E.L. 8164 - RANKINS, N.T.

REVIEW OF PAST WORK
AND EXPLORATION OPPORTUNITIES

Prepared for
Roebuck Resources NL

by
I.B. Freytag, B.Sc. (Hons)

May, 1994

OPEN FILE

Technical Report No. 379
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVERVIEW</td>
<td>1</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>2</td>
</tr>
<tr>
<td>2. TENEMENT DETAILS</td>
<td>2</td>
</tr>
<tr>
<td>3. REGIONAL GEOLOGY AND MINERALISATION</td>
<td>2</td>
</tr>
<tr>
<td>4. GOLD PROSPECTS</td>
<td>4</td>
</tr>
<tr>
<td>4.1 Golden Goose - Junction</td>
<td>4</td>
</tr>
<tr>
<td>4.1.1 Geology and Mineralisation</td>
<td>4</td>
</tr>
<tr>
<td>4.1.2 Exploration Summary</td>
<td>5</td>
</tr>
<tr>
<td>4.2 Coorong</td>
<td>7</td>
</tr>
<tr>
<td>4.2.1 Geology and Mineralisation</td>
<td>7</td>
</tr>
<tr>
<td>4.2.2 Exploration Summary</td>
<td>7</td>
</tr>
<tr>
<td>4.3 Ciccone Workings</td>
<td>8</td>
</tr>
<tr>
<td>4.4 Black Eagle Claim</td>
<td>9</td>
</tr>
<tr>
<td>4.5 Coronation</td>
<td>9</td>
</tr>
<tr>
<td>4.6 Garlands</td>
<td>9</td>
</tr>
<tr>
<td>4.7 Sloan's Gully</td>
<td>9</td>
</tr>
<tr>
<td>4.8 Sliding Rock</td>
<td>10</td>
</tr>
<tr>
<td>4.9 Old Times</td>
<td>10</td>
</tr>
<tr>
<td>5. BASE METAL PROSPECTS</td>
<td>10</td>
</tr>
<tr>
<td>5.1 Rankins</td>
<td>11</td>
</tr>
<tr>
<td>5.2 Gecko</td>
<td>11</td>
</tr>
<tr>
<td>5.3 Gum Tree</td>
<td>12</td>
</tr>
<tr>
<td>5.4 Glankroil</td>
<td>12</td>
</tr>
<tr>
<td>5.5 Turners</td>
<td>12</td>
</tr>
<tr>
<td>6. REGIONAL SURVEYS</td>
<td>12</td>
</tr>
<tr>
<td>6.1 Stream Sediment Surveys</td>
<td>12</td>
</tr>
<tr>
<td>6.2 Aeromagnetic Surveys</td>
<td>13</td>
</tr>
<tr>
<td>7. REFERENCES</td>
<td>13</td>
</tr>
<tr>
<td>Figure Description</td>
<td>Scale</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>1. Locality Map, E.L. 8164</td>
<td>1:1,000,000</td>
</tr>
<tr>
<td>2. Tenement Map, EL 8164</td>
<td>1:200,000</td>
</tr>
<tr>
<td>3. Regional Geology and Mineral Deposits</td>
<td>1:100,000</td>
</tr>
<tr>
<td>4. Golden Goose Prospect - Summary Map</td>
<td>1:2,500</td>
</tr>
<tr>
<td>5. Golden Goose Workings - Drill</td>
<td>1:1,000</td>
</tr>
<tr>
<td>Section DDH GG1-GG2</td>
<td></td>
</tr>
<tr>
<td>6. Coorong Prospect - Drill Section GG5</td>
<td>1:1,000</td>
</tr>
<tr>
<td>7. Regional Summary Map of Past Exploration</td>
<td>1:100,000</td>
</tr>
<tr>
<td>8. Aeromagnetic Contour Map - C.R.A.E.</td>
<td>1:25,000</td>
</tr>
<tr>
<td>Survey, EL 4420</td>
<td></td>
</tr>
</tbody>
</table>
OVERVIEW

Past company exploration in the Rankins licence area has been focussed very much on known old prospects in the Winnecke Goldfield, and small base metal showings in the Rankins area. The gold exploration has not succeeded in defining a minable resource at company scale operation.

Notwithstanding this, and the thorough practices of early prospectors, this portion of the Arltunga Nappe Complex remains a prospective regional control for hydrothermal gold mineralisation which has received only limited modern exploration coverage.

