C3 IC

AMDEL REPORT NO. 06860(26)/90
BILLITON AUSTRALIA GOLD PTY LTD
COMMINUTION TESTS

OD 3/114/0-06860 OCTOBER 1989
08.4845

23 13

Amdel Limited (Incorporated in S.A.) International Operations Group Osman Place, Thebarton, S.A. 5031

Telephone: (08) 43 5733 International: +618 43 5733 Address all correspondence to: P.O. Box 114, Eastwood, S.A. 5063, Australia

Telex: AA82725 Facsimile: (08) 352 8243

31 October 1989

OD 3/114/0-06860

Mr. Mike Battersby Senior Metallurgist Billiton Australia Gold Pty Ltd P.O. Box 872K MELBOURNE Vic 3001

AMDEL REPORT NO. 06860(26)/90

YOUR REFERENCE:

ITC No. 017159/BOD

MATERIAL:

Mt. Todd Primary Ore

IDENTIFICATION:

Ore samples 1 to 6

DATE RECEIVED:

19 October 1989

WORK REQUIRED:

Ball Mill Work Index and Abrasion Index determinations.

Investigation and Report by: Ian W. McPheat

General Manager, Mineral Process Division: Ray F. Dougherty

Offices in Adelaide, Sydney, Melbourne, Perth, Brisbane, Canberra, Townsville, Represented world-wide.

COMMINUTION TESTING OF GOLD ORE SAMPLES

Six ore samples, identified as Samples 1 through to Sample 6, were received for determination of Ball Mill Work Indices and Abrasion Indices as follows.

		Determination	ıs	
Sample No.	Ball Mill Work Index		Abrasion Index	
· · · · · · · · · · · · · · · · · · ·				
1	Yes		Yes	
2	Yes	•	Yes	
3	_		Yes	
1	Yes	e - 1	Yes	
5	Yes		Yes	
i i	, 		Yes	

All samples required stage crushing to provide feed materials of appropriate size for the tests required. These feed sizings are specified in Appendices attached to this report.

1. BALL MILL WORK INDEX DETERMINATIONS

Ball Mill Work Index determinations were made for Ore Samples 1, 2, 4 and 5 using the Bond Ball Mill Grindability procedure described in Appendix A. A product size of 80% passing 75 μ m was nominated for these tests and this was sought using a mill product screen of 106 μ m aperture.

Feed and product size distributions for the tests are given in Tables 1 to 4 for Samples 1, 2, 4 and 5 respectively. Corresponding grindability and Work Index data are present in Tables 5 to 8. The results are summarised below:

	Ore Sample No.			
	1	2	4	5
			ه د د در به به خر به 	
Work Index, kWh/tonne	27.0	25.3	23.3	23.3
Feed size (F _{e0}), μ m	2380	2380	2320	2320
Feed size (F_{80}) , μm Product size (P_{80}) , μm	78	74	73	74
	:============		========	========

Ball Mill Work Indices for various materials are included in Appendix A.

2. ABRASION INDEX DETERMINATIONS

An Abrasion Index was determined for each of the six ore samples using the test procedure described in Appendix B.

כז וט

The following results were obtained.

Ore Sample No.	Abrasion Index		
1	0.152		
2	0.080		
3	0.253		
4	0.072		
5	0.117		
6	0.164		

Abrasion Indices for various materials are listed in Appendix B together with data correlating Abrasion Index with metal wear in comminution.

APPENDIX A

Bond Ball Mill Grindability Test for Work Index Determinations

This test is used to determine the Work Index of an ore for calculating ball mill size and power requirements.

Feed is prepared by stage crushing to minus 3.35 mm and the size distribution determined by wet and dry sieving.

A tightly packed 700 ml feed sample is weighed and then dry ground in a 305 \times 305 mm batch ball mill rotating at 70 rpm.

The ground charge is screened at the selected mill screen size and the undersize product is replaced with an equal weight of minus 3.35 mm feed. The charge is again ground for a number of revolutions calculated to yield a 250% circulating load.

