into Coomalie Dolomite at Area 44. Highly anomalous Pb, Zn, Cu, Ni and Co levels have also been recorded from shallow drilling and surface sampling in the same area as the deeper stratiform mineralisation intersections.

6. EXPENDITURE FOR YEAR EIGHT

Salaries/wages	3,400
Consultants	1,900
Consumables	2,300
Drilling	25,380
Administration (15%)	<u>4,947</u>
TOTAL	\$37.927

7. PROPOSED WORK PROGRAMME AND BUDGET FOR YEAR NINE

The proposed programme for Year Nine is as follows:-

Data compilation and geological

re-interpretation 2,000 RC drilling geochemical targets 10,000

\$1<u>2,000</u>

8. REFERENCES

- Butler, I.K., 1991. Annual Report for Year One, EL 4423, Woodcutters Area, NT.

 Unpublished Report for the Woodcutters Joint Venture. NT Department of Mines and Energy Library.
- Butler, I.K. 1995. Annual Report Exploration Licence 4423, Woodcutters Area Northern Territory. *Unpublished Report for NT Department of Mines and Energy.*
- Butler, I.K. 1996. Annual Report Exploration Licence 4423, Woodcutters Area, Northern Territory. *Unpublished Report for NT Department of Mines and Energy*.
- Ormsby, W.R. and Grove, A.D., 1993. Annual Report for Year Three, Exploration Licence 4423, Woodcutters Area, NT. Unpublished Report for Nicron Resources Ltd. NT Department of Mines and Energy Library.
- Ormsby, W.R., 1994. Annual Report for Year Four, Exploration Licence 4423, Woodcutters Area, NT. Unpublished report for NT Department of Mines and Energy
- Pevely, S.P., 1992. Annual Report for Year Two, EL 4423, Woodcutters Area, NT. Unpublished Report for the Woodcutters Joint Venture. NT Department of Mines and Energy Library.
- Walpole, B.P., et al, 1968. Geology of the Katherine-Darwin Region, NT. Bull, Bur Miner. Resour. Geol. Geophys. Aust., 82.
- Williams, K.A., 1997. Annual Report, Exploration Licence 4423, Woodcutters Area, N.T. 31 January 1996 to 31 January 1997. *Unpublished Report for NT Department of Mines and Energy.*

APPENDIX A

DIAMOND DRILL HOLE LOGS \$1212

EL 4423

MOODCUTTERS MINE - DRILLHOLE RECOMD MOODCUTTERS MINE - DRILLHOLE RECOMD MOODCUTTERS MINE - DRILLHOLE RECOMD

PROPOSAL

LOCATION: El 4423 PURPOSE: To, test for mineralisation associated with the Seismic Antichne.
PROPOSED BY: M.O.: SET UP BY:
SET UP DETAILS: .4720N:::3475E1070NL283 GRID ANIMALIE
TARGET: (D. 390m. (m depth)4760. N3340. F730. RL
DOWNHOLE SURVEY REQUIREMENTS:30m., 80m, 130m. in Preceller., 160m. Herery
OTHER SPECIFICATIONS (CORE-SIME, PERCUSSION DEPTH ETC.)
Pre-collar to 150m.
.,

FINAL DATA

FINAL DEPTH: .573-0 (m)
COLLAR CURVEY: 4721:499.N 3475:460.E 1069:162RL GRID AZIMUTH DIP
DOWNHOLE SURVEYS: See attached pheot Core size: NO
OTHER DRILLING DETAILS:
· · · · · · · · · · · · · · · · · · ·
GEOLOGIST:W.R.Dinsby.

CALCULATIONS FOR HOLE PLOTTING FROM DOMNNOLE SURVEYS

HOLE HUMBER. \$12.12

* Collar Azimuth and Dip not to be used for plotting

}	·	·	•	•			····
Survey Depth	(Grid)	(I) DJb	Mld Points	Inter-	ur.	. н	E
Collar	•	* • .	0		Depth-	Az	Dip.
33	285	-68,					
					15.	47/1	-445
1222			77777	11/1	77777	17/6	777777
63	In Rads.	-68.		J			
			•		48M	2741	-42
			77777		77777	77777	77 7777
))) >>>>	Ja Rads	-672		7777			
					510	272	-38 :
カマニ	281	-67		•			
135. 7777,	777	7777		77777			
			 		552	269	-35
168	282	-65		1"			
					573	267	733.
			7777777.		77777	77777	77777
101	284	63		, , , , , , , , , , , , , , , , , , , 		1112	
				V////.	·		
024			77777		77777	'דלדדדי	777777
1259 1ファン	285	10L		. 		11/1	
]		·		
214	000	- 61	7///		77777	7////	7////
7777	イング	101 177	22	7777			
					,, ,	· • • • • •	i in signals
202-	282	-/ A	7.77	احدد	7777	77777	7////
7/77	777	777		7777			
			: 1		•		
\$	201		7,777	•	77777	77777	777777
327	101	در رود کور	2///	, 			
						,	
207			77777		777777	77777	77777
357	1280	55/2		, -,,			
							• · · · · · · · · · · · · · · · · · · ·
7			777777		77777	77777	77777
590.	280	-52		י-בבבין		11/1	/////
			•				,
100			77777		77777	77777	77777
420	277	-48		1	////		
	///	EOII •	-				
44	///		:		77777	7777	777777
	1//	CILECI	K TOTAL	,			

