CONTENTS

<table>
<thead>
<tr>
<th></th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>INTRODUCTION</td>
</tr>
<tr>
<td>2.</td>
<td>TENURE</td>
</tr>
<tr>
<td>3.</td>
<td>GEOLOGICAL SETTING</td>
</tr>
<tr>
<td>4.</td>
<td>GENERAL GEOLOGY OF THE GHEKO PROSPECT</td>
</tr>
<tr>
<td>5.</td>
<td>MINERALISATION</td>
</tr>
<tr>
<td>6.</td>
<td>CURRENT PROGRAMME</td>
</tr>
<tr>
<td>7.</td>
<td>REFERENCES & BIBLIOGRAPHY</td>
</tr>
</tbody>
</table>

FIGURES

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Locality Plan</td>
</tr>
<tr>
<td>2.</td>
<td>Gheko Prospect - Geology and Drillhole Locations</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

The copper, lead and zinc gossan of the Gheko Prospect is located approximately 50km north-east of Alice Springs, in the Northern Territory (Figure 1). The summit of Bald Hill is the nearest topographic feature, about 1.6km to the north. The mineralisation was discovered in 1969 as a result of stream sediment geochemical sampling in the area of former Authority to Prospect 1721.

2. TENURE

The area was initially held as part of AP 1721. MCs 38 (formerly MC 463H) of 33 hectares was granted to Central Pacific Minerals NL on 22nd March 1984. An application for renewal of MCs 38 for a further 10 years was lodged with the N.T. Department of Minerals & Energy in September 1993.

Formal notification of the renewal of MCs 38 for a period of 5 years ending 31 December 1999 was received from the NTDME on 9th February 1996.

3. GEOLOGICAL SETTING

The rocks of the prospect area consist of crystalline basement assigned to Early Proterozoic? Division Two rocks of the Arunta Block near the north-eastern margin of the Late Proterozoic to Late Palaeozoic, Amadeus Basin (Alice Springs 1:250 000 Geological Sheet SF 53-14). Gneiss, schist, amphibolite, marble and calc-silicates of the Sliding Rock metamorphics are the principal rock types. The metamorphic grade is as high as the almandine-amphibolite facies. Small pegmatite and microdiorite intrusions are common but no large igneous intrusions are present. A retrograde schist zone, possibly related to similar more widespread zones to the north, transects the Prospect.

Further to the north, the Late Proterozoic Heavitree Quartzite and the Bitter Springs Formation, which are the two lowermost formations of the Amadeus Basin are infolded into the Arunta Block to form the Aultunga Nappe Complex.

4. GENERAL GEOLOGY OF THE GHEKO PROSPECT

Low grade lead-zinc mineralisation is associated with gossans flanking lenticular developments of garnetiferous metaquartzite. The metaquartzite occurs along the contact of a sequence of biotite gneisses with a sequence of fine-grained, even-textured amphibolite (Figure 2). This relatively simple lithological relationship is complicated by extremely complex and tight folding, particularly in the north-east corner of the mapped area. The similarity of the position of the gossan and the
presence of similar gneisses and amphibolite strongly suggests that the Gheko Prospect is a stratigraphic equivalent of the Rankin’s Prospect mineralisation (7km to the west-northwest).

The lead-zinc mineralisation is inferred to be principally sphalerite, with some galena and chalcopyrite associated with magnetite and quartz. The mineralisation appears to be stratigraphically controlled as it occurs in gossanous haematite-actinolite rocks marginal to garnetiferous quartzite with the actinolite rocks presumably replacements of former calcareous lenses. At the surface this mineralisation is represented by gossanous ironstones in quartz haematite and quartz magnetite. The ironstones display a form of folded layering which suggests that they have undergone deformation and metamorphism with the country rocks. The garnet quartzite is intensely recrystallised; no quartz grain boundaries can be discerned and the quartzite superficially resembles a garnetiferous quartz vein. In several places decomposed amphibole and pyrite occur in the quartzite.

5. MINERALISATION

The percussion drilling in 1971 intersected several sulphide zones which were recorded principally as pyrite and chalcopyrite. The presence of sphalerite and galena is inferred from the assays that reached 7.8% zinc and 8.5 g/t silver over a 1.5m interval (PH2) and 1.42% lead and 37 g/t silver over a 1.5m interval (PH3). Copper reached 0.5% in PH3. No significant concentrations of other elements were found although checks were done for cobalt, cadmium, bismuth, silver, vanadium, tungsten and molybdenum.

6. CURRENT PROGRAMME

Potential

The potential of the Prospect was kept under review during 1997. However, the location and small size of the currently known mineralisation coupled with the prevailing metal prices of the commodities involved is such that the property is to continue for the time being on a care and maintenance basis.

Informal contact was made with the holder of the Exploration Licence surrounding MCs 38. No interest was shown by them in pursuing exploration on MCs 38.
7. REFERENCES AND BIBLIOGRAPHY

Clarke, D., 1969

Fidler, R.W., 1989

Fidler R.W., 1992

McIver, R.G., 1988

McPhar Geophysics, 1970
Report on the Induced Polarisation and Resistivity Survey on Several Areas in A to P 1721, Northern Territory, Australia, for Central Pacific Minerals N.L.

Paine, G., 1971

Pope, G.J., 1993

Pope, G.J. 1994

Ransom, D.M., 1970
“Geology of the Gheko Prospect”, CPM File Note NT 04.

Sccrrri, F.M., 1991