Testing is continued until the net weight of product generated per mill revolution (Gbp) becomes constant.

The Work Index is calculated from the following factors:

P	· —	mill product screen aperture
Gbp	-	grindability
F80	_	80% passing size of feed
P80	-	80% passing size of product

Sample Requirement

Ore sample of 15 kg, stage crushed to minus 3.35 mm.

Test Result

The Work Index (kWh/tonne) determined from this test is for material ground in a closed circuit wet ball mill of 2.44 m diameter.

Reference

BOND, F.C. (1961) "Crushing and Grinding Calculations," Brit. Chem. Engng Vol 67, Nos 6,

Table 25. Average Red and Sall Mill Work Indices

			ed and Sall Mill H	OLE INDICAT	Ball mill	
		Rod mill		No. Les	Ave.	Range
Material	No. tests	Ave.	Range	6	17.5	7-34
Alumina	3	12.2	9-17 2-12	Ť	5.8	4- 9
Bante	.4	5.7	2-20	29	14.5	1-31
Bauxile	33	10.8 12.1	8-15	180	13.6	7-77
Cement clinker	29	12.3	4-18	284	10.0	3-21
Cement raw material	115	7.9	7- 9		13.4	7-17
Chrome ore	2	12.5	6-18	11	10.8	4-23
Clay	4	7.0	3-13	7 .	19.6	15-26
Clay, calcined	4	9.4	8-12	•	15.4	13-18
Coal	4	16.9	12-24	4	33.5	29-40
Cake	7	19.2	16-24	- 6	15.5	17-18
Copper-nickel ore	296	14.3	4-34	765	12.8	ş-30
Copper ore	4	11.0	6-16	•	9.8	5-14
Capper-sine are	ì	17.5	10-30	2	11.6	10-13 6-25
Diante	11	14.2	3-24	5	13.9	5-14
Dolomite	117	11.0	8-16	7	11.7	2_77
Feidapar	i	8.4	-	6	20.4	š- 9
Ferrochrome		= -		5	7.2 7.9	5-14
Farromagnesium	2	7.6	7- 8	5	17.9	6-51
Ferromanganese	3	7.1	4-11	·8		22-31
Ferroatlicon	ī	18.1	-	5 ,	27 4 12.7	6-25
Flint	i	11.0	9~13	9	14.6	3-42
Fluospar	42	15.2	8-29	183	9.9	19-11
Gold, sre	10	16.3	8-36	- 8	18.0	11-27
Granite	21	15.9	8-24		12.4	€-31
Gravel	54	11.3	3-20	118	11.1	2-31
ron ore, unicentified	ű	12.5	5-22	116	18.5	7-29
Hematite			•	. š	9.0	5-19
Cone.	12	9.3	4-16	20	13.2	6-29
Limonite	43	11.4	5-25	73 23	19.2	7-27
Magnetite				. 23 5	14.0	12-16
Conc.				5	10.4	9-14
Tailings					12.0	8-19
Sidente	35	.9.3	7-37	20		
Taconite	12	11.6	10-13	••	10.3	8-13
Cone	14	12.6	10-15	12 58	12.5	7-26
ead ore	31	12.4	7-19	177	9.9	4-36
ead-zine ore	84	13.7	7-50	5	11.0	6-18
imestone				18	14.6	5-25
imestone, bumi	3	15.9	10-22	19	13.9	6-23
Magnesite	3	10.9	7-14	8	10.2	4-13
Anganese ore	ž	10.5	10-11	43	11.6	10-15
Karl	25	11.8	5-18		28.4	12-37
Kolybdenum ore Kickel matte	2	9.8	9-11	39	12.5	2-24
rickel are	19	14.9	8-22		38.2	16-78
ii shale	1	21.0		5	15.1	13-19
)yster shells	5	17.6	2-28		16.5	12-30
hosphate fertilizer				36	13.6	3-25
hosphate rock	22	12.8	5-28	76	10.1	7-13
yrite	3	8,7	8-10	13	14.4	11-21
uarts Vince	1	44.4		13	11.2	7-16
juaria Juarizite	8	12.3	8-19 3-33	45	23.8	9-50
and, silies	14	13.0		ï	27.4	16-38
andstone	6	11.4	1-20	12	10.1	3-21
hale	4	13.4 =	5-24	ii	14.3	8-23
ilica rock	6	8.9	7-12	19	17.0	13-22
ilver ore	6	17.5	15-19	26	17.2	10-27
ilag	10	16.0	10-27	8	18.3	12-26
ilag, blast furnace	4	10.1	5-13	16	22.1	6-89
ing, ping rumace iteel mili scrap				10	15.3	8-22
'aie				12	11.8	10-14
	4	14.1	11-16	9	11.4	7-17
In ore	3	10.9	10-12	4	11.0	7-17
Stanium ore Sungaten ore	Š	12.8	9-17	18	14.6	10-20
	13	13.3	3-18	•	10.9	€-16
Iranim ore	6	12.9	7-22			
ine ore	1244			2633		
Totals	1299					