WOODCUTTERS JOINT VENTURE CORE LOGGING SHEET Date: 12/9/92 Logged by: W.R.Ornicy Hole: \$/2/2 Page No. 1 of 6. Mineral Percentages Dolomitic slate% Sense Stratigraphy Recovery %
RQD
Weathering Chalcopyrite Sulphosalts Arsenopyrite from collar Rock type Sphalerite Dololutite Galena Structure Comments Bedding Distance Stibnite Pyrite For consocially lighter ay - refer to more 17 | 0 | 20 1 176.95-127.05 m m pr in ailoz un strag clause., chering e / 1284m. オト Should & for g-cos do. 25 20 5 31.0 to flurite C13 25 for py assec. & g. Cogstonie to +1 35 5 P 143 · 0 grading to dol state. 30 25 5 1 144 -0 ~30% set . -implier - prods 1-15em 52 tr 2.14 Intere unity & graphite stip surfices th. 148.0 As above to 150,3m then ben core 1 15 20 grades to dol slate 25 35 0 ti 156.0 30 1 159-0 ganding to dol state tr 50 165.0-11 4 67.8 168.0 -5 /62/1 tr | 171.0 30 KO1 174.0 to dil , but still SI visule & no 2 tr * 20 SS S 1765 2 tri 25 35 0 *t*4 180.0 180.5-180.8 m 9, man cos un apy 181-9 thin set bed (mkm)@ 182-6m 2-14 tr |20|35|S. tr Dip angles measured with Spofted slate 8. Dolomite dyke 25-50°. ■2. Slate Breccia respect to long core axis,

IO. Leached slate

II. Dolomitic slate

12: Cream dololutite

14. Sondstone.

13. Stromatolitic dololutite

sense measured with respect

to cleavage

3. Dololutite

read 4. Laminated dololutite 🕾

6. Massive sulphides

Calcareous dyke

5. Tuff marker bed

	W) 00 101	DC	U.	ΪΤ	ERS) (10	IN	T	VEN	IT	UF	₹E	•		ļ	Dat	e:	; 	2/9	1/9	2	Brow.	ماء	Hole: 5/2/2 Page No. 2 of 6
			<u> </u>	1 ·		1	, ₃	1		, I		 _				241										Page No. 2 or 5
	Distance	from collar	Recovery %	RQD	Weathering	Structure	Cleavage	Bedding	Sense	Stratigraphy	Rock type	Dolomitic slate%	Dololutite %	Galena	Sphalerite			Chalcopyrite =	Stibnite a	enopyrite	· · · · · ·	Quartz	Carbonate	HMR	SampleNumber	Comments
	18	6.7	795				1	45			2	1					<i>t</i> ~					1	tr			showed in @ 187m bkn cre 189-189.2m
i F	189	1.4-	и	5				છ			11.2	40	`\				<u>"</u>	-		,		<u> </u>	<u> </u>			cos un @ 192.1m
	19	2-4-	11	\vdash		V1,52	<u> </u>		\vdash		2	,,,,				·	tr		· · ·			1,				Intere Cog q unity & shearing.
	195	4-	11	,	TRO						2		\dashv				; ↑		•			•				· ·
. \$	148	-4-		4 5		\$2	24	S	٥		2					···-	- 1¢					すか	<u> </u>			grades to dol slate
	20	1.4-		<u>ノ.</u> ト							2						<u>'</u>		,	_		•		•		
1	204	-4-	1	k				60	r ρ		2	` ` <u></u>			•		か			\dashv		<i>†</i>	_			slight increase in dissern Py.
Ç.	`\	4.	11	h			30	_			2						1 1					<i>*</i>	,			grading to del slate
	210	4-	2	7				6D		•	_ 						<i>†</i> -	<u>-</u>	·*							
	213	4-	=	•1			8	\vdash	-		2.						<i>†</i> /		1			<i>†</i>	1	•		
ŀ	216.4		10	н		•	<i>3</i> 0	65	P		2		_	-	_		Tr			- n			7	·		
	219.		<u>'</u>				30	40	P		2.11	25	· - -		-	<i>"</i>	<i>tr</i>			_	,	tr	1	<u></u>		P
1	2 22		*	-							2.			$ \bot $			ħ			 -		†	10	,		Becomming more graphike.
	22s·	;	"	3		52	30	<i>6</i> 5	Р.		2						1				,	t	to	,		225-225. I more Pyrike, COz (1th), light color, shared. Mod. bkn come.
į.	228·	<u>.</u>	,	5			30	હ	P		2.						*					*	ţ			228-228.1m A/A . dyke?-meson
	231·4	-	¥i	5		!					2						か					ょ	<i>t</i> /			
	-3, 234·4	_	11	S _d		,	<i>3</i> 0	55	P	.	2						ţr					tr	10			
		4_	ĸ	4.							2						tr					<i>†</i>	<i>t</i>		*****	•
id.	,	ι,	1	5	-		<i>3</i> ⊌	70	r		2					,	71					1	ħ			mor 9-603 uring& breatistion. 239.6-240m.
T	240.	•	μ	5			30	75	ی		2					··-	k.				· · · · · · ·	tr	71	`.		,
iis	243. Z46.	4 .	*1	5			40	70	P2		2						か					<i>†</i> /	1		· ···	Strong SI in part.
_			11	11			5 0	80	5°		2						١,					11	41			
' : 	24¶.		٨	 1	2513 25.6	52	35	65	S	$ \top $	2	7			,		11					Ji i	11			· · · · · · · · · · · · · · · · · · ·
ı	252. 256		'nι	5			\neg	\$			2		_	\dashv			11	\dashv	7			L	1,			
Ţ			90	3	256.5	31					8.2	·						1				5	7			
Ħ	25 B		295	5		,	30	2 5	٥		2	·	 				1					1	tr			
-	260 · 5		η	2	_	51 VI.					2	\dashv					#					2	2		·. <u>-</u>	shearing, pol. surl. com thin 9- CO3 cos
4	. S	poit late		slate	e	,			-			8. 9.	Do Br		nite ia	dy	ke	1		!	1			!		Dip angles measured with respect to long core axis,