There has been virtually no bulk cyanide leach gold geochemistry, nor orientation for such on existing mineralisation. The past small drainage survey of the Winnecke field using standard silt sampling, returned just a few gold anomalies at very short dispersion lengths from only four of the workings.

Despite the fact that gold localisation and hydrothermal activity are fracture or fault-related, none of the past programmes has included fracture studies or structural interpretations, which would add to the understanding of the district and be a useful guide in exploration.

From a conceptual viewpoint, the gold occurrence described at the Ciccone Patsy's working, in veined and altered carbonaceous, pyritic, carbonate-bearing sediments of the Bitter Springs Formation may have been underestimated. This is a recognised reactive host-type for alteration and gold mineralisation exemplified for instance, in the thrust setting of the Carlin field. Remnants of Bitter Springs sediments are scattered along the Arltunga Nappe structure.

Extensions of both the Golden Goose and Coorong deposits beneath surrounding cover have not been fully explored, and in the case of Golden Goose, ineffectively so with the past geochemical soil sampling of thick alluvium. RAB drilling for bedrock geochemistry, guided by a structural evaluation and existing geochemical trends, is necessary to evaluate this area more thoroughly.

Work at the Coorong prospect has demonstrated continuity, rare in this area so far, of interesting widths of gold mineralisation, open at depth and both strike directions.

Low level magnetics is one obvious targeting technique for mineralised iron formation packages of the Rankins and Gecko type. This has not been utilised.

C.R.A.E.'s one detailed survey highlights the complex magnetic signatures around these prospects, and the scope for applying a geophysically based exploration model.
1. INTRODUCTION

The following report summarises past mineral exploration activities and outcomes in the area now covered by, and marginal to, the Roebuck-Centralfield Exploration Licence 8164 in central Australia.

Most of the data comes from computer-listed open-file company reports obtained from the Department of Minerals & Energy in Darwin. It is likely that not all of the earlier work was reported. Some reports quoted in other texts are not available.

Various Government reports and publications have provided useful historical and background information.

The review and references in this report will serve as a basis for evaluating new exploration opportunities in the Rankins licence.

2. TENEMENT DETAILS

Exploration Licence 8164 is centred 60 kilometres due northeast of Alice Springs (Figure 1), on the Laughlen 1:100,000 map sheet.

Title was granted on 15 December 1993 for a period of six years to Roebuck Resources NL (80%) and Centralfiel Minerals Pty. Ltd. (20%).

The licence covers 100 blocks, a total area of 318 square kilometres, with the following exclusions (Figure 2):

3 Mineral Claims
1 Extractive Mineral Lease
5.5 square kilometres of contiguous Aboriginal freehold land and land claim at Gum Tree bore.

Direct access to the licence area is from the graded gravel road to "The Garden" station property at the northeast corner.

3. REGIONAL GEOLOGY AND MINERALISATION

The Rankins licence encompasses the western extremity of the Arltunga Nappe Complex (Forman, 1971), a zone of basement-cored nappes which were transported southwards by low angle thrust faulting and sliding during the Early Carboniferous Alice Springs Orogeny.

Greenschist facies retrograde schist zones now mark the major thrusts (Figure 3). Slices of the early-middle Proterozoic Arunta metamorphic basement include in-
folded and in-faulted remnants of basal Adelaidean units (Heavitree Quartzite-Bitter Springs Formation) of the Amadeus Basin.

Because of the structural complexity of the Block, published geological maps portray a stratigraphic model for the Arunta rocks, with three broad evolutionary divisions based on metamorphic facies assemblages and lithological correlations:

Division 1, considered to be the oldest, is composed of mafic, felsic and aluminous granulites with subordinate calc-silicates and marble.

Division 2 in the southern part of the Block has a high proportion of quartzofelspathic gneisses (acid volcanics, granites) relative to aluminous and siliceous sediments, with minor mafics.

Division 3 is characterised by orthoquartzites.

Intrusive rocks in the Arunta Block include abundant granites and minor intermediate to ultramafic types.

Basement rocks underlying the Rankins licence are predominantly Division 2. Some Division 1 rocks occur along the northeastern margin of the area. One small body of granite (Georgina Gap granitic gneiss) intrudes Division 2 rocks near the eastern end of the licence area.