From SME Mineral Processing Handbook (1985), Edited by N.L. Weiss, Society of Mining Engineers, N.Y.

^{*} Work Index Values are given in kWh/short ton.

APPENDIX B

BOND ABRASION INDEX

This test is used to determine the abrasiveness of a material in relation to metal wear in crushing and grinding.

The test material, in the size range minus 19.0 plus 12.7 mm, is tumbled in a drum and cascades over a hardened steel paddle which rotates concentrically with the drum.

The test material is replaced with a fresh charge after each 15 minutes and the test continues for a total period of one hour.

The weight (g) lost by the paddle for the full test period is the Abrasion Index.

Sample Requirement

Minimum of 3 kg of minus 19.0 plus 12.7 mm material.

Reference

BOND, F.C. (1963) "Metal Wear in Crushing and Grinding", 54th Ann. Mtg of AIME, Inst. Chem. Engrs. Houston, Texas, p.3.

Table 26. Average Abrasion Indices

Material	No.		* *
Material			
	tests	Average	Range
Aluminum oxide	2	0.86	0.58-1.14
Basalt	5	0.45	0.19-0.83
Bauxite	11	0.02	0.003-0.12
Beryllium ore	2	0.45	0.450.45
Cement clinker	15	0.08	0.009-0.17
Cement raw mix	37	0.05	0.001-0.83
Clay, calcined	2	0.04	0.004-0.07
Copper-nickel matte	2	0.002	0.001-0.003
Copper-nickel ore	2	0.46	0.43-0.49
Copper ore	112	0.26	0.002-0.91
Copper-silver ore	2	0.62	0.58-0.65
Dolomite	8	0.03	0.01-0.07
Feldspar	2	0.19	0.07-0.30
Ferrochrome alloy	3	0.35	0.27-0.52
Ferromanganese	2	0.25	0.18-0.32
Fullers earth	2	0.001	0.00-0.001
Gold ore	4	0.48	0.30-0.71
Granite	18	0.40	0.10-0.78
Gravel	6	0.29	0.11-0.43
Iron ore, unidentified	33	0.25	0.01-0.98
Hematite	38	0.37	0.00-1.79
Limonite	6	0.13	0.01-0.23
Magnetite	. 18	0.48	0.11-0.83
Taconite	15	0.60	0.32-0.85
Lead zinc ore	9	0.21	0.03-0.41
Limestone	52	0.05	0.00-0.65
Magnesite	3	0.08	0.04-0.10
Marble	3	0.01	0.002-0.04
Molybdenum ore	8	0.41	0.13-0.68
Nickel ore	5	0.03	0.01-0.06
Oil shale	3	0.02	0.01-0.02
Phosphate rock	3 2 7	0.02	0.01-0.02
Quartzite		0.69	0.19-0.99
Schist	2	0.12	0.11-0.13
Shale	2	0.004	0.003-0.005
Silica rock	4	0.29	0.06-0.83
Silver ore	2	0.74	0.72-0.76
Siag	9	0.28	0.01-0.52
Slate	2	0.003	0.003-0.003
Stone	5	0.22	0.07-0.32
Tin ore	4	0.24	0.03-0.35
Trap rock	_18	0.35	0.02-0.70
Total	487 5		