- Dololutite
- Laminated dololutite
- Tuff marker bed
- Massive sulphides
- Calcare ous dyke

- IO. Leached state
- II. Dolomitic slate
- 12: Cream dololutite
- 13. Stromatolitic dololutite

respect to long core axis, sense measured with respect to cleavage

	AAE	* ! +	_		GING	/ さ 十一	/	≱ €	↓ l	 	1 				- 1					2/9 y:					
		0	5			,	,		اح		Ite%	%	_	 	1	inero 1	_		T " "1	1	jes	 		SampleNumber	
Φ	ollar * * *	S S		athering	តិ	<u>a</u>	الح أ		Stratigraphy	type	Dolomitic, state%	tite %		rite	salts	1.1	pyrite	الما	yrite	ļe		onate	1	N N	Comments
guc	ပိ 😘	ove.		athe.	Structure	ava(dding	Se	iệi Đị	X	懂	ita ita	and Sing	aleri	120	te e	Ӹ	Stibnite	g	hoti	rtz	Don		ple	
Dist	from	Rec	ROD	Wec	Str	Cie	4	Sense	¥	Rock	500	Dolol	Galena	Sph	Sulpho	Pyri	용	Stib	Arsen	Pyrr	O CO	Sar	HA H	Sarr	
34.	-	80	1-1	╉╼┈┧	SI,VI					2	1					+7						2		-	A/A sharing
7-6	` •	79.	93	╅	SIUI	1				2		`				11				╂─┤	2	 	╂┈┤		Shearing .
۰۰ <i>ن</i>	- 8	11	3		SI,VI					2					1	†X						1,	П		11
72 •	_	11	5	275 220 S	BI	30	20	P	,	2						71					3	1			•
76°		R	u			30				2	• .					t,	Ì				tr	tr		•	
	.4-	k	14					1		2						"					1	1			
62 3.	4-	7	11			1		P		2						u					٦	11			
88-	4-	/	4			25,	35	P		2						n					Ηt	11			, v.,
	, ,	ľ	n			40	30	p		2.						11		15			7	11			strong 5, 290-70.5m
		11	R			25	20	P		2	;; ;;,					11					' '	1 1			,
74 77-		lı.	11			30	30	P	V	2						h					'n	1/			-
	4.	ic]	"			30	25	P		2.						11					1,				
う。 う。"	-	þ				35	35	P		2						11					"	$n_{\rm s}$			
න වර්ග		11			<u> </u>					2						11					٨	1,			<u> </u>
29-4	` <u>.</u>	1	<u> `` </u>			35	25	P		2	.		- 1			<u>''</u>					,,				
7	4					25	20	P		2,	ان ا		.]									· · ·			:
· ···	.4					30	30	P		2.	-							<u> </u>			<i>*</i>			_	grashed to do si
· ?-	4-		4		<u> </u>	30	23	MA		2															itme sinced py.
21.	4	-	4	<u> </u>		25)	-0	S											H	Н		A		,	mor stream 321.2m
4 -	4	<u> </u>	<u>:</u>			35	25			2			<u> </u>	i-					 			† 			· · · · · · · · · · · · · · · · · · ·
<u> 2</u> 7-	0		+	:2 <i>6</i>		30	Sö		5284	2	-							4							Ladi and south
3 0∙	3.	1	2	1	SI	-			34.7	2				i		1					た	tr		igsqcut	proleen come, strong S,, pol sout.
3.(0-	#				30		-									1				1	/			330-6 - 330-65 del. state del in a
7- (0+	#	73	357.5 357.5	<u>SI</u>	-			H	8	; ;		-			17					20 2			t f	334.2-334.7m 9-man CCs un. panile tr sph. bkn, highly polished care
89-C	-	╫	3 °	" 1		$\overline{\Box}$			1	2:11	50	•	Н	 		<i>tr.</i>		-	\dashv		10				Photograph 1-111-12 care.
2-	<u>- : </u>		3			35]	35	۶J		2.						1					*	<i>t</i>			

