EXPLORATION LICENCE 8348

FRANCES CREEK

Pine Creek 1:250,000 map sheet area, SD-52-8
Pine Creek 1:100,000 map sheet area, 5270

ANNUAL REPORT
FOR THE PERIOD ENDING 20 DECEMBER 1996

CORPORATE DEVELOPMENTS PTY LTD
ACN 000 610 271

OPEN FILE

S. Carthew
Rocks Prospecting
November 1998
EXPLORATION LICENCE 8348, FRANCES CREEK

Tenure Location Map
Nominal Scale
CONTENTS

1.0 Summary and keywords. .. 3
2.0 Tenure. ... 4
3.0 Previous Exploration ... 4
4.0 Regional Geology ... 4
 4.1 Stratigraphy .. 5
 4.2 Structural Geology ... 5
5.0 Exploration Models ... 6
6.0 Field Work Completed. ... 7
7.0 Recommendations ... 8

TABLES

Table 1 Stratigraphy of the Pine Creek Geosyncline

FIGURES

Figure 1 Tenure Location Map 1:2 500 000.
Figure 2 Licence Boundary 1:50 000.
Figure 3 Simplified Geology of the Pine Creek Region.
Figure 4 Rock chip Sample Locations; 1:25 000
Figure 5 Landsat interpretation, Frances Creek

APPENDIX

Appendix 1 Rock chip descriptions
Appendix 2 Assay Sheets, Amdel.

ENCLOSURES

Map 1 EL 8348, Geology and sample locations 1:10 000

EL 8348 FRANCES CREEK Third Annual Report Page 2
1.0 SUMMARY.

Work undertaken this year involved geological mapping and prospecting at 1:10 000 and follow up of stream sediment bleg results. This work led to identifying a number of anomalies that warrant follow up and delineation by soil sampling programs. A landsat study assisted in recognising a number of structural targets that require investigation. This area is considered prospective for gold mineralisation located in shear zones and anticlinal structures.

KEYWORDS

VEIN TYPE GOLD
LOWER PROTEROZOIC
WILDMAN SILTSTONE
GREYWACKE TUDDS, SILTSTONE
ANTICLINAL COAXIAL SHEAR SYSTEM
NNW STRUCTURAL GRAIN
RETAINED AREA

131°50' 131°52'
13°31' 13°35'

EL8348
5 BLOCKS
16 sq kms
2.0 TENURE.

Exploration Licence 8348 was granted to Corporate Developments on 21 December 1993 for a period of six years (figures 1 and 2)

The Licence covers an area of 5 blocks, being 16 sq kms namely,

Union Reef Sheet 42/31, 43/31, 44/31, 45/31 and 45/32

The Expenditure Covenant for the first year of the title is $5,500.

3.0 PREVIOUS EXPLORATION.

Corporate Developments have conducted two stream sediment bleg surveys, the latter being a follow up of anomalous results found. Limited prospecting had been undertaken to explain these results.

4.0 REGIONAL GEOLOGY

The Frances Creek area of the Mount Wells district lies in the central portion of the Paleo-proterozoic Pine Creek Geosyncline, a macroscopic structure of 68 000 sq km in the Katherine to Darwin region. This province consists essentially of Early Proterozoic fluvialite and basinal sediments (with minor bimodal volcanics) that onlapped small exposures of Archaean inliers. Ongoing sedimentation changed to flyschoid sedimentation. The regional stratigraphy is shown in table one and described in Stuart-Smith et al.

During the waning stages of the deposition, igneous dykes and sills were intruded. The sediments were then folded and metamorphosed to Lower Greenschist facies grade metamorphism in the central part of the basin. This led to the development of the Top End Orogeny (1870-1855 Ma), when sny- to post tectonic granitoid plutons and dolerite lopoliths were emplaced. Extensive granite emplacement (1850-1800 Ma) took place after the main deformation event as evident by the superposition of contact over regional metamorphic fabrics (figure 3).

The tectonic history suggests four phases of deformation;

D1 and D2 are related to metamorphic development produced bedding and foliated regional folds.

D2 developed shallow dipping low angle shear zones in response to crustal shortening during basinal compression.

D3 and the development of F3 folds that are tight to very tight N-S trending folds and refolded S1/S2 folds.

D4, a final folding episode that refolded F3 folds along an E-W axis producing open folds with steep dipping axial planes.