A small Tertiary-Quaternary continental basin, the Hale River Basin (Clarke, 1975), is situated just off the northeastern boundary of the licence.

Gold mineralisation is hosted predominantly in quartz veins in the retrograde schist zones. Host lithologies are:

- retrogressed and hydrothermally altered Arunta metamorphics.
- brittle-fractured Heavitree Quartzite.
- schistose pelitic members of the Bitter Springs Formation.

Gold has almost always come from gossanous iron oxides which occupy cavities and fractures in the quartz. Secondary, near-surface gold enrichment is well documented. Few shafts which exceeded 12 metres (appearance of pyrite) found payable material.

The Winnecke Field is the focus of gold occurrence in the area. James (1991) refers to total production of about 41 kg of gold to 1937.

Examples of stratiform base metals mineralisation associated with iron formation lithologies occur in the western part of the report area.
4. GOLD PROSPECTS (Refer to Figure 3)

4.1 GOLDEN GOOSE - JUNCTION

4.1.1 Geology and Mineralisation

These workings are located about 300 metres south of Winnecke Well (Figure 4) on and around the crest of a low hill, an area designated "retrograde schist zone" on the Strangways Range geology map. Recorded production to 1905 was 6.3 kg of gold from Golden Goose and 2.7 kg from Junction.

Detailed geological mapping by Australian Anglo American Limited ("AAAL") on the west Winnecke grid (Piggott, 1984) recorded a sequence of muscovite-biotite-quartz gneisses and schists, and amphibolites surrounding the prospect. Ferruginous metasediment, altered calc-silicate, kaolin-muscovite-quartz metasediment and quartz-muscovite-kaolinite schist proximal to the workings appear to be key lithologies related to hydrothermal activity and mineralisation.

Piggott recognised two styles of gold mineralisation:

(i) Quartz reefs forming sub-vertical vein sheets which have hosted the main gold production. He considered that they post-dated the development of the hydrothermally altered schist zones (see below).

Gold was found in cellular limonite masses occupying cavities and fractures within irregular bodies of white quartz.

Pyrite remained in the quartz below a depth of about 12 metres. Selected grab samples returned values ranging from 0.15 to 47.2 g/t Au.

(ii) An interval of "kaolin schist" (quartz-kaolinite-muscovite schist) hosts gold mineralisation and was regarded as a zone of stratabound hydrothermal alteration affecting a section of metamorphosed sandstones, pelites, quartzite and calcareous beds.

Thin irregular quartz veinlets, both concordant with, and cross-cutting the schistosity, form a tabular stockwork. Generally, the altered schist dips moderately (35\(^\circ\) to 40\(^\circ\)) to the north. With detailed surface and underground mapping, this zone was identified along about 80 metres, from the open cut eastward to a costean adjacent to the line of DDH GG4 (Figure 4).

Piggott (op. cit.) reported very detailed mapping and sampling of the mine workings.
In the open-cut, the mineralised section comprises sheets of quartz injected along schistosity, or cross-cutting it at a steep angle.

The majority of larger veins strike near east-west and dip round 60°N, however, southerly dips were mapped at the south end of the cut.

Gold was recovered from ferruginous material in vughs and cavities in the quartz. AAAL’s channel sample values were highly variable. The most uniform mineralisation was represented by a 4.5 metre sample width averaging 7.5 g/t Au, but most intervals assayed less than 1 g/t Au.

Matthews (1905) sampled the face of the open cut over several depth intervals below the ground surface, thereby demonstrating diminishing grades from around 65 g/t Au in the top 3 metres to about 14 g/t Au at 7.6 metres depth.

In the main tunnel (Figures 4 and 5) distinctive zones of white to pale grey quartz-muscovite-kaolinite schist (horizontal width 22 metres) are highly anomalous in gold. They strike 260° and dip 35° - 40°N. Concordant translucent white quartz veins follow the schistosity, but associated veinlets also cross-cut the schist.

Irregular sheets of macro quartz veins cutting the schist zone at a near vertical angle contain vughs and stringers of partly oxidised pyrite.

Matthews (1905) sampled this zone along the tunnel and reported a 21.3 metre width averaging 6.0 g/t Au. AAAL’s sampling of this same zone gave an 18.0 metre horizontal width averaging 3.76 g/t Au.