3. Dololutite

4. Laminated dololutite

5. Tuff marker bed

6. Massive sulphides

7. Calcareous dyke

IO. Leached slate

II. Dolomitic slate

12: Cream dololutite

13. Stromatolitic dololutite

50-75 75-64

>900

Dip angles measured with respect to long core axis, sense measured with respect to cleavage

		00)RI	DĜ	-Q	GC	ERS	S	JÖ	IN	T	VEN	IT.	UI	RE	•	. * *	· · · · · · · · · · · · · · · · · · ·	Dat Log	e :	<i>اجا</i> d b	/ <i>9 /</i> y: 7	192 1. R	.0	<u>ر</u>	sbj	Hole: 3/2/2 Page No.4 of 6
L_			 	Ċ		s. let						%				Mi	ner						,		er	······································
三	tance	from collar	Recovery %	RQD.	Weathering	Structure	Cleavage	Bedding	Sense	Stratigraphy	Rock type	-Dotomitic slate?	Dololutite %	Galena	Sphalerite	Sulphosalts	Pyrite	Chalcopyrite	Stibnite	Arsenopyrite	Pyrrhotite	Quartz	Carbonate	HMR	SampleNumb	Comments
	342	-0	75				35		ρ.		2	7					¥			-			tr			
<i>ह</i> र्।	345	-0 -									2						<i>†</i>						1 to			grading to de slate.
	348-	J.	1 / /	4			41)	30	جزور	•	2						†7					†	1			A/A .
	3510		1	s	•	· <u>-</u>	35		ρ.		7	<u>`</u>			******		な		<u>.</u>			+	+,			N/A
	354	. O		5				3 3	1		2	· .										7				A/A:
·	356·	Ø .			\dashv	S3	"				2	· .		· ·			<u>・</u> か.	-				†r	1			mod. shooning, but not broken.
不	359.	0.		2	351-1	BI	21	ર ૬	S		2.9				•		+1					ع	l's			· · · · · · · · · · · · · · · · · · ·
		2 -		3	7			30	4	. 4	2		 i				 									grades to dol state.
βE	363	·O _		3		53		?s			2						†r		,			tr	70			A/A.
	.366.			4	-			<u>্</u>	2		2	,		ì			+						4			grades to dol s'ate/dil 365.1-2650m
€#1 !	369-	0 1		5				_	1	ì	2	• 、	•				tr					3	<i>t</i>			grades to del state
	372 ·	O Z	1					នេ			2			:			+ +				· 	<u></u>	<i>t</i> n			A/A. strang So in part.
77.	375	s• <i>6</i> -		Ì	₹7-8°			25.	~		2.						to				·	4	1.	•		
30	378.			_	200	*					2	• .	•				to	i				S	2			
_:	381 -				\dashv	<u> </u>	40	ID.	P		2			·			+					†	M		٠	
FFF.	384.			\uparrow						·	2						th		•			†/	<u>₩</u>	· - ·		
	387-	0 -				-	45	İS	P		2	: ;*				٠	†r					†r	+			grading to dd slate.
nļ.		۰٥-				i			ρ		.2						*	·				77				v. thin 9-cos uns
- 1	393							45		714	2						1				 -	†	tr			grades la del sicta.
(A)	396· 399·	0					40	45	P		2-#	*	-				ĮΥ					tr	*			slate->dd skate gredatical
	402.	•					٤	3.	Ç i2		11.2	Ď.).				tr						7/		_	1,
]	405-	;					10	50	25		11.2	30	-		·		力					tr	H			
1	408	•		\prod	ŀ			Ţ			11-2		4 2 3			12 2 3 3 3 4	4				•	7	m	1		•
	A)ı			\prod			45	<i>5</i> 5	چې'		11	委员	\$ 4 \$4 \$4		.	1	+	,	,			*	<i>h</i>	-		
7.2	TH. "	ر ر					35	Ы	ی		11.		٠'	· :	7.	1,2 =	tr	ļ			*:	tr	11	`.		
	416-	, ŋ					10	ر د	ې		II .	·					tr	· - ;	,			ŧ	th			
	1 18	DOTT	edæ	late			, .	متي	,*			N.		ion		4:	ke ·						 1			Dip angles measured with

- I. Sported slate
- Slate
- Dololutite
- Laminated dololutite
- Tuff marker bed
- 6. Massive sulphides
- 7. Calcareous dyke

- 8. Dolomite dyke

- 9. Breccia 10. Leached slate
- Dolomitic slate
- 12: Cream dololutite
- 13. Stromatolitic dololutite

Dip angles measured with respect to long core axis, sense measured with respect to cleavage