The basin is unconformably overlain by flat lying Mesozoic and younger strata (figure 3).
4.1 Stratigraphy

The licence area is underlain by sediments of the Lower Proterozoic MUNDONIE SANDSTONE and the WILDMAN SILTSTONE that is unconformably overlain by the KOOLPIN FORMATION. Sills of theoleite and dolerite of the Zamu Dolerite intrude these sequences (table 1). The licence lies towards the eastern margin of the Katherine - Pine Creek - Darwin Shear Zone. Structure is dominated by open north plunging folds with younger north-east trending cross folds and faults.

The Mundowie Sandstone is a massive sandstone or felspathic sandstone forming many of the ridges in the licence.

The WILDMAN SILTSTONE is predominantly a pelitic unit, with sandstone lenses, up to 750m thick. It consists of two members, both cropping out in the licence. The lower member (400m) is poorly exposed being thinly bedded bleached white to grey carbon rich siltstone and shale with minor ferruginous horizons. The upper member (350m) is thinly bedded pelite, often carbon rich and sandstone that can be sericitic.

The KOOLPIN FORMATION crops out in the south west portion of the licence. It is a distinctive iron rich sequence of pelites and arenites.

These Early Proterozoic rocks have been subjected to regional greenschist metamorphism (map 1).

4.2 Structure

The major structural trends of the licence area are presented on figure 5, from a landsat study.

Structural mapping suggests four separate deformations have occurred. The first deformation (D1) resulted in the lithology's being isoclinally folded about sub-horizontal N to NE trending fold axes (F1). The folds are asymmetric, verge to the W, and in part may be overturned. These folds are associated with a steeply E dipping penetrative regional cleavage (S1). Cleavage bedding relationships suggest these folds are widespread in the tenement (map 1). This event produced strong layer parallel or sub-parallel S1 axial-plane schistosity or planer fabric. An example of an overturned, shallow plunging (8°) anticline is found on the north bank of the Frances Creek 500m downstream from the road bend at 13° 33.4", 131° 52.15".

F1 folds are deformed by two later shearing events. D2 shear zones trend NNE and are steeply E dipping and layer parallel. They are up to 100m wide, being defined by a schistose foliation (S2). The S2 foliation contain a dominant near vertical mineral lineation perpendicular to boudin necks observed in quartz veins. A shallow plunging (18°) antclinal fold is found in this direction. These shear zones appear to be retrograde shear zones associated with exhumation.

This foliation was disrupted by a third structural episode. D3 shear zones are up to 500m wide, produced a dominant shallow dipping (30°) low angle cleavage with well developed N-S foliation (S3) defined by C-S fabrics and a sub horizontal mineral lineation (L2). These features indicate dextral movement of a wrench shear system and are better developed to the west of the licence eg the Mt Wells to Mt Ringwood shear.
Throughout the general area are faults that cut the stratigraphy at oblique angles; particularly the 120° set being stronger than the 030° set. Both these directions manifest themselves in the drainage pattern. These faults form conjugate sets which were mainly brittle in character forming extensional faults and fractures, and propagating quartz veining. Shear features of rock failure are common, particularly feather fractures, step like breaks, imbricated fractures and slickensides. These features are observed on the quartz reefs that trend dominantly either at 160° or 120°. They indicate the importance of the strike slip or coaxial movement.

Slickensides can be found on the bedding planes plunging 12°N. Tight upright F2 folds with axes trending NNW - SSE are common on map 1. The iron ore open pits are on the limbs of a NNW plunging anticlinal structure with parasitic folds. Fold closures are difficult to find and have been often sheared out. Their asymmetric character indicates the direction and sense of movement. The principle stress acted from the ENE towards WNW and reflects the granitoid intrusion within the major anticlinal core to the east and south. The axial plane of F2 folds dip variably and represent "Z" drag fold structures associated with shearing along west fold limbs. The dolerites can occupy the fold hinge zones of the F2 folds because the dolerite and sandstone contact can be followed around the fold closure.

A younger east - west trending set of minor folds is widely evident on the Map. They are either steeply (67°) west plunging open folds or shallow west plunging (13°) Z folds. This direction is parallel to a late direction of shearing. The evolving stress field that led to four deformations and pre-, syn- and post- granitoid intrusion is reflected in the multiple phases of vein quartz. They are

1) compression F1 which created pre-quartz mineralisation primary tensile fractures.
2) compression of the WSW - ENE direction (F2), which produced shear structures as reverse faults and strike - slip faults, tensile riedal fractures and en echelon folds and faults.
3) basement uplift or basement fault activity causing tensile openings of existing structures to form conjugate faults.
4) late east - west fractures with associated minor shearing and faulting.

