LIST OF CONTENTS

1.0 INTRODUCTION

2.0 GEOLOGY

3.0 MINERALISATION AND PREVIOUS WORK
 3.1 TIN MINERALISATION
 3.2 GOLD MINERALISATION

4.0 WORK COMPLETED

5.0 RESULTS
 5.1 HORSESHOE PROSPECT
 5.1.1 SOIL SAMPLING
 5.1.2 ROCK CHIP SAMPLING
 5.1.3 GEOLOGICAL MAPPING
 5.1.4 COSTEANING
 5.1.5 GEOPHYSICS
 5.1.6 DRILLING
 5.1.6.1 PHASE I
 5.1.6.2 PHASE II
 5.2 JONES BROS PROSPECT
 5.2.1 GEOLOGY
 5.2.2 ROCK CHIP SAMPLING
 5.2.3 DRILLING
 5.2.4 GEOPHYSICS
 5.3 REGIONAL
 5.3.1 SOIL SAMPLING
 5.3.2 GEOLOGICAL RECONNAISSANCE/ROCKCHIP SAMPLING
 5.3.3 TIN EVALUATION

6.0 CONCLUSIONS/RECOMMENDATIONS

7.0 EXPENDITURE STATEMENT
APPENDIX I

<table>
<thead>
<tr>
<th>Fig No</th>
<th>Title</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Horseshoe Grid - Soil and Rockchip Sample locations and Au Results</td>
<td>1: 2,500</td>
</tr>
<tr>
<td>5</td>
<td>Horseshoe Au Grid Soil Geochemistry BCL Au (ppb)</td>
<td>1: 5,000</td>
</tr>
<tr>
<td>6</td>
<td>Horseshoe Au Grid Soil Geochemistry Cu (ppm)</td>
<td>1: 5,000</td>
</tr>
<tr>
<td>7</td>
<td>Horseshoe Au Grid Soil Geochemistry Pb (ppm)</td>
<td>1: 5,000</td>
</tr>
<tr>
<td>8</td>
<td>Horseshoe Au Grid Soil Geochemistry Zn (ppm)</td>
<td>1: 5,000</td>
</tr>
<tr>
<td>9</td>
<td>Horseshoe Au Grid Soil Geochemistry Sn (ppm)</td>
<td>1: 5,000</td>
</tr>
<tr>
<td>10</td>
<td>Horseshoe Au Grid Soil Geochemistry As (ppm)</td>
<td>1: 5,000</td>
</tr>
<tr>
<td>11</td>
<td>Horseshoe Au Grid Au Soil Contours</td>
<td>1: 5,000</td>
</tr>
<tr>
<td>12</td>
<td>Horseshoe Au Grid Cu Soil Contours</td>
<td>1: 5,000</td>
</tr>
<tr>
<td>13</td>
<td>Horseshoe Au Grid Pb Soil Contours</td>
<td>1: 5,000</td>
</tr>
<tr>
<td>14</td>
<td>Horseshoe Au Grid Sn Soil Contours</td>
<td>1: 5,000</td>
</tr>
<tr>
<td>15</td>
<td>Horseshoe Au Grid As Soil Contours</td>
<td>1: 5,000</td>
</tr>
<tr>
<td>16</td>
<td>Horseshoe Grid - Geology and Mineralisation</td>
<td>1: 2,500</td>
</tr>
<tr>
<td>17</td>
<td>Horseshoe Grid - BCL soils (ppb), Rock Chips (ppm), Costean (ppm) Results and Soil Contours</td>
<td>1: 1,000</td>
</tr>
<tr>
<td>18</td>
<td>Horseshoe Au Grid - Structural data</td>
<td>1: 1,000</td>
</tr>
<tr>
<td>19</td>
<td>Horseshoe Grid - Costean Sample locations and Au (ppm) Results</td>
<td>1: 1,000</td>
</tr>
<tr>
<td>20</td>
<td>Horseshoe - Sirotom Profile Line 14700N</td>
<td>1: 2,500</td>
</tr>
<tr>
<td>21</td>
<td>Horseshoe - Sirotom Profile Line 14800N</td>
<td>1: 2,500</td>
</tr>
</tbody>
</table>
22 Horseshoe - Sirotom Profile Line 14900N 1: 2,500
23 Horseshoe - Sirotom Profile Line 14950N 1: 2,500
24 Horseshoe - Sirotom Profile Line 15000N 1: 2,500
25 Horseshoe - Sirotom Profile Line 15100N 1: 2,500
26 Horseshoe Grid - Ground Magnetics Stacked Profiles 1: 2,500
27 Horseshoe Grid - Ground Magnetics Contours 1: 2,500
28 Driffield Drillhole Location Plan 1: 1,000
29 Driffield True Section DP001-003 1: 500
30 Driffield True Section DP004, 005, 012 1: 500
31 Driffield True Section DP006, 007, 008,010-011 1: 500
32 Driffield True Section 15096N-DP009 1: 500
33 Jones Bros - Geology, Sample Locations and Gold Assay Results 1: 1,000
34 Jones Drillhole Location Plan 1: 1,000
35 Jones Section 1 - JP001-005 1: 500
36 Jones Section 2 - JP007, 009, 010 1: 500
37 Jones Section 3 - JP006, 008 1: 500
38 Jones Section 4 - JP011 1: 500
39 Golf/Jones Grounded loop SIROTEN Profile Line 11400N 1: 2,500
40 Golf/Jones Grounded loop SIROTEN Profile Line 11600N 1: 2,500