	C	00 OR	D(CU L(TT	ER GIN	S G S	JC SH	EE	IT ET	VEI	VT	U	RE				Da Lo	te : gge	d b	<i>o </i> y:	10. W.	/9 R.	2 0,	√ ••••	Hole: S1212 Page No. 5 of 6
	Distance		Recovery %		Weathering	Structure	Cleavage	Bedding	Sense	Stratigraphy	Rock type	Dolomitic slate%	Dololutite %	6	Sphalerite	ılts		Chalcopyrite 2		Arsenopyrite @	Pyrrhotite 5	Quartz.	Carbonate	HMR	SampleNumber	Comments
	416		195	,5	,						2.	7	,				4					ナ	4	•		Gradelismal to dol side.
	f20	-		\prod			55	65	ز		2				-							tr	to	•		
- 1		.0	\prod	\prod			SØ	15	P	1	11-2	80			,							<u> </u>	7	·		gradational
	126		1	\prod	 			100			11.2											٠ <u>+</u> :	_			1 cm CO3 un @ 4-2819m.
┛┃ ^⁴	29.	0 -	1		-		5	45	ρ		2-	۶										tr	1×		,	
	-	.0-		4	1288	SI	=	45			2			-			-						- 1		· - · ·	Broken care, un breccia a gongue at 132.9m.
	(35	- 0	\parallel	<u> </u>	1334 133-5	-	7-		 		2.						+					\dashv	卡	, 		thin cos veinicis. mor shear e 437m
	\$	0-		ĬĬ	<u> </u>						<u> </u>						+					<i>†</i>	1			<u> </u>
•	441.	0 -	H	H			150	30			<u> </u>		100			_	+		٠,١	\dashv	-	+	4			gradational to ad state.
ľ	144	· 0 -	H	H			 			-	6					-	┦┨		1			1	1			thin co & mor py uns along So
4	<u>147</u>	-0-	H	$\left\{ \cdot \right\}$			10	40	P		2				-	-	-			\dashv		+	F	_		
	f50	.0-	1	$\frac{1}{1}$			+	_			۷,		_			_				_	-	\prod	<u>' </u>			
4		· O-	1 1	H			-		_		2	 	-	_	_	_	\prod			\dashv	_		<u>tr</u>	_		· · · · · · · · · · · · · · · · · · ·
4	156	0-			54.2	SI	40	45		 	2		\dashv	 						_		<u>tr</u>	M	\bot	_	bkn, skicked, 9/2 2 003.
1		0-	1 1				ŀ			457-5	2.5							_		_		1	1			2 cm & cream colour lam upper &
	₩2·				·		45	45	Ρ.		2											M	TN			
		0-				· .				4/45 4/4-7	2 15 2											\prod				fine graned, light gy calcardous sst.
\	- √	Λ-	,	1			40	40	0	3	2			,	•							1.	1			grades to dol slate 466-466-15 a a la come, fine breccia in see
á a) [7] .	ک ر				. "					2												\prod			metrix - another contacts. Class 23mm well closued metrix - 4mm wispy, protly land 11466-2m
	71 T	0,2			£72×6	52	40	45	P.	1714	χ ₅ .				\exists								\prod		7	Partly shared & Sman 8? Slate become well lam, strong Sin port.
•	_	_								·	2						\prod	_	\exists		<u> </u>		1	1		1734m, sum show to state to the post oppie
•	78·		7				45	3.5	P		2			_	1	\neg	\prod	\dashv		\dashv	\dashv		\prod	\dashv	-	Mnn blen come 475-476-
ı	180	Ï				<u> </u>		~			2	\dashv	1		\dashv	\dashv	1	\dashv	\dashv		\dashv	H	+	\dashv	-	
-	∤გვ∙		+			 .	45	<i>[:</i> ^	D	H	2		-	-		\dashv	+	\dashv		-	\dashv	\prod	H	+	\dashv	
14	186	· O-	+			<u> </u>	12	B	# 12		2			+	\dashv	\dashv		\dashv		-		 	H	\dashv	-	
4	89 -	0-						_ 	>			-	-	\dashv			H	-	·	\dashv	_	-	H	_		491m patch g-cozepy
14	42. 45.	0 -	-	-			30	ను	_	\vdash	2		-	_ -	_	_	+	-		\dashv			H		4	
4	45.	0.		Щ		·-				Ц	<u> </u>			1						_					-	
3	. S	potto iate olok amir uff	utit agte	e ed, c	olob	lutite d	•	,: . \	, `	•		•	Bre Lee Do	ecci ach Iom	ia ed itiç	sļai siç	le ite		•				,	- 10	•	Dip angles measured with respect to long core axis, sense measured with respect to cleavage