Full evaluation of understanding the geology of this area will be ongoing with additional work.

5.0 EXPLORATION MODELS.

The licence area is prospective for:

- Toughys style mesothermal gold mineralisation, where gold is emplaced in dilatational structural traps within sillstones, in part carbon rich, or ferruginous sediments.
- McKeddies style epigenetic disseminated and stockwork gold mineralisation in and associated with the Zamu Dolerite in the fold axes.
- Mt Porter style gold mineralisation hosted in iron rich sediments in an anticlinal structure. The Mt Porter prospect lies 5 km west of the licence.
6.0 FIELDWORK COMPLETED.

During the third year, exploration activities have included geological mapping at 1:10 000 scale, prospecting and rock chip sampling of prospective horizons. Seventy five samples have been assayed for gold by Arndel Laboratories, Darwin. Descriptions and assay results are presented in appendix one, with sample locations shown on map one and figure 4.

Samples that returned a gold response of >0.2 g/t Au are:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Assay g/t Au</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC 02</td>
<td>0.75</td>
</tr>
<tr>
<td>FC 12</td>
<td>0.74</td>
</tr>
<tr>
<td>FC 49</td>
<td>0.45</td>
</tr>
<tr>
<td>FC 52</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Location FC 02 is found 100m north of CRA drillhole (13°31.574′,131°50.802′). The sample is taken across a 1m wide quartz reef with oxidised iron oxides that can be followed for 120m in a shear zone. This site is referenced AMG 081028 in Mr D Langley's report last year (Carthew 1995). Stockwork quartz reefs are found on the eastern side of the main quartz reef. Sample 93516 from the same reef collected by Mr D Langley assayed 0.04 g/t Au. Samples collected from this shear zone probably explain the stream sediment bleg response of 2.53 ppb Au.

Sample site FC 12 is approximately 1km northwest of the CRA drillhole, about midway up the eastern slope, near a fold closure with dolerite in the core. At this site a ferruginous greywacke with stringer vein quartz and iron oxides is found. It can be followed for 30m and is up to 0.5m wide. The bleg response of 10.4 ppb Au is partly explained. The valley is occupied by dolerite. Additional prospecting is required.

Sample site FC 49 was taken near the western boundary of the licence at 13°33.55′, 131°50.2′, on the southern bank of Frances Creek. Here a gossan on the west flank of a quartz reef was sampled. Quartz breccia with iron oxides on fractures occurs. The 2m radius rock chip sample assayed 0.45g/t Au.

Site FC 52 is from a ferruginous horizon and gossan with minor vein quartz in andesitic tuffs. Sample FC 53 100m along strike assayed 0.08 g/t Au from similar material. Mr D Langley collected similar material in the previous year that assayed 0.11 g/t Au. These samples are from a creek that returned a bleg result of 4.22 ppb Au and probably explains the stream sediment response.

Unfortunately not all the bleg results have been explained and additional prospecting is required. However, the three areas of gold response recognised are:

1) northeast of Frances Creek Iron ore Mine involving sample sites FC 52, 53, 42, 41, 45, 44, 39, 48, 47, 48 and 49.
2) about a fold axes involving sites FC 12, and 29
3) a stratigraphic horizon that may be spatially related to the hematite rich units in the northwestern portion of the licence involving sites FC1, 2, 24, 26 and 35.

Mapping at 1:10 000 scale is presented on map 1, and the discussion of the observed geology is presented in the geological section above.
LANDSAT INTERPRETATION

Mt. WELLS - FRANCES CREEK

SCALE 1:250,000

FIGURE 6
7.0 RECOMMENDATIONS

Understanding the structural geology of the area will guide future exploration. Whilst the area has been mapped, prospected and sampled on 1:10 000 scale base maps, more detailed mapping and evaluation at 1:2 500 scale base sheets is required in the three areas recognised and to better explain the bleg results. This area is considered prospective for repetitions of the Toughys style mineralisation and evaluation could involve girding, soil sampling and mapping at more detailed scales to better define targets.

8.0 REFERENCES

Bluck RG 1995 (Brukunga Services Pty Ltd), Exploration Licence 8348, Frances Creek, Annual Report for the period ending 20/12/94, Corporate Developments Pty Ltd.