90100501.WP5
REGIONAL EXPLORATION DATA

APPENDIX II

<table>
<thead>
<tr>
<th>Fig No</th>
<th>Title</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>Pine Creek JV - East Driffield EL1900 Soil Sample Locations</td>
<td>1:10,000</td>
</tr>
<tr>
<td>42</td>
<td>Pine Creek JV - East Driffield EL1900 Soil Geochemistry Au (ppb)</td>
<td>1:10,000</td>
</tr>
<tr>
<td>43</td>
<td>Pine Creek JV - East Driffield EL1900 Soil Geochemistry Cu (ppm)</td>
<td>1:10,000</td>
</tr>
<tr>
<td>44</td>
<td>Pine Creek JV - East Driffield EL1900 Soil Geochemistry Pb (ppm)</td>
<td>1:10,000</td>
</tr>
<tr>
<td>45</td>
<td>Pine Creek JV - East Driffield EL1900 Soil Geochemistry Zn (ppm)</td>
<td>1:10,000</td>
</tr>
<tr>
<td>46</td>
<td>Pine Creek JV - East Driffield EL1900 Soil Geochemistry Sn (ppm)</td>
<td>1:10,000</td>
</tr>
<tr>
<td>47</td>
<td>Pine Creek JV - East Driffield EL1900 Soil Geochemistry Bi (ppm)</td>
<td>1:10,000</td>
</tr>
<tr>
<td>48</td>
<td>Pine Creek JV - East Driffield EL1900 Soil Geochemistry As (ppm)</td>
<td>1:10,000</td>
</tr>
<tr>
<td>49</td>
<td>Driffield EL1900 - Airphoto Structural Interpretation</td>
<td>1:25,000</td>
</tr>
<tr>
<td>50</td>
<td>East Driffield EL1900 Regional Rock Chip Sampling Locations</td>
<td>1:10,000</td>
</tr>
<tr>
<td>51</td>
<td>East Driffield EL1900 Regional Rock Chip Results Au (ppm)</td>
<td>1:10,000</td>
</tr>
<tr>
<td>52</td>
<td>East Driffield EL1900 Regional Rock Chip Results Cu, Pb, Zn (ppm)</td>
<td>1:10,000</td>
</tr>
<tr>
<td>53</td>
<td>East Driffield EL1900 Regional Rock Chip Results Sn, Bi, As (ppm)</td>
<td>1:10,000</td>
</tr>
<tr>
<td>54</td>
<td>West Driffield EL1900 Regional Rock Chip Sampling Locations</td>
<td>1:25,000</td>
</tr>
<tr>
<td>55</td>
<td>West Driffield EL1900 Regional Rock Chip Results Au (ppm)</td>
<td>1:25,000</td>
</tr>
</tbody>
</table>
56 West Driffield EL1900
 Regional Rock Chip Results Cu, Pb, Zn (ppm) 1:25,000

57 West Driffield EL1900
 Regional Rock Chip Results Sn, Bi, As (ppm) 1:25,000

58 Horseshoe Tin Field Compilation Summary 1:15,000

59 Horseshoe Tin Field Schematic Sections None

60 Horseshoe Tin Field Diagrammatic
 Representation of Tin Potential 1: 5,000

61 Horseshoe Tin Field - Costean Sample
 Locations and Au (ppm) Results Sheet 3/2 1: 1,000

62 Horseshoe Tin Field - Costean Sample
 Locations and Cu, Pb, Zn (ppm) Results Sheet 3/2 1: 1,000

63 Horseshoe Tin Field - Costean Sample
 Locations and Sn, As (ppm) Results Sheet 3/2 1: 1,000

64 Horseshoe Tin Field - Costean Sample
 Locations and Au (ppm) Results Sheet 3/7 1: 1,000

65 Horseshoe Tin Field - Costean Sample
 Locations and Cu, Pb, Zn (ppm) Results Sheet 3/7 1: 1,000

66 Horseshoe Tin Field - Costean Sample
 Locations and Sn, As (ppm) Results Sheet 3/7 1: 1,000
<table>
<thead>
<tr>
<th>Fig No</th>
<th>Title</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pine Creek JV - Tenement Status</td>
<td>1: 50,000</td>
</tr>
<tr>
<td>2</td>
<td>Regional Structural Geology</td>
<td>1:100,000</td>
</tr>
<tr>
<td>3</td>
<td>Mt Todd Area - Previous Workings</td>
<td>1:100,000</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table No</th>
<th>Title</th>
<th></th>
</tr>
</thead>
</table>
| 1 | Driffield Percussion Drilling
Driffield Percussion - Summary of Results | |
| 2 | Jones Percussion Drilling
Jones Percussion - Summary of Results | |
1.0 INTRODUCTION

Exploration Licence 1900 was initially granted to Destiny Prospecting NL on 8th September, 1987 for a period of four years. The licence was subsequently acquired by Denehurst Ltd along with MCN's 1918-1923 and MCN's 356-375 in the immediate vicinity of the EL. A 50/50 Joint Venture agreement was entered into with Denehurst Ltd on 30th June, 1988, with Billiton Australia Pty Ltd acting as managers and operators on behalf of the joint venture.

EL 1900 initially comprised 20 blocks covering an area of approximately 65 sqkm which is situated between the Edith and Fergusson Rivers, 50km north of Katherine.

In accordance with the Northern Territory Mining Act a half area reduction of EL 1900 was undertaken on the third anniversary, the 7th September, 1990. Relinquished blocks include: 44/20, 45/20, 46/20, 45/16 and 46/17 along with MCN's 3684, 3685 and 3686 which are shown on the Katherine 1:100,000 Mining Tenure Sheet. For current tenement status see Figure 1.

2.0 GEOLOGY

The Pine Creek Joint Venture tenements are situated in the southern portion of the Pine Creek Geosyncline and comprise Early Proterozoic turbiditic sediments of the Burrell Creek and Tollis Formations. Subsequent to deposition and regional metamorphism, the sediments were intruded and hornfelsed by the Driffield granite (part of the Cullen Batholith). Hornfelsing increases in grade to the west towards the granite contact. See figure 2.

3.0 MINERALISATION AND PREVIOUS WORK

3.1 Tin Mineralisation

Tin mineralisation is generally hosted within the Tollis Formation and comprises cassiterite, quartz, tourmaline, kaolin, and hematite bearing assemblages which occur as bedding parallel breccia zones and pipes. These zones are generally narrow and have been mined primarily by the Chinese at the turn of the century, to the water table. The bulk of these workings form the Horseshoe Field.

Wandaroo Mining Corporation Pty Ltd and Austral Malay Tin Ltd undertook a major testing programme of the alluvial tin potential of the area. Following this, Robinson (1988) estimated a resource of 1.5 million BCM grading 445g/m³ cassiterite.
3.2 Gold Mineralisation

The earliest recorded discovery of gold in the Driffield area was in 1878 (Muldin and Whitehead, 1988). In the 1890's Chinese and Europeans are documented to have worked alluvial and small, high grade deposits in the area. See figure 3.