11. Dolomitic state
12. Cream dololutite
13. Stromatolitic dololutite
14. Massive vein quartz
15. Calcangou Sandstend

6. Massive sulphides

7. Calcareous dyke

- L	Į	ŶQQ	DC	ະບ	TI	ΓER	S	JC) I N	1T	VΕ	NT	ŢŲ	RE	•			Da	 te.÷	10	/10	5/4	7z	·		Hole: 5/2/2	_
		OR	ΕI		G	GIN	G S	SH	E	ET	•	3				ı		Log	gę	d b	y:	W.	7Z R.O	Mens	by	Hole: 5/2/2, Page No. 6 of 6	
	L.	from collar	Recovery %	0	Weathering	Structure	Cleavage	Bedding	Sense	Stratigraphy	Rock type	Dolomitic state%	Dololutite %		Sphalerite	salts	Pyrite	Chalcopyrite 2.		Arsenopyrite @		Quartz	Carbonate	HMR	SampleNumber	Comments	or to the second
1	1	15-0 8-3 -	75	5	ļ.		45	85	P		2	1		;•			7					12	tr				•
3	50	11.0-	<u> </u>	1	<u> </u>	SI				L	2					·	tr					F	2			V. broken esp 498.3-499.3m, shared, can eas-g vo.	
] ;	50	4-1-		2	502.5 557-6	\$2 \$7	40	45	S	·	11.	260	٠,٠								•	Z]	2			grades to del slate.	
		· •, 7-		3	Ŀ	<u> </u>					11	100		-	•		[]					tr.	1				
		• 0-		4	29-4 29-5	BI	45	60	P	•	2,1	25	Ţ				\prod					6	6			Breca interce 9- CO3 Un, blin, share	<u>ー</u>
		s· 0-	$\ \ \ $	4	5)J·5		40	60	P	-	2						II					<i>†</i>	か				
` _		-0-	11 1	3		\$2					2				<u>,</u>							ī	to		_	grades to dol slate.	
]		· O -			ភូមិ	SI	40	45	ρ		2											<u>†</u>	10	,		11 .	
	`	2.0-		3		SZ,					z.17	20					\prod	7	·;			t	*			320.2 - 520.25 parsible 8.	
知	ł	,	ŀ	5			so	30	P		11-2	80				7	1		,	\dashv				一			•
		5.0-		3.		52		<u> </u>		- 1	拉巾	20				1	71		-	\dashv		2	2	\dashv	\dashv	527-1m. Zon should, brecking-Cos.	
- - -	52	8· <i>0</i> -		4	224	Вz	40	45	P			90		+	7	1	Π		\neg	_			2	\dashv		To sph P on trust sont @ 528.9m;	
ACC	;	· 07	1 1 1	2	33-5 5 3- 3	31	<u> </u>	,,-			11-2			7	\dashv	+	\prod	1	寸		1	'			-	sitt, fleky gan min on fract-sut	_
L.		1-0-		_		52	55	so	ρ		.0			_	+	-	\prod	-	\dashv		- .	-	,	\dashv		Tr flourite in 9-cozuns	_
陈	537 544			1	7	51 C1	•			_	2		+	\dashv	\dagger	+	 	\dashv	+	\dashv			-	+		Care evadoble Enden & Obrasa:	-
1	540	· 1 -		5		<u> </u>	40	40	e		2		-	-	\dashv		H	\dashv	+	\dashv		2	<i> 1</i>		-	Com g mon cos uns	-
W.	5 4 3	.0-			1					-	<u> </u>	1		-		•	\forall	-	+	$\frac{1}{1}$	_ .		\mathcal{H}	+	-	To floorife in thin g-cos un.	-
	546.	0-		1	**	<u> </u>	5	40		050	2.11 11.2	100	\dashv	+		+	}	_ -	+	- -	-	H	H	_	╬		4
		0	+	<u>T</u> 5	-	•	20	3.6		16.6		βU	-	\dashv	\dashv	-	+	_	·- -		_		-	-		grades to del slate	_
	\$\$3 **	1	H	_	-	_	35	<u> </u>	 ∤-	55 # 55 #	<u>2</u>		-		;			_	- -	1	-		<u>. </u>	1		longe (up to Ica) py xels & proce show	4
	55 5	7-		2	<u> </u>	<u> </u>		-		373	8			1	<u>^</u>		긕	_	-	+	- -	7/1	7			554-1-554-3m 9 Vn Emnr Cozedable	
	558	.0	1 1	2	-			_	$\frac{1}{2}$		2		4	_	-	_ 1	7.	_	_	-	-	1	1	_	4	Sphi patcher 22ch across SI is completely been come à 9-CU3 ming grades to dol state	<u>'</u>
- L.	ૠા	0		2	72	52	4 5	65	S	\dashv	2,		_	- -			4	_		_	<i>†</i>	\ 	<u> </u>		\bot		
,]	, _ i a	-0-		3 [s	<u>∞†</u>	51 <i>B</i> 2	_				2		4	_	1			-		<u> </u>	1	-	1	\perp		off, smooth gra min on fredisant.	
1	567	0	1	4	_	52	55	30	\$	-,	2	4		7	.		<u> </u>				<u> </u>	r 	7		1	strong Si in part.	¥.
1	-	0		7 5	696	<i>></i> 1 3	-			1	2				1	<u> </u>	\coprod										, j
		.3	1	EL			35	35	<u>P</u>		2				1 T		<u> </u>							'}		grades to del slate.	
	****	Spotte		ate	,		;=5 e ·	, <u>e</u>	''.' <u>.</u> '.'	, E.,	The second se	8.	Dol	imi	tė c	yk Jyk	ę.	が、	4	, , '	:		_			Dip angles measured with	
	3. [Slate Dololu	tite			·		الادر	• • ,			9. 10,				lati	Στ.κ.) (1) Β .τ						•	5-1 5-3	_	respect to long core gais.	•
		.amin Tuff r					. •		٠,			<u> [[, </u>	Dale	imc	tiç`	şļg	e	.;				.3 .⊈		7-75 - 70	•	sense measured with respect. to cleavage	
	5. N	/lasşi	ve ş	ulp	hide	es 🦠				ı	•	12. (13. (Stro	ρψά	ıţol	ițic	do	lolu	tite	9		200	10	•		**************************************	•
	r. C	alcq	eou	15 (_	ا جوال الميم - آراد د	.e.			: .	· · · ·	14: 1	Mas	Siv	e v	veli	j q	uar	tz			e de la			_		