Carthew SJ 1996, Exploration Licence 8348, Frances Creek, Annual Report for the period ending 20/12/95; Corporate Developments Pty Ltd.

Stuart-Smith PG, Needham RS, Bagas L, and Wallace DA, 1987
PINE CREEK, 1:100 000 geological map commentary. BMR Geology and Geophysics.
FRANCES CREEK

APPENDIX 1 ROCK CHIP DESCRIPTIONS

FC 1 quartz reef (20m wide, trends 140°) with pyrite boxwork and altered siltstone.

FC 2 quartz - iron oxide reef in shear zone.

FC 3 hematitic iron ore with minor vein quartz.

FC 4 brecciated siltstone with hematite - goethite veinlets, goethite nodules.

FC 5 quartz reef, weakly ferruginous 30m x 2.5m.

FC 6 quartz reef, spheroidal quartz, iron oxides on fractures.

FC 7 quartz reef breccia, 2nd generation vein quartz, iron oxides on joints, quartz eyes in blue siliceous ground mass.

FC 8 altered sandstone, with vein quartz and iron oxides, highly fractured.

FC 9 ferruginous silty sandstone, in part gossanous.

FC 10 hematite ironstone and ferruginous siltstone.

FC 11 vein quartz with iron oxides on fractures, 0.5m x 20m in siltstone.

FC 12 gossan with vein quartz, ferruginous siltstone breccia.

FC 13 ferruginous siltstone, ironstone, S folded vein quartz, sheared.

FC 14 reef quartz, fractured with iron oxides.

FC 15 reef quartz, with minor iron oxides in ferruginous siltstones.

FC 16 sheared quartz - sulphide boxwork and siltstone, altered siltstone, to 17 30cm x 100m.

FC 18 quartz reef stockwork - ferruginous.

FC 19 stringer vein quartz.

FC 20 reef quartz with iron oxides.

FC 21 stockwork vein quartz in quartzite.

FC 22 hematitic ironstone with minor vein quartz.

FC 23 reef quartz with iron oxides, 30m x 0.4m.

FC 24 blue quartz with iron oxides in siltstone, prospecting pit.

FC 25 sulphide gossan boxwork with minor vein quartz.

FC 26 reef quartz, 0.8m x 50m with minor iron oxides.

FC 27 hematitic ironstone with minor vein quartz.

FC 28 reef quartz on top of hill, with iron oxides, minor altered sediments.
FC 29 siltstone - tuff horizon (at top of hill) with pyrite.

FC 30 to 30

FC 31 reef quartz with iron oxides, fractured.

FC 32 quartz stringers in dolerite (by road cutting).

FC 33 brecciated siltstone with quartz and iron oxides.

FC 34 reef quartz 100m x 5m (S bank of Frances Cr).

FC 35 stockwork quartz in sandstone with minor iron oxides.

FC 36 quartz reef 50m x 2m with minor iron oxides.

FC 37 sandstone tuff with Fe - Mn veinlets.

FC 38 Copper in andesite tuff with iron oxides; minor copper veinlets.

FC 39 fine stockwork vein quartz in dolerite.

FC 40 to 41 quartz reef, very fractured, nodular ironstone.

FC 42 iron enriched siltstone with vein quartz.

FC 43 modular laterite and lateritic siltstone.

FC 44 reef quartz with ironstone, some nodular iron.

FC 45 hematite siltstone + vein quartz.

FC 46 quartz reef with pyrite stockwork, low outcrop. Fractured, wavy banding.

FC 47 to 48 sulphide gossan + vein quartz, ironstone veinlets in siltstone.

FC 49 gossan on W flank of reef quartz. Quartz breccia with iron on fractures.

FC 50 ironstone in part brecciated siltstone.

FC 51 massive feldspar crystal rhyolite with disseminated pyrite stockworks and ferruginous veinlets veinlets.

FC 52 to 53 sulphide gossan 30m x 0.3m + vein quartz: 50m x 1m.

FC 54 vein quartz with iron oxides in arkosic conglomerate.

FC 55 vein quartz with iron oxides in sandstone - quartzite.

FC 56 reef quartz with breccia and iron oxides.

FC 57 wavy banded quartz, blue quartz, ferruginous siltstone in subcrop.

FC 58 ferruginous goethite horizon (1.2m x 75m) on the side of white reef quartz.