A trench on 5000N (local grid) 50 metres east of the main tunnel averaged 4.5 g/t Au across its full 15.5 metre length, in mineralised schist as well as quartz veins. This included a 9 metre width averaging 7.2 g/t Au (Figure 4).

This trench is the easternmost record of the central gold zone.

4.1.2 Exploration Summary

AAAL carried out a geochemical soil survey over an area of about 2 square kilometres around Golden Goose, based on the mapping grid (40m pegs on lines 120m apart).

Detailed fill-in sampling over the Golden Goose (-Coorong-Junction) workings was completed to give 40 x 40 metre sample point coverage. Pits were dug to sample the soil/bedrock interface in outcrop/subcrop areas, and soil beneath recently transported surface material in areas of alluvium.

Samples were sieved to -80 mesh and analysed for Au, Cu, Pb, Zn, Ag (AAS) and for Au, W (XRF).
Piggott (1984) listed statistical parameters for all the soil samples, as one population. Derived threshold values for Au, As and W are outlined on Figure 4. Elevated values for Cu, Pb and Zn appear to have little direct relationship to gold and they are not included. It had been concluded from a broader analysis of the mine samples that As is likely to be a positive pathfinder for Au mineralisation, and that W, Pb and Zn (depletion) could be useful zonal indicators of hydrothermal activity.

One vertical and three angled diamond core holes (total 380 metres) were drilled by AAAL in 1984, collared on the northern side of Golden Goose to test for gold mineralisation in the stratabound quartz-kaolinite-muscovite schist zone down-dip from, and below the level of the old workings (Figures 4 and 5). Detailed core logs, summary logs, assay sheets and cross sections were presented by Piggott (1985b).

The objective was to define an open pittable bulk tonnage gold deposit, specifically within the oxidised and possibly enriched zone of weathering.

The holes were cored in HQ to total depth, terminated at the fresh rock interface 70 to 80 metres below ground profile (Figure 5).

The rock sequence intersected in these holes is comprised of variably weathered and altered metasediments, dominated by interlayered muscovite-biotite (-quartz) schists and calc-silicates, marble and "meta-carbonates".

Epidote and clay-sercite alteration were logged frequently, mainly in the calcareous progenitors in the deeper parts of the drill-section, whereas kaolinite (alteration) with patchy iron-staining was a common component in muscovite-quartz schists and related rocks, more so in the upper parts of the drill profile.

The only metallic mineral logged through these cores was black specularite in various rock types. Sparse pyrite (c. 1%) was recorded in fresher rocks towards the bottom of the holes.

A trace of free gold was logged in the collar sample of GG3 and also in this hole at about 82 metres (assay 0.6m/0.41 g/t Au).

The few quartz-veined, altered quartz-muscovite-kaolinite schist intervals in the drill holes appear to be narrower and more silicified than in the workings above. The interval in GG1 between 34.75 and 40.4 metres with an aureole of clay alteration was tentatively correlated with the 18 metre mineralised quartz-veined schist in the main tunnel (Figure 5).

Piggott (op. cit.) reported that none of the four drill holes encountered economic grades and he concluded that a zone of leaching exists beneath an enriched capping. In fact, the great majority of core assays were less than 0.05
g/t Au. In hole GG4, the 1.3 metre collar sample of soil and weathered rock assayed 20.5 g/t Au.

The drill cores were assayed for As, W, Cu, Pb and Zn as well as gold. These results corroborated earlier indications (Piggott, 1984) that the quartz-kaolinite-muscovite schist zones are depleted (?hydrothermally leached) in Zn, Pb and Cu, but show a tendency for W enrichment relative to the enclosing rocks.

Following AAAL’s withdrawal in 1987, McMahon Construction undertook an assessment of the enriched capping at Golden Goose, nominally outlined by the 0.5 g/t Au-in-soil contour (Figure 4).

A total of 18 variably oriented RC drill holes (total 548m), sampled and assayed in 3 metre composites, produced negative results. The best assays were 3m at 1.05 g/t Au (collar sample) and 3m at 2.3 g/t Au (21-24m) in two separate holes (Swingler & McLennan, 1987).

This work was followed by the cutting of 13 costeans (total 520m) to test 270 metres of surface strike at Golden Goose. Results were not encouraging. Best values were 1m at 1.2 g/t, 1m at 2.9 g/t, 2m at 1.32 g/t and 1m at 2.6 g/t Au from three of the cuts.