			<u>-</u>			_			,				= [\ = [\	Π =			D	ן (- - -]]~	x 5	_		
WO(COF	DDC	U.	TT	ERS	S	JO	IN	ΙŢ	۷E	Ϋ́	Ū	RE	3 U	U	U	Dai			5t	y 4/	,5	19	<u>・</u> フ	REENTRY S1212R
-		T		21146	J 0	T T		: I	<u> </u>	Te		1		14'				d b			<u>ئى</u> -	<u>,</u>	<u></u>	ILLIAMS Page No. of
Distance from collar	Recovery %	0	Weathering	Structure	Cleavage	Beddina	Sense	Stratigraphy	Rock type	Dolomitic slate?	% 9		lerite	salts	Pyrite	Chalcopyrite =	Stibnite a	Arsenopyrite	Pyrrhotite E		onate	HMR	SampleNumber	Comments
57.	, 9%	4		B) /33	4	160	6	 	2/3	-}'	 						Ë		_		_	-	-	minor land del beds, some
585	1			· ·				 	2/11	\dagger	+-	-		-				ļ 				<u> </u>		STOT- 10en cation / breec @48
	75	5		<u> </u>	35	35	2.		2/11		 	-		[<u></u>										
57	7 75	5			Ţ.	36	 		2	 	 -	-	-											592.3 7- cat, graphilium
40	- 1	Į.				3			2	-		-	-				-1- -		-					shew (rece currentaminations & 50° (sub // to beds)
60	İ	 			36	36	s		2		<u> </u>	_												
15		S		<u>/s1</u>	40	40	s		2		 			-										509.3 4cm lam chear, carty Some grankle breeze, graphitic contest
621	75	5		1/2	48	48	s		2									2)	کر	J./	/ ₹	be	$J_{\rm s}$	615.1- becc @ 450 sull to bed
627	15	5		13					2						-									distinct cut "spots" (press shaden
633	715	5							2.						_						 			The Color of the c
636	75	5		-,	35	35	5		2															
639	25	5		\/ 37					2/11								-							me carbone à mosair becc.
639	695	5							14															massive un g/z. @380/170
644-3	75	5							2/11															(E)
.: 650 د <u>:</u>	3 %	ς		/^	20	20	5		2/3														_ 	Pale 21/200 (16 mm) @ 550
65%	45	5		US		'n			2/3														Į	pyritic sons to 4 m, som
1 7 7.	≠ 7§	S		(2)					3															3 = = = = = = = = = = = = = = = = = = =
663-4	45	5		1/2		-			3								_							MOLOLUTITE pale Scrange
669.3	1 1		\dashv		40	40	0	_	2		_													
675.3	75	5		الإ		_	<u> </u>	4	3	_	_													becommend
	$ \zeta $	귀		21		_			2/3		<u> </u>													lam, wece, spaphitic some
682-	7	4		51 _{RI}	_		-		3				_]_	_									1	steam @ 580. Emajor
688.3		-		1.	35	25	s	<u>;;</u>	11	_		·			_[
692-3	$\vdash \downarrow$	-	17	公	4	_	_	_	3/1	20	80												7	ALE SCRABBY JOLOGUTITED
699.3		_	- -	7,	_	4	_	-	7/3		<u>. </u>							,						70004//78
7057			1	1/12				_	11	•									·					me ent uns to I
Spott 2. Slate Dolol						•		, '(Ş	€.	Bre	cci	ite (•			•	٠.				,		Dip angles measured with respect to long core axis,

Laminated dololutite.

Tuff marker bed

Massive sulphides Calcareous dyke

" 2500 H

O. Leached slate

.. II. Dolomitic slate

12. Cream dololutite

13. Stromatolitic dololutite 14: Massive vein quartz

Dip angles measured with respect to long core axis, sense measured with respect to cleavage