FC 59 contorted sheared siltstone with quartz veinlets with disseminated pyrite and pyritic segregations.
FC 60 fractured siltstone with hematite veinlets.
FC 61 hematitic breccia and quartz.
FC 62 pyrolusite breccia: variable quartz, wavy quartz with disseminated pyrite, heavy.
FC 63 siliceous altered quartz and silty greywacke.
FC 64 reef quartz, siliceous breccia with pyrite boxwork and iron oxides.
FC 65 reef quartz with iron oxide boxworks.
FC 66 finely fractured reef quartz.
FC 67 sheared crenulated siltstone with quartz veinlets and iron oxides: on south side of reef quartz.
FC 68 hematitic quartz breccia, with minor vein quartz.
FC 69 sheared siltstone with vein quartz and iron oxides.
FC 70 quartz hematite breccia.
FC 71 sheared siltstone with vein quartz; fractured, with minor iron.
FC 72 hematite quartz breccia.
FC 73 sheared siltstone, contorted vein quartz with minor vein quartz.
FC 74 sheared vein quartz with minor iron in siltstone.
FC 75 ironstone: ferruginous breccia.
<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>Au</th>
<th>AuDpl</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC01</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>FC02</td>
<td>0.75</td>
<td>0.80</td>
</tr>
<tr>
<td>FC06</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>FC12</td>
<td>0.74</td>
<td>0.80</td>
</tr>
<tr>
<td>FC13</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>FC14</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>FC15</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>FC16</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>FC17</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>FC18</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>FC20</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>PC-21</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>PC-22</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>PC-23</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>PC-24</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>PC-25</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>PC-26</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>PC-27</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>PC-28</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>PC-29</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>PC-30</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>PC-31</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>PC-32</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>PC-33</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>PC-34</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>PC-35</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>PC-36</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>PC-37</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>PC-38</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>PC-39</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>PC-40</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>PC-41</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>PC-42</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>PC-43</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>PC-44</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>PC-45</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>PC-46</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>PC-47</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>PC-48</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>PC-49</td>
<td>0.46</td>
<td>0.45</td>
</tr>
<tr>
<td>PC-50</td>
<td>0.05</td>
<td></td>
</tr>
</tbody>
</table>

UNITS
- ppm
- ppm

DET.LIM
- 0.01
- 0.01

SCHEME
- FA1
- FA1
<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>Au</th>
<th>AuDp1</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC-52</td>
<td>0.24</td>
<td>0.22</td>
</tr>
<tr>
<td>FC-53</td>
<td>0.08</td>
<td>--</td>
</tr>
<tr>
<td>FC-54</td>
<td>0.07</td>
<td>--</td>
</tr>
<tr>
<td>FC-55</td>
<td>0.09</td>
<td>--</td>
</tr>
<tr>
<td>FC-57</td>
<td><0.01</td>
<td>--</td>
</tr>
<tr>
<td>FC-59</td>
<td><0.01</td>
<td>--</td>
</tr>
<tr>
<td>FC-60</td>
<td><0.01</td>
<td>--</td>
</tr>
<tr>
<td>FC-61</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>FC-62</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>FC-63</td>
<td><0.01</td>
<td>--</td>
</tr>
<tr>
<td>FC-64</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>FC-65</td>
<td>0.06</td>
<td>0.07</td>
</tr>
<tr>
<td>FC-66</td>
<td><0.01</td>
<td>--</td>
</tr>
<tr>
<td>FC-67</td>
<td>0.02</td>
<td>--</td>
</tr>
<tr>
<td>FC68</td>
<td>0.01</td>
<td>--</td>
</tr>
<tr>
<td>FC69</td>
<td><0.01</td>
<td>--</td>
</tr>
<tr>
<td>FC70</td>
<td><0.01</td>
<td>--</td>
</tr>
<tr>
<td>FC71</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>FC72</td>
<td><0.01</td>
<td>--</td>
</tr>
<tr>
<td>FC73</td>
<td><0.01</td>
<td>--</td>
</tr>
<tr>
<td>FC74</td>
<td>0.03</td>
<td>--</td>
</tr>
<tr>
<td>FC75</td>
<td><0.01</td>
<td>--</td>
</tr>
</tbody>
</table>

UNITS

<table>
<thead>
<tr>
<th>DET. LIM</th>
<th>ppm</th>
<th>ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCHEME</td>
<td>FA1</td>
<td>FA1</td>
</tr>
</tbody>
</table>

Page 2 of 2