It was concluded that the narrow quartz reefs, erratic distribution of gold and low grades indicated by drilling would not support a viable mining operation.

4.2 COORONG

4.2.1 Geology and Mineralisation

Piggott (1984) noted that gold at the Coorong prospect is hosted in similar rocks to that at Golden Goose, 650 metres to the west-northwest (Figure 4).

Four shafts (max. 30m?), trenches and pits are located along 100 metres strike of a stratabound blocky quartz unit in a matrix of clay and friable limonite. Both coarse and fine gold were embedded in the clay, in cavities in the quartz (Brown, 1903). Recorded production (Matthews, 1905) was 2.7 kg Au from 106 tonnes of ore.

Sampling by AAAL with restricted access, produced a best result of 1.5m averaging 8.6 g/t Au.

4.2.2 Exploration Summary

The Golden Goose mapping and soil geochemical survey was extended to cover the Coorong prospect (Figure 4).
Subsequently, diamond drill hole GG5 (73.3 metres) was collared north of the line of workings to test for continuity of grade ahead of the old inclined shaft (Figure 6). The ore zone was intersected below 49.9 metres and assayed 1.08 g/t Au over 2.45 metres, which included an 0.65m intercept of 3.7 g/t Au, in a quartz-veined altered breccia.

This hole demonstrated continuity of width and mineralisation, albeit reduced tenor, 45 metres below surface ahead of the shaft. The Coorong reefs strike east-west beneath scree cover at each end, and thus remain open for further exploration.

4.3 CICCONE WORKINGS

This name was applied by Hossfeld (1936) to a group of very small prospects on either side of Russell’s Gully, at the eastern end of the Winnecke field (Figure 3).

Mineralisation occurs within the overturned lower limb of the top thrust sheet of the Arltunga Nappe Complex. Two styles of gold were described by Piggott (1984).

(i) Vein quartz lodes in quartzite:

At the Big Gun prospect, numerous sub-parallel quartz veins have been injected along fractures and breccias in foliated, silicified Heavitree Quartzite. The veins carry patches and stringers of mainly oxidised pyrite.

Channel sampling by AAAL across the entire 25 metre open cut returned a 16 metre interval averaging 0.91 g/t Au, including a 3 metre zone at 2.3 g/t Au.

At Patsy’s No. 3 and No. 5, shallow cuts had tested steep quartz veining in mylonitic schist and quartzite. Channel sampling across the face by AAAL indicated only traces of gold.

(ii) Quartz veining in carbonaceous schists:

Patsy’s No. 1 and No. 4 are shallow underground workings in decomposed schists of the upper Proterozoic Bitter Springs Formation, positioned structurally beneath the decollement surface of the Heavitree Quartzite. The quartz sericite schist overlies weathered pyritic, carbonaceous schist veined with quartz.

Effective channel sampling by AAAL was precluded by the collapsed state of the workings, and only trace Au was recorded in the Bitter Springs schists.
However, Hossfeld’s sampling (quoted by Piggott) included a 1.2 metre sample of 25.7 g/t Au from quartz-veined carbonaceous schist in the No. 4 adit.

4.4 BLACK EAGLE CLAIM

Several old inclined shafts (max. 30m), trenches and alluvial diggings 2 kilometres east of Golden Goose are located along 120 metres strike of narrow (up to 20cm) quartz veins filling schistose bands in mica-quartz-feldspar gneisses.

Channel and grab samples taken by AAAL from old stopes included 1.1m at 1.5 g/t Au and 0.7m at 59.6 g/t Au.

Assays from shallower exposures were considerably lower (max. 0.3 g/t Au).

Hossfeld (1940) reported production of 15.4 kg gold from these workings.

4.5 CORONATION (- All Nations)

Hossfeld (1940) described this group of workings, located about 600 metres southwest of Golden Goose (Figure 3).

Several deep shafts sunk in soft schists on the western side appear to have produced very little gold. On the eastern side two small quartz reefs with Cuanstained ferruginous material were worked to a shallow depth. Production to 1905 was 0.7 kg gold.

4.6 GARLANDS

This claim covered a small but very rich pocket of limonitic outcrop about 800 metres north-northwest of the Ciccone workings (Figure 3). According to Hossfeld (1940), this contained 9.3 kg of gold, however, an adit driven 5 metres below failed to intersect a shoot.