In 1905 five operational mines were recorded in the Driffield area: Gordon, Parry's, Creers, Lady Mary and Lady Jane (Hossfeld, 1941). These mines operated from numerous shafts and open cuts between the period of 1882 to 1912 (Walpole et al, 1968). In March 1903 a five head stamp battery was erected at Driffield to serve the surrounding mines. Up until 1912, when gold mining ceased, a total of 10,722 tonnes of ore was crushed for 5,319 ozs of gold, averaging a total recoverable grade of 11.05 dwt (~16g/t) of gold per tonne.

4.0 WORK COMPLETED

Exploration within the Pine Creek JV tenements during the reporting period concentrated on two prospects, Horseshoe and Jones Bros. Programmes involving soil sampling, costeaning, geological mapping, SIROTEM surveying and RC drilling were conducted.

A programme of regional soil sampling and geological reconnaissance was conducted in EL1900 as follow up of low order stream sediment anomalies and aeromagnetic features.

Soil and costeane sampling was undertaken in the Horseshoe Creek Tin Field as part of an assessment of tin potential within the tenement holdings.

5.0 RESULTS

5.1 HORSESHOE PROSPECT

Geological reconnaissance within the southern part of EL 1900 resulted in the location of two zones of sheeted/stockwork and gossanous veining. Initial rock chip sampling established their auriferous nature. Grid based follow up was conducted over an area of 1sqkm.

5.1.1 Soil Sampling

Soil sampling of the Horseshoe Grid area consisted of 10m into 50m composite samples with 2kg samples sieved to 2mm for Au analysis using BLEG technique. A -80µ fraction was also partitioned from these samples for Cu, Pb, Zn, Sn, As determinations using XRF and AAS analysis.

BLEG soil geochemistry over the Horseshoe grid highlighted three major anomalies with a north-easterly trend. The main anomaly defined in the area has a peak of 68ppb and lies over the stockwork/gossan vein system north and south of Horseshoe Creek. The 16ppb contour effectively defines this system, with a strike length of ~450m. The highest result obtained on
the gridded area was 152ppb Au, but this was not supported by similar high values. An anomaly of 96ppb Au occurs over a small ridge north of the main mineralised zone and coincides with a mapped narrow gossanous breccia zone.

Arsenic soil geochemistry in the area shows strong correlation with Au anomalism. Results up to 500ppm As with a strike length of 600m also indicated the presence of the mineralised zone.

Sn geochemistry is also strongly anomalous in this area. Contouring of the data highlights a very strong alluvial source corresponding to Horseshoe Creek. Previous alluvial Sn workings (predominantly scrapes and stockpiles of recent drainage sediment) are evident along Horseshoe Creek. The source of the Sn is the Horseshoe Tin Field, comprising extensive hard rock tin workings, part of which occur on the western-most part of the grid.

Base metal results failed to produce any significant coherent anomalies with values generally lying around background value. (See figures 4-15).

5.1.2 Rock Chip Sampling

Rock chip sampling of the main stockwork system exposed along the southern face of Horseshoe Creek returned 50m @ 1.44g/t Au which included 20m @ 3.15g/t Au. A sample taken from a small knoll north of Horseshoe Creek graded 10m @ 1.5g/t Au.

Selective sampling of the gossanous rocks associated with the stockwork veining north of the main zone ranged between 1.96 and 4.70g/t Au. Sampling of narrow sheeted vein zones not associated with the gossans, contained grades between 0.2 and 0.91g/t Au.

Mineralisation continues up to 200m southwest of the main zone, occurring as thin linear quartz-gossan breccia zones striking 010° along ridges. The width of the mineralised zone is very narrow (maximum 5m). Rock chip samples taken from the breccia zones returned grades of 5m @ 0.16g/t Au and 5m @ 2.1g/t Au. (See figures 16 and 17).

Hard rock tin workings were located on the western side of the grid. The workings consist of narrow shafts or trenches up to 1m wide and 1-3m deep. The lodes typically consist of Fe rich, quartz breccia cores surrounded by a tourmaline and haematite alteration halo. The lodes are usually 0.5m wide and 10-15m long. Mineralisation is predominantly bedding concordant. Samples collected from the old tin workings contain little gold but high tin concentrations (1100ppm to 2.75% Sn).
5.1.3 Geological Mapping

The geology of the area consists of interbedded shale along with silty and sandy greywacke of the Early Proterozoic Tollis Formation.

Interbedded silty and sandy greywacke units are dominant and develop large ridges and knolls. Outcrops are weathered to reddish brown and have moderate to intense fracture densities. The rocks exhibit textures typical of turbidite sediments with silty and sandy particles, commonly poorly-sorted, within a clay matrix. Minor coarse greywacke units show a more preferred mineral elongation reflecting the regional cleavage which strikes in a NW-SE direction.

Shale units are well-exposed in creek beds and display fine laminated bedding.

Detailed geological mapping at 1:2,500 scale indicated the presence of two zones of mineralisation. The main zone consists of stockwork/sheeted style quartz limonite veining with minor gossan development. The auriferous vein set strikes 010° and dips 60-80° to the east. Veining is typically best developed in the more competent coarser grained packages within the sequence. A second zone of mineralisation occurs to the southwest and consists of narrow linear quartz gossan breccia zones.

Vergence relations indicate a series of mesoscopic F1 reclined anticlines and synclines with plunges 30-50° to the NW. Cleavage is well developed and strikes NW-SE throughout the area and is best developed in greywacke sediments. The finer grained shale units tend to exhibit well developed bedding plane partitioning which is a primary sedimentary feature.

Au mineralisation occupies structures which strike in the vicinity 010° and dip 60-80° to the east whereas Sn mineralisation occupies bedding plane weaknesses and strikes approximately 340°. (See figures 16 and 18).

5.1.4 Costeaming

Costeaming totalling 600m in five costeans was planned and executed over 400m of vein zone strike. The costeans further highlighted the interbedded nature of the sequence in this area and provided additional data for interpreting local structure. Costeaming exposed the narrow nature of the mineralised zones along strike from Horseshoe Creek, with the best development visible in outcrop along the creek.