WOODCUTTERS JOINT VENTURE .∙Date : CORE LOGGING SHEET Logged by: ヒい Mineral Percentages Dolomitic slate% Sample Number Stratigraphy Chalcopyrite Arsenopyrite Weathering Sulphosalts from collar Rock type Sphalerite Carbonate Dololutite Pyrrhotite Structure Comments Bedding Distance Stibnite Quartz Pyrite Sense Rad HMR 1713 SUIS 01 723.3 2/4 つみら 57575 65 45 0 2/11 70400 741.3 well cleaved to py - BEDDING FROM 10-7 20. 747.3 - 5-9/7 UN @ 60. 60100 747.3 40535 754.3 2 cm len. shen/ toc/ge POLATINATED POLOCUTITE
LATINATED DLL & GECCED
159.5 + minn conting. 759.3 763.3 strongly cleaned slate. 765.3 50 ts 2 well cleaved to 169:3, corbons ンクノ・ブ 7 thm 10 in all bed sub/ to con 50/10/5 コンフュ DEILLING DOWN REDS 7823 ह्य शिक्ष 65 55 0 LAMINATED DLL 7913 well cleaved adjacrestodll. 60200 7953 797.8. 2a brece @ 25° x cuts belding. Some more d'donitée 801.3 50/00 806:10 LAM. SHEAR@ 550//to elga ond walding 153 60 20 0 807.3 11 -> 812 F 4hindl bed cutting 2/4 812.3 H^{\pm} 5550 8193 2 cm cart LATSHEAR 153 5045 0 र्के १५५७ also @ 821.3) @65 11/3 827.4 Othin all he 831.3 45/45/0 835-7827.3. STRUCTURE. 837.3 mosaic wece I to bedding Spotted slate 8:. Dolomite dyke

2. Slate

3. Dololutite

Laminated dololutite 🙉

Tuff marker bed

. Mass sulpaides Calco pus dyke

- 9. Breccia
- 10. Leached slate
- II. Dolomitic state
- 12. Cream dololutite
- 13. Stromatolitic dololutite
- 14. Massive vein quartz

Dip angles measured with respect to long core axis, sense measured with respect to cleavage

							<u></u>								무	1		11	7	젞	JL		v	5
WOOL CORE	C	רַַט	T	ERS	j	10	IN	T	VEN	17	U	₹E	•			Dai	le :				-			REENTRY Hole: 51212
CORE	. L	.0	GG	ING	S —	HE	E	T	 .							Loç	gge	d b	y: (<\	J	•		Page No. 3 of
	%							<u> </u>		te%	%				ner						<u></u>		ber	•
oce colla	ery °		erin	ure	ge	ြည်		grapi	type	tic sk	tite '	_	rite	salts		Icopyrite	بو	pyrite	‡‡		ate	:	Number	Comments
Distance from collar	Recovery	۵D	Weathering	Structure	Cleavage	eddi	ense	Stratigraphy	Rock	Dolomitic state%	Dololutite	alenc	Sphalerite	oldli	Pyrite	alco	Stibnite	seno	Pyrrhotite	Quartz	Carbonate	æ	Sample	
£.7£8	8	R	×	8	Ö	8	Š	S	<u> œ</u>	Ă	Ŏ	ğ	S	Ø	P.	ਠ	ŝ	₹	3	ō	ၓ	至	S	
843;3					50	20	0		2/4						ħ									pyrite elds to law
849.3				13°					2/4								ļ							CONVUNT LATISHEARI Q US
822.3					70	10	2		2/4							i'								LAM SHEAR @ 853. 6 -> 856.3-7
EOH_											1													@700 11 to alge
· · ·																								
				<u> </u>																			"	
				· · · - ·								•												L
																		14						
I																								
		·																						· · · · · · · · · · · · · · · · · · ·
							•																	
	·		_																					
,	··-··																							
																			\					
-			_																	,				
-		_	_																			1		
-		_	-				_				_	_	_						``					
			_	•					·	-		-			_			_						
_	٠ ٦,	-	\dashv					_		_	-			_	_	-		_	_	_				
	_		_	 -	_		\dashv	\dashv			<u> </u>	_	-	-	_	_				_	_			· · · · · · · · · · · · · · · · · · ·
-		\dashv	-				_	_		_	<u></u>	_		_		_						_	_	
	-	-	\dashv		_		_	<u>,</u> ,		-	-	_	_						_				_	
	\dashv	-	-		-					_		-			_	_								•
· +	-	+	-		-	_	-	_		-		_					\downarrow	_						
																								•

Spotted slate

Slate

. Dololutite

Laminated dololutite

Tuff marker bed

Massive sulphides

Calcareous dyke

8.. Dolomite dyke

9. Breccia

O. Leached slate

II. Dolomitic slate

12. Cream dololutite

13. Stromatolitic dololutite

14. Massive vein quartz

Dip angles measured with respect to long core axis, sense measured with respect to cleavage

voodcutters	Mine		Init Date	CR98/236	File S1212
			r KAW W	odcutters Mine	Scale 1: 2000
		Checked		ISMIC ANTICLINE	Date 26 Feb 1998
		Approve	d DIAMC	ND DRILLHOLE S1212	Enclosure
ы в в в в в в в в в в в в в в в в в в в	9 8	ор В	о О	3 3 3	500 E 500 E
වර සි ර	3.1	33	ee ee ee ee ee ee ee ee ee ee ee ee ee	m ·	1200 RL
1100 FL					1100 RL
				S1212 + -20	
				50	
1000 RL				100	1000 RL
				140	
				160	
900 RL				200	900 RL
<u></u>	<u></u>			240	
				280	800 RL
800 RL			3	₹ 0	
			380		
700 AL			**************************************		700 RL
•			Table 1		
		The state of the s	**************************************		
600 RL		86 86 S			600 RL
		Right Big			
	100 BB				
500 RL	2 1 8 S				500 RL
EOH \$1212 B					
400 RL					400 RL
	-				