4.7 SLOAN’S GULLY

CRAE gridded an area of old pits in the floor of a deeply incised gully/shear zone in Heavitree Quartzite, about two kilometres northeast of Sliding Rock Well (Figure 3). The fractured and schistose kaolinitic-sericitic quartzites were considered to indicate a significant zone of alteration.

Outcrop/sub-crop/auger hole samples (5 kg) were analysed for Au and a range of other elements (Stoker, 1986; Colliver & Bubner, 1987). As a result, one 40 metre grid interval registering Au values above detection limit (0.008 ppm) led
to backhoe pitting, trenching and drilling (4 angled holes, 393 metres) to test
gold tenor and width.

Only narrow zones of gold mineralisation were intersected at depth, the best
quoted results being 5m of 3.2 g/t Au in quartz-cemented quartzite breccias at
77 metres in hole no. 4.

The programme was then terminated.

4.8 SLIDING ROCK PROSPECT

A surface stope cut on a vein quartz pod and stringers in altered quartzite and
sericitic phyllite exposed boxworks after pyrite in both quartz and wall-rock. It
offered no interest to CRAE (Stoker, 1986).

4.9 OLD TIMES

Several shafts and pits were located on quartz veins occupying sericitic-
kaolinitic and ferruginous shear zones in phyllite.

Grab samples taken by CRAE (Stoker, 1986) were analysed for Au and a
range of other elements. Best reported gold value was 0.22 g/t in brecciated
lode quartz, and a similar sample registered 23 ppm Bi.

5. BASE METAL PROSPECTS

Three significant stratiform "BIF-related" Pb-Zn(-Cu)-Ag prospects - Rankins, Gecko
and Gum Tree - occur towards the western end of EL 8164 (Figure 3). They were
discovered and evaluated by Central Pacific Minerals in the early 1970s.

This style of mineralisation, coined "Oonagalabi" by Warren (1980), has a rock
association characteristic of a metamorphosed exhalite environment - quartz
magnetite rock and high Mg - Al (anthophyllite, cummingtonite) assemblages.

This horizon is mapped within the Ankala gneiss at Rankins and Gum Tree, a
sequence of layered quartzofelspathic gneisses with calc-silicate and mica-rich units.

The host horizon at Gecko is placed high in the Sliding Rock sequence of biotite and
hornblende-garnet gneisses, the inference being that there may be two separate
stratigraphic levels in this area, prospective for this type of mineralisation.
5.1 RANKINS

This prospect covers two separate base metal showings about 300 metres apart (Figure 3), in a local host sequence of quartz-magnetite rock, chlorite schist and calc-silicate rock.

The area was gridded and surveyed with IP and ground magnetics by CPM (Gedde, 1971) resulting in the definition of several chargeability anomalies, and magnetic highs, some associated with outcropping mineralised iron formation.

The southern prospect comprises a line of outcrops and shallow diggings with secondary copper along a strike of 100 metres. CPM drilled two angled percussion holes (total 149.4m) to test for base metals. Only weak mineralisation in magnetite-poor lithologies was encountered (Ivanac, 1971).

The northern occurrence is located on a ridge of chlorite-biotite schist, magnetite-calcite marble, anthophyllite-magnetite rock and quartz-sericite schist. Secondary Cu mineralisation is associated with massive carbonate rock. One percussion hole (58m) drilled by CPM intersected 1.9 metres (true width) averaging 2.5% Pb and 1.2% Zn in rock logged as hornblende schist with up to 20% magnetite + pyrite + galena + sphalerite.

Rankins prospect was thus down-graded by CPM.

Piggott (1985a) reported distinctly anomalous Bi and W along with detectable Au values from 0.1 to 0.4 ppm, in a suite of samples collected by AAAL at the southern prospect.

5.2 GECKO

This prospect lies 5 kilometres east-southeast of Rankins (Figure 3). Secondary copper mineralisation occurs with quartz-hematite-magnetite rock and lenses of marble, generally 1 to 3 metres thick. Piggott’s review (1985) of this prospect records a five hole percussion programme (? CPM) in 1971 which intersected low grade Zn mineralisation and several zones of disseminated pyrite.

However, Walters & Bunting (1986) wrote that "the best reported intersections at the Gecko Prospect (with) up to 7.8% Zn, 1.42% Pb, 0.5% Cu and 37 g/t Ag over individual 1.64m (5 ft) intervals" - refer also to Warren (1980).