Ten metre composite channel sampling by jack hammer of all but the northern costean (flooded) was completed. Results were generally disappointing with a maximum value of 10m @ 0.57g/t Au being obtained. A costean only 50m south of the previous rock chip sampled creek face returned a maximum value of only 10m @ 0.17g/t Au. Examination of the creek face outcrop in comparison to the costean 50m to the south, indicated a rapid
improvement in vein zone over this short distance, with poorly
developed narrow, sheeted veining exposed in the costean
becoming rapidly more sulphide rich and wide (10's of cm's)
over the 50m strike. (See figure 19). The costean to the
north similarly returned subeconomic results over 20m.

Potential was considered to exist for an unexposed pod of
mineralisation under Horseshoe Creek. Drilling of this zone
was undertaken.

5.1.5 Geophysics

Six lines of detailed SIROTEM surveying were carried out over
the Horseshoe grid covering the anomalous gold trend.
Interpretation of the data indicates a weak response was
obtained on lines 15000N and 14950N coinciding with the
previously discussed vein system. East of the vein system a
further series of shallow, weak responses was detected on
lines 15100N, 15000N, 14950N and 14900N between approximately
30 to 100m east of the vein system. These anomalies occur in
an area of sparse outcrop and have no coincident geochemical
response. (See figures 20-25).

Ground magnetic surveying indicated no magnetic response
either to the outcropping vein systems or SIROTEM anomalies.
Detailed modelling of the ground magnetic data has however,
detected a subtle deep seated magnetic response further to the
south on the south eastern edge of the grid. (See figures 26-
27).

5.1.6 Drilling

5.1.6.1 Phase I

An RC drilling programme totalling 645m was conducted to test
the strike extent of the main zone of veining which was
obscured by Horseshoe Creek. The combination of a competent
greywacke unit with better developed veining and a fold
closure in this area suggested a prospective zone may be
present under alluvial cover beneath Horseshoe Creek. Other
zones eg: gossan breccias are narrow and are considered to
represent substantial targets worth drilling. Evaluation of
the SIROTEM work indicated the presence of weak, shallow
conductors.

The first phase of drilling (nine holes - DP001-009) was
designed to test the 100m of strike length of the zone under
Horseshoe Creek. Three fences of holes, with a maximum of
three holes per fence were drilled to a depth of 60m cover
inclined 60° towards 300° N(mag). One deeper hole, DP004, was
incorporated to test the depth extent of this zone. Hole
DP009 was targeted to intersect a shallow SIROTEM conductor
occurring to the east of the main vein zone.

A total of 645m were drilled in the first phase with
encouraging intercepts being encountered. (See Table 1).
These intercepts are isolated and occur predominantly in
greywacke horizons in the sequence, which have been altered to silica-sericite assemblages with quartz-pyrite/arsenopyrite veining.

The southern most section (DP001-00)3 testing the creek face exposure along Horseshoe Creek, failed to return any significant intercepts with patchy anomalous results predominating.

The northern section returned two significant but isolated intercepts occurring at respective ends of the drill section. These intercepts include:

Hole DP006 from 43 to 49m : 6m @ 4.72g/t Au, and
Hole DP008 from 52 to 62m : 10m @ 2.32g/t Au

The central section under Horseshoe Creek returned a significant intercept of 7m @ 1.65g/t Au from 48 to 55m in DP005. The adjacent deep hole DP004, drilled underneath DP005, failed to intersect any down dip expression of this mineralisation.

Hole DP009, targeted to intersect a SIROTEM conductor, failed to return any anomalous results.

5.1.6.2 Phase II

The second phase of drilling comprised an additional three shallow 50m-deep RC holes which were drilled to test the surface expression of the mineralisation (if present). Results of this programme were generally disappointing with the northern section (DP010 and DP011) failing to intersect any up-dip expression of the underlying mineralisation as intersected in holes (DP006, DP008). No results above 1g/t Au were recorded.

Hole DP012 on the central section (under Horseshoe Creek) returned two significant intercepts:

from 23 to 26m 3m @ 1.44g/t Au, and
27 to 32m 4m @ 8.01g/t Au

These intercepts correlate with the zones defined in hole DP005, and indicate mineralisation is dipping to the east. The zones are narrow and have no down-dip extension as tested by DP004. In all likelihood these zones are considered to be small with restricted tonnage potential. Drill sections to the north and south also limit any strike potential. (See figures 28-32).
5.2 JONES BROS PROSPECT

Exploration of the Jones Bros Prospect consisted of geological mapping and rock chip sampling followed by phases of RC-drilling. SIROTEM surveying was also conducted to aid in defining mineralisation at depth and potential drill targets.

5.2.1 Geology

Gold mineralisation at the Jones Bros Prospect is hosted by a quartz-sulphide lode and stockwork quartz-sulphide veining occurring west of the lode.

The Jones lode varies in width from 0.3 to 0.9m and averages approximately 0.6m. The lode is bedding parallel to the north of the main Jones Shaft and dips between 90° and 85° west. To the south of the shaft the lode crosscuts bedding slightly, and dips 85° to the west. The strike of the lode is relatively constant at about 29° (magnetic). The lode continues to the north of MCN 374 where it has been mined to a depth of approximately 15–20m by Pacific Goldmines NL within the Golf pit. The lode has been cut by a major fault zone striking ~330°, with minor displacement of the lode which appears to continue to the south.

A zone of sheeted-style quartz-sulphide veining occurs to the west of the Jones lode. Measurements of vein angles on surface indicate veining dips between 75° and 90° to the west.

Vergence relationships indicate an anticline occurs to the west of the Jones lode. This structure is inclined to the west with the eastern limb slightly overturned. Host rocks are interbedded siltstone and greywacke of turbidite affinity, which are carbonaceous in part. (See figure 33).

5.2.2 Rock Chip Sampling

Only limited rock chip sampling of the lode itself has been conducted due to the inaccessibility of the lode around the old workings. Selective sampling of vein material on dumps yields between 6.53 and 28.5g/t Au (average 16g/t Au). This average correlates well with previous mined grades (Hossfeld, 1941).

Sheeted-style quartz-sulphide veining occurs to the west of the Jones lode. Rock chip sampling indicated economically significant gold grades occur across a zone approximately 50m in width. A weighted average of all sample traverses collected within the zone, gives an average grade of 3.65g/t Au.

Sampling of the fault zone returned anomalous results up to 1.22g/t Au.

Rock chip sampling of sparse outcrops east of the Jones lode returned anomalous results including 6m @ 6.8g/t Au and 3m @ 19.0g/t Au. (See figure 33).
5.2.3 Drilling

The initial test of the Jones mineralisation consisted of a fence of RC percussion holes, JP001-005, across the northern end of the Jones Prospect. Intersections obtained from this programme indicated a gold anomalous (>0.5g/t Au) zone occurring over a true width of approximately 60m, with values rising to 5.05g/t Au. The grades are patchy and the mineralisation is not economic on this section. Of prime interest was the Jones lode which was intersected in two holes JP001 and JP005, returning intercepts of:

JP001 from 3m @ 6.85g/t Au
JP005 from 5m @ 3.31g/t Au

The tonnage and grade potential of the stockwork vein system to the west of the Jones lode appear limited with drilling down-grading surficial rockchip sample results. Additional testing of this system to the south and the strike potential of the Jones lode was considered warranted.

To further test this zone an additional two fences of holes comprising two holes per fence, totalling 320m was completed during April, 1990. Patchy economic zones were defined in the stockwork vein system with a best results of 5m @ 2.11g/t Au in JP007. The Jones lode was also intersected in Hole JP009 with 2m @ 24.4g/t Au and in Hole JP008 where interpretation suggests a fault zone has smeared the lode producing a broad intercept of 11m @ 2.63g/t Au.

An additional drilling programme comprising two holes JP010 and JP011 was undertaken to further test the western stockwork system, in particular the intercept obtained in JP007 and the southern end of the Jones Bros workings which remained open to the south.

Significant results were obtained, in particular JP011 which intersected the interpreted position of the Jones lode at 15-19m returning 4m @ 8.4g/t Au. Hole JP010 returned a series of narrow economic intercepts which correlate well with those obtained in the neighbouring hole JP007. The intercepts in JP010 and JP007 correspond to ferruginous quartz breccia zones and sheeted veining at surface.

Potential for an economic resource is still considered to remain with the Jones lode being regularly intersected over a strike length of 300m at shallow to moderate depths within MCN 374. The mineralisation is still open to the south within MCN 375. (See Table 2 and Figures 34-38).

5.2.4 Geophysics

A grounded loop SIROTÉM survey was conducted over the Golf-Jones mineralisation, with lines 11600N and 11400N surveyed between 9600E and 10200E. The SIROTÉM responses were strong which implies considerable current return through the ground, made possible by conductive material such as sheeted or
stockwork veining. The conductor corresponds closely to the western stockwork zone with interpreted sourced depths being about 100m with a possible shallow plunge north from 11400N.

Drilling conducted to date crossed the interpreted position of the SIROTEM conductor at surface with sub-economic mineralisation intersected. To date this conductor has not been conclusively tested, with a deeper hole required to intersect the conductor at depth. (See figures 39-40).

5.3 REGIONAL

A programme of regional gridding, soil sampling and geological reconnaissance was undertaken within EL1900 as follow up of low order stream sediment anomalies and aeromagnetic features. A grid with 500m spaced lines with pegs every 50m was established totalling 26.5 line km of gridding.

The Horseshoe grid was extended to the north and to the west following up open ended Au soil anomalies to the north and tin anomalies to the west.

5.3.1 Soil Sampling

Soil sampling comprising 10m into 50m composites over 500m spaced lines consisted of 2kg samples which were assayed for Au using BLEG method with Cu, Pb, Zn, Sn, Bi, As determinations completed on 80# samples.

The geochemical results highlighted three areas with anomalous gold over 200-400m intervals with results up to 105ppb Au. These areas are predominantly soil covered and occur in the vicinity of Driffield Creek. Additional gridding and soil sampling is in progress as follow up.

Base metal results highlighted a broad zone (up to 500m wide) of Pb anomalousism with results in the range 100-500ppm. The zone trends into the previously relinquished TT grid area. No base metal soil sampling was conducted on the TT grid, but in all likelihood this zone would continue into this grid area. This zone is also anomalous in As with results up to 300ppm As.

The remaining elements analysed, Cu, Zn, Sn, Bi all returned background values with no anomalous results received. (See figures 41-48).

5.3.2 Geological Reconnaissance/Rockchip Sampling

Geological reconnaissance resulted in the collection of 65 rock chip samples throughout the licence area. A major zone of quartz-limonite stockwork and lode style veining was located in the northern part of the EL, immediately along strike from the TT grid. This zone corresponds to the Pb anomalous soil anomaly. Quartz blows are common in this area and are often re-brecciated in parts with quartz-limonite infill. A major structure occurs in this area striking NW-SE
which is clearly visible on landsat images and airphoto. This area also exhibits complex aeromagnetics. (See figure 49).

Rock chip sampling of the stockwork and lode style veining along with breccia zones and quartz blows established the base metal character of this veining. Strongly elevated Pb results in the range 5000ppm - 1% Pb were common with Cu, Zn and Sn in the range 1000-5000 ppm and As 1000ppm - 1%. The mineralisation is generally weakly anomalous in Au with results generally in the range 0.01 - 0.3ppm Au with a maximum result of 1.72ppm Au obtained.

Rock chip sampling in the northern extensions of the Horseshoe area returned anomalous Sn and Cu assays from small workings. Narrow sheeted vein zones, 1-5m in width returned anomalous Au results up to 3.89ppm Au. Despite the anomalous nature of these samples the mineralisation present in this area consists of small narrow zones which are considered to hold little potential for substantial mineralisation. (See figures 50-53).

Follow up in the western blocks of EL1900 resulted in the collection of 9 rockchip samples. Narrow zones of Sn mineralisation were sampled and returned anomalous Sn, Cu, Pb and As results. Samples from these workings were devoid of gold. Samples collected from the Yinberrie Hills further west, returned a maximum Au result of 0.37ppm Au with weakly anomalous base metals and As (100-500ppm). These blocks formed part of the area relinquished in August, 1990. (See figures 54-57).