In the absence of original drill logs and assays, the authenticity of these results is uncertain.
5.3 GUM TREE

A prominent banded hematite-magnetite-quartz outcrop northwest of Gum Tree bore has been traced for 1000 metres (Piggott, 1985).

Secondary copper minerals stain the iron formation, as well as anthophyllite schist and banded amphibolite units to the north.

There is no record of drilling at this prospect. AAAL's iron formation samples showed trace Au and anomalous Bi values (Piggott op. cit.).

5.4 GLANKROIL

These workings are located 2 kilometres north-northeast of Golden Goose. Gossanous, sulphidic Pb-Ag-Au mineralisation is hosted in a narrow (to 1 metre) shear zone striking close to north-south, discordant to the enclosing gneisses.

Two dump samples taken by White Range Gold and containing galena, copper carbonates and quartz, assayed 1.6 g/t and 9.4 g/t Au (James, 1991).

5.5 TURNER'S PROSPECT

Traces of gold, malachite and chalcocite occur in coarse-grained amphibolite, in Sliding Rock metamorphics (Figure 3).

An IP survey and trenching revealed very sparse disseminated mineralisation (Shaw and Langworthy, 1984).

6. REGIONAL SURVEYS

In the context of Rankins EL 8164 and this area of the Arltunga Nappe Complex, relatively little regional exploration has been carried out by companies (see Figure 7).

6.1 STREAM SEDIMENT SURVEYS

AAAL completed a stream sediment geochemical survey in an area of about 10 square kilometres over the Winnecke Goldfield.

A total of 93 samples from selected drainages was sieved to -80 mesh and analysed for Au, As, Sb, W, Cu, Pb, Zn and Bi.

The results are reported in Piggott (1985) in map format, without reference to sample material, analytical methods or limits of detection.
Five samples recorded gold values above detection, from 0.16 to 2.0 ppm Au. Four of these could be readily explained by proximity to known prospects.

None of the other metal values in this survey appears to show significant anomality.

In 1985, BHP Minerals conducted a regional search for iron formation related Pb-Zn-Ag mineralisation in the area adjoining EL 8164 to the southwest. Part of a stream sediment survey overlapped the central southern part of this licence (Figure 7).

Approximately 110 samples were taken and analysed for Cu, Pb, Zn, Fe and Mn (Skrzenczynski, 1987). Maximum values recorded were 65 ppm Cu, 65 ppm Pb and 90 ppm Zn, representing a low order of anomality. The programme was abandoned.

6.2 AEROMAGNETIC SURVEYS

Besides standard Government coverage, it seems that the only detailed airborne magnetic (radiometric) survey within EL 8164 was that flown by CRAE over EL 4420 in 1987, to aid its gold exploration programme in the Sliding Rock Well area (see Figures 7 and 8).

The data were to be assessed for the recognition of structural settings and radiometric response patterns to hydrothermal alteration. Five magnetic anomalies were followed up with ground traverses, and four with auger drilling for bedrock Au analysis (Graham, 1988).

The results were not encouraging and the licence was surrendered.

7. REFERENCES

I.B. FREYTAG
May, 1994
ROEBUCK RESOURCES N.L.

GOLDEN GOOSE WORKINGS

DRILL SECTION

DDH. GG 1, GG 2

(Data from Piggott, 1985—
Australian Anglo American
EL 4326)

Geologist: Date: FIGURE 5

Scale 1:1000

0 10 20 30 40 50 m
Quartz veined clay altered concordant fault zone 49-90 - 52-35

<table>
<thead>
<tr>
<th>Interval</th>
<th>g/Au/t</th>
<th>Sludge</th>
<th>g/Au/t</th>
</tr>
</thead>
<tbody>
<tr>
<td>49-90 - 50-50</td>
<td>0.10</td>
<td>50-80 - 53-80</td>
<td>3.74</td>
</tr>
<tr>
<td>50-50 - 51-00</td>
<td>0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-00 - 51-65</td>
<td>3.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-65 - 51-90</td>
<td>0.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-90 - 52-35</td>
<td>0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.45m at</td>
<td>1.08 g/Au/t</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ROEBUCK RESOURCES N.L.

COORONG PROSPECT

DRILL SECTION

DDH. GG 5

(Data from Piggott, 1985 -
Australian Anglo American
EL 4326)

Geologist: K. Fox Date: FIGURE 6