5.3.3 Tin Assessment

Evaluation of tin mineralisation within the tenement holdings was concentrated within the most extensively worked part of the Horseshoe Tin Field. Most of the MCN's forming part of the Pine Creek JV cover the tin mineralised trend which strikes NNW-SSE. (See figures 58-60).

Examination of tin potential consisted of soil sampling and rock chip channel sampling of pre-existing bulldozer scrapes within the workings.

Soil sampling was conducted on 100m spaced lines which were extended over the area from the Horseshoe Au grid. Samples were collected every 10m and composited over 50m intervals. Sn results, as to be expected, were elevated with two distinct anomalies defined, which correspond to the two series of workings in the area. Initial rock chip sampling of the workings returned up to 20% Sn, with the surrounding alteration halo returning results up to 1% Sn. Some samples were occasionally anomalous in gold. (See figures 9, 14 and 46).
The plausibility of a low grade, open pittable Sn resource with potential gold credits was considered to be a possibility, particularly within the more extensively worked areas.

Such an area was selected for systematic assessment, utilizing a series of pre-existing bulldozer scrapes across the workings. Channel sampling over 10m intervals were collected using a jackhammer across the bulldozer scrapes. Results of this work were disappointing with a best result of 10m $520ppm Sn which down graded the prospect of broad zones of low grade Sn mineralisation. The best Au result obtained from this sampling was 0.08ppm Au, with base metals reflecting background values. (See figures 61-66).

6.0 CONCLUSIONS/RECOMMENDATIONS

The Jones Bros Prospect remains the prime exploration target within the tenement holdings. Work to date indicates the Jones lode is still open to the south, and has only been tested with RC drilling to moderate depths. Limited evaluation has been undertaken east of the lode and a SIROTEM conductor located immediately west of the lode remains to be tested at depth. To assess the remaining exploration potential outlined above, a limited programme of RC percussion and diamond (tails) drilling is recommended.

No further drilling is considered warranted at the Horseshoe Prospect. Mineralisation in the Horseshoe area (both Au and Sn) would appear to be narrow and discontinuous in nature, occurring as pods or shoots which have limited strike and tonnage potential. The prospect of locating a significant near surface ore body in this area is considered to be low.

Regional exploration has indicated areas with anomalous Au in soils. Follow up is currently in progress to establish if coherent soil anomalies are present. Geological mapping and rock chip sampling will be conducted. Pending further encouragement, RAB drilling of the anomalies is recommended.
7.0 EXPENDITURE STATEMENT

Expenditure for the period September, 1989 to August, 1990 for EL1900 and associated MCN’s comprising the Pine Creek JV is estimated as follows:

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staffing and Support</td>
<td>$96,332</td>
</tr>
<tr>
<td>Tenement Costs</td>
<td>4,090</td>
</tr>
<tr>
<td>Geophysical Surveys</td>
<td>485</td>
</tr>
<tr>
<td>Analysis</td>
<td>38,341</td>
</tr>
<tr>
<td>Drilling</td>
<td>23,959</td>
</tr>
<tr>
<td>Access/surveying</td>
<td>13,343</td>
</tr>
<tr>
<td>Head Office Management/</td>
<td></td>
</tr>
<tr>
<td>Technical Services</td>
<td>936</td>
</tr>
<tr>
<td>Subtotal</td>
<td>177,486</td>
</tr>
<tr>
<td>+10% overheads</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>$195,234</td>
</tr>
</tbody>
</table>
BILLITON AUSTRALIA GOLD PTY LTD

PINE CREEK JOINT VENTURE
ANNUAL REPORT FOR TENEMENTS
EL 2900
MCN'S 1918-1923
MCN'S 2356-375
MCN'S 3676-3683
MCN'S 3687-3688

APPENDIX I
HORSESHOE/JONES BROS PROSPECTS

Author: F. Fucceneucc Report No. 08. 5183
Date: October, 1990 Copy No.

OPEN FILE

CR90/6 19B

Distribution:

1. NTDME Darwin
2. Denehurst Ltd - Melbourne
3. Billiton Australia Melbourne (BXD)
4. Billiton Australia Melbourne (BOD)
5. Billiton Australia Melbourne (BXL)
6. Billiton Australia Darwin
7. Billiton Australia Katherine

90100501.WP5
APPENDIX I

<table>
<thead>
<tr>
<th>Fig No</th>
<th>Title</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Horseshoe Grid – Soil and Rockchip Sample locations and Au Results</td>
<td>1: 2,500</td>
</tr>
<tr>
<td>5</td>
<td>Horseshoe Au Grid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soil Geochemistry BCL Au (ppb)</td>
<td>1: 5,000</td>
</tr>
<tr>
<td>6</td>
<td>Horseshoe Au Grid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soil Geochemistry Cu (ppm)</td>
<td>1: 5,000</td>
</tr>
<tr>
<td>7</td>
<td>Horseshoe Au Grid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soil Geochemistry Pb (ppm)</td>
<td>1: 5,000</td>
</tr>
<tr>
<td>8</td>
<td>Horseshoe Au Grid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soil Geochemistry Zn (ppm)</td>
<td>1: 5,000</td>
</tr>
<tr>
<td>9</td>
<td>Horseshoe Au Grid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soil Geochemistry Sn (ppm)</td>
<td>1: 5,000</td>
</tr>
<tr>
<td>10</td>
<td>Horseshoe Au Grid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soil Geochemistry As (ppm)</td>
<td>1: 5,000</td>
</tr>
<tr>
<td>11</td>
<td>Horseshoe Au Grid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Au Soil Contours</td>
<td>1: 5,000</td>
</tr>
<tr>
<td>12</td>
<td>Horseshoe Au Grid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cu Soil Contours</td>
<td>1: 5,000</td>
</tr>
<tr>
<td>13</td>
<td>Horseshoe Au Grid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pb Soil Contours</td>
<td>1: 5,000</td>
</tr>
<tr>
<td>14</td>
<td>Horseshoe Au Grid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sn Soil Contours</td>
<td>1: 5,000</td>
</tr>
<tr>
<td>15</td>
<td>Horseshoe Au Grid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>As Soil Contours</td>
<td>1: 5,000</td>
</tr>
<tr>
<td>16</td>
<td>Horseshoe Grid – Geology and Mineralisation</td>
<td>1: 2,500</td>
</tr>
<tr>
<td>17</td>
<td>Horseshoe Grid – BCL soils (ppb), Rock Chips (ppm), Costean (ppm)</td>
<td>1: 1,000</td>
</tr>
<tr>
<td></td>
<td>Results and Soil Contours</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Horseshoe Au Grid – Structural data</td>
<td>1: 1,000</td>
</tr>
<tr>
<td>19</td>
<td>Horseshoe Grid – Costean Sample locations and Au (ppm) Results</td>
<td>1: 1,000</td>
</tr>
<tr>
<td>20</td>
<td>Horseshoe – Sirotom Profile Line 14700N</td>
<td>1: 2,500</td>
</tr>
<tr>
<td>21</td>
<td>Horseshoe – Sirotom Profile Line 14800N</td>
<td>1: 2,500</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Scale</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>22</td>
<td>Horseshoe - Sirotém Profile Line 14900N</td>
<td>1: 2,500</td>
</tr>
<tr>
<td>23</td>
<td>Horseshoe - Sirotém Profile Line 14950N</td>
<td>1: 2,500</td>
</tr>
<tr>
<td>24</td>
<td>Horseshoe - Sirotém Profile Line 15000N</td>
<td>1: 2,500</td>
</tr>
<tr>
<td>25</td>
<td>Horseshoe - Sirotém Profile Line 15100N</td>
<td>1: 2,500</td>
</tr>
<tr>
<td>26</td>
<td>Horseshoe Grid - Ground Magnetics Stacked Profiles</td>
<td>1: 2,500</td>
</tr>
<tr>
<td>27</td>
<td>Horseshoe Grid - Ground Magnetics Contours</td>
<td>1: 2,500</td>
</tr>
<tr>
<td>28</td>
<td>Driffield Drillhole Location Plan</td>
<td>1: 1,000</td>
</tr>
<tr>
<td>29</td>
<td>Driffield True Section DP001-003</td>
<td>1: 500</td>
</tr>
<tr>
<td>30</td>
<td>Driffield True Section DP004, 005, 012</td>
<td>1: 500</td>
</tr>
<tr>
<td>31</td>
<td>Driffield True Section DP006, 007, 008,010-011</td>
<td>1: 500</td>
</tr>
<tr>
<td>32</td>
<td>Driffield True Section 15096N-DP009</td>
<td>1: 500</td>
</tr>
<tr>
<td>33</td>
<td>Jones Bros - Geology, Sample Locations and Gold Assay Results</td>
<td>1: 1,000</td>
</tr>
<tr>
<td>34</td>
<td>Jones Drillhole Location Plan</td>
<td>1: 1,000</td>
</tr>
<tr>
<td>35</td>
<td>Jones Section 1 - JP001-005</td>
<td>1: 500</td>
</tr>
<tr>
<td>36</td>
<td>Jones Section 2 - JP007, 009, 010</td>
<td>1: 500</td>
</tr>
<tr>
<td>37</td>
<td>Jones Section 3 - JP006, 008</td>
<td>1: 500</td>
</tr>
<tr>
<td>38</td>
<td>Jones Section 4 - JP011</td>
<td>1: 500</td>
</tr>
<tr>
<td>39</td>
<td>Golf/Jones Grounded loop SIROTEM Profile Line 11400N</td>
<td>1: 2,500</td>
</tr>
<tr>
<td>40</td>
<td>Golf/Jones Grounded loop SIROTEM Profile Line 11600N</td>
<td>1: 2,500</td>
</tr>
<tr>
<td>Grid Line</td>
<td>15.50 N</td>
<td>15.00 N</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>15500 N</td>
<td>15.50</td>
<td>15.00</td>
</tr>
<tr>
<td>14500 N</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- Grid line with 50m interval.
- 15.00 = BCL Au results in ppb 10m into 50m composites.

Scale:
- 0 - 50 - 100 - 150

Project:
- Pine Creek Joint Venture

Northern Territory

Horseshoe Au Grid

SOIL GEOCHEMISTRY

BCL Au (ppb)

Institution:
- Bilton Australia Gold Pty Ltd

Details:
- Sheet 1 of 9
- Date: 03/90
- Scale: 1:5,000
- Drawn by: G. D. Mitchell
- Revised by: M. E. O. Smith
- Drawn: 03/26/90
- Revised: 02/16/90

Data:
- BCL Au results in ppb 10m into 50m composites.
LEGEND:

GRID LINE WITH 50m INTERVAL.
10.0 Cu RESULTS IN ppm 10m INTO 50m COMPOSITE.
<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Au (g/t)</th>
<th>Zn (%)</th>
<th>Pb (ppm)</th>
<th>Cu (%)</th>
<th>Ag ppm</th>
<th>Mo ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td>15.0</td>
<td>20.0</td>
<td>25.0</td>
<td>30.0</td>
<td>35.0</td>
<td>40.0</td>
</tr>
<tr>
<td>5.0</td>
<td>10.0</td>
<td>15.0</td>
<td>20.0</td>
<td>25.0</td>
<td>30.0</td>
<td>35.0</td>
</tr>
<tr>
<td>2.0</td>
<td>5.0</td>
<td>10.0</td>
<td>15.0</td>
<td>20.0</td>
<td>25.0</td>
<td>30.0</td>
</tr>
</tbody>
</table>

Legend:
- **GRID LINE WITH 50m INTERVAL:**
- **10.0 -** Pb RESULTS IN ppm 10m INTO 50m COMPOSITE.
SURVEY SPECIFICATIONS

DATA ACQUISITION: Weiskirchner Geophysics
SURVEY DATE: 21/3/90
CONFIGURATION: 680W SQUARE TX. LOOP, TRIGON MODE RVR SURVEY
READING INT.: 50 METRES
NO. OF STACKS: 256
TRANSMITTER: MEDIUM POWER
RECEIVER: SIROTEM II S/N 1236
CURRENT: 1-12.4 AMPS
OPERATOR: MICHAEL ROSE

PLOT SPECIFICATIONS
HORIZONTAL SCALE: 1:2500
VERTICAL SCALE: LOGARITHMIC
SMALL PER DECAY: LINEAR BETWEEN +4 AND +1
TIME DELAYS IN MILLISECONDS
E - EARLY TIME WINDOW
S - STANDARD TIME WINDOW

BILLITON, AUS
PINE CREEK J.V.
HORSESHOE
SIROTEM PROFILE
LINE 14800N

SCALE: 1:2500
FIG. 21
SURVEY SPECIFICATIONS

DATA ACQUS'N: McSKIMMING GEOPHYSICS

SURVEY DATE: 24 3 80

CONFIGURATION: 600K SQUARE TX. LOOP, TURAN MODE RVR SURVEY

READING INT.: 50 METRES

NO. OF STACKS: 256

TRANSMITTER: MEDIUM POWER

RECEIVER: SIROTEM II S/N 1236

CURRENT: 12.4 AMPS

OPERATOR: MICHAEL ROSE

PLOT SPECIFICATIONS

HORIZONTAL SCALE: 1:2500

VERTICAL SCALE: LOGARITHMIC

TIME DELAYS IN MILLISECONDS

E = EARLY TIME WINDOW
S = STANDARD TIME WINDOW

BILLITON, AUST.
PINE CREEK J.V.
HORSESHOE.
SIROTEM PROFILE
LINE 15100N

SCALE: 1:2500

FIG. 26
DRIFIELD TRUE SECTION - AU

SCALE=1:500

FIG. 3.0
JONES SECTION 2 - AU V WEATHERING
JONES SECTION 3 - AU V WEATHERING

SCALE = 1:500

FIG. 57
<table>
<thead>
<tr>
<th>Fig No</th>
<th>Title</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>Pine Creek JV - East Driffield EL1900 Soil Sample Locations</td>
<td>1:10,000</td>
</tr>
<tr>
<td>42</td>
<td>Pine Creek JV - East Driffield EL1900 Soil Geochemistry Au (ppb)</td>
<td>1:10,000</td>
</tr>
<tr>
<td>43</td>
<td>Pine Creek JV - East Driffield EL1900 Soil Geochemistry Cu (ppm)</td>
<td>1:10,000</td>
</tr>
<tr>
<td>44</td>
<td>Pine Creek JV - East Driffield EL1900 Soil Geochemistry Pb (ppm)</td>
<td>1:10,000</td>
</tr>
<tr>
<td>45</td>
<td>Pine Creek JV - East Driffield EL1900 Soil Geochemistry Zn (ppm)</td>
<td>1:10,000</td>
</tr>
<tr>
<td>46</td>
<td>Pine Creek JV - East Driffield EL1900 Soil Geochemistry Sn (ppm)</td>
<td>1:10,000</td>
</tr>
<tr>
<td>47</td>
<td>Pine Creek JV - East Driffield EL1900 Soil Geochemistry Bi (ppm)</td>
<td>1:10,000</td>
</tr>
<tr>
<td>48</td>
<td>Pine Creek JV - East Driffield EL1900 Soil Geochemistry As (ppm)</td>
<td>1:10,000</td>
</tr>
<tr>
<td>49</td>
<td>Driffield EL1900 - Airphoto Structural Interpretation</td>
<td>1:25,000</td>
</tr>
<tr>
<td>50</td>
<td>East Driffield EL1900 Regional Rock Chip Sampling Locations</td>
<td>1:10,000</td>
</tr>
<tr>
<td>51</td>
<td>East Driffield EL1900 Regional Rock Chip Results Au (ppm)</td>
<td>1:10,000</td>
</tr>
<tr>
<td>52</td>
<td>East Driffield EL1900 Regional Rock Chip Results Cu, Pb, Zn (ppm)</td>
<td>1:10,000</td>
</tr>
<tr>
<td>53</td>
<td>East Driffield EL1900 Regional Rock Chip Results Sn, Bi, As (ppm)</td>
<td>1:10,000</td>
</tr>
<tr>
<td>54</td>
<td>West Driffield EL1900 Regional Rock Chip Sampling Locations</td>
<td>1:25,000</td>
</tr>
<tr>
<td>55</td>
<td>West Driffield EL1900 Regional Rock Chip Results Au (ppm)</td>
<td>1:25,000</td>
</tr>
<tr>
<td>Page</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>West Driffield EL1900 Regional Rock Chip Results Cu, Pb, Zn (ppm) 1:25,000</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>West Driffield EL1900 Regional Rock Chip Results Sn, Bi, As (ppm) 1:25,000</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Horseshoe Tin Field Compilation Summary 1:15,000</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Horseshoe Tin Field Schematic Sections None</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Horseshoe Tin Field Diagrammatic Representation of Tin Potential 1: 5,000</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Horseshoe Tin Field - Costean Sample Locations and Au (ppm) Results Sheet 3/2 1: 1,000</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>Horseshoe Tin Field - Costean Sample Locations and Cu, Pb, Zn (ppm) Results Sheet 3/2 1: 1,000</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Horseshoe Tin Field - Costean Sample Locations and Sn, As (ppm) Results Sheet 3/2 1: 1,000</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>Horseshoe Tin Field - Costean Sample Locations and Au (ppm) Results Sheet 3/7 1: 1,000</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Horseshoe Tin Field - Costean Sample Locations and Cu, Pb, Zn (ppm) Results Sheet 3/7 1: 1,000</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>Horseshoe Tin Field - Costean Sample Locations and Sn, As (ppm) Results Sheet 3/7 1: 1,000</td>
<td></td>
</tr>
</tbody>
</table>
Eastern Workings - Section

Sheeted quartz-tin veins up to 0.4% Sn over 11m

haematite alteration zone

massive quartz-tourmaline-hematite-tin lode developed along bedding up to 20% Sn and 7% Cu in grab samples

Western Workings Sections

sediments

shallow westerly plunge

kaolin-hematite Sn lode

Long Section of Eastern Workings Along a Typical Line of Lode

sheeted veins

tin lodes
Blocks A, B & C represent three areas of the most clustered Sn workings.

To a depth of 50m and with an S.G. of 2.5 they contain the following tonnages:

A. 3.75 mT
B. 3.44 mT Total ~ 9 mT
C. 2.15 mT

If each block were to contain 10, 1m wide lodes enveloped on either side by 10m of sheeted veins, and if the lodes grade 5% Sn and the sheeted veins grade 0.5% Sn (see inset) then we can estimate the tin potential (open cut) to be of the order 9mT @ 0.5% Sn.