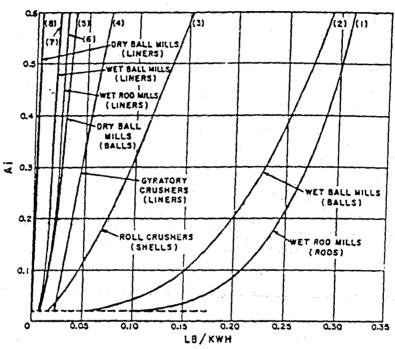


Fig. 1 — Abrasion Index plotted against metal wear in lb/kwn. *

^{*} BOND, F.C., (1963) "Metal Wear in Crushing and Grinding", 54th Ann. Mtg., American Inst. Chem. Engrs., Houston, Texas.

ピゴぐ

TABLE 1: SIZINGS OF BALL MILL FEED AND PRODUCT Sample 1 $\,$

Screen	Weight Pass	========= ing, cum. %
Aperture µm	Feed	Product
2800	92.1	
2360	79.6	
2000	68.7	
1700	59.6	
1400	48.3	
1000	35.7	
710	26.7	
500	20.3	
355	15.7	
180	9.4	
125	7.3	
106	6.5	
90	5.8	88.1
75	-	78.2
63	·	66.7
53	-	62.6
45	-	57.9
38	_	49.4
=================		=========

B1.SIZ

TABLE 2: SIZINGS OF BALL MILL FEED AND PRODUCT Sample $2\,$

Screen	Weight	Passing, cum. %
Aperture μm	Feed	Product
2800	91.2	
2360	79.4	
2000	69.4	
1700	61.5	
1400	50.4	
1000	37.3	
710	28.3	
500	21.8	
355	17.1	
180	10.5	
125	8.2	
106	7.4	
90	6.7	89.5
75	_	80.6
63	-	69.9
53	_	66.1
45	_	61.6
38	- ,	53.1
	=======	

B2.SIZ

TABLE 3: SIZINGS OF BALL MILL FEED AND PRODUCT Sample $4\,$

Screen	Weight Pas	ssing, cum. %
Aperture µm	Feed	Product
2800	90.8	
2360	80.6	
2000	70.7	•
1700	61.4	
1400	51.7	
1000	38.8	
710	29.6	
500	23.0	
355	17.5	
180	10.9	
125	8.7	1.2
106	8.0	
90	7.2	90.2
75	_	80.5
63	_	69.2
53	· · · · · · · · · · · · · · · · · · ·	65.5
45	_	61.7
38		53.0

B4.SIZ

TABLE 4: SIZINGS OF BALL MILL FEED AND PRODUCT Sample 5

Screen Aperture	Weight Passing, cum. %				
μm	Feed	Product			
2800	91.0				
2360	81.0				
2000	71.8				
1700	62.9				
1400	53.3				
1000	40.1				
710	30.6	* 4			
500	23.8				
355	18.2				
180	11.4				
125	9.2				
106	8.3				
90	7.5	90.3			
. 75	-	80.4			
63	···· · · · · · · · · · · · · · · · · ·	69.1			
53	- ·	65.4			
45	-	60.4			
38	_	52.0			

B5.SIZ

TABLE 5 : BALL MILL GRINDABILITY
Sample 1

======================================	:========	=======	======		=========
Grinding Stage	Mill Revolutions	Gross Product Weight g	Net Produc Weisht		s Circulatins Load %
1 2 3 4 5 6	260 580 538 493 488 485	219 329 337 321 320 318	147 316 316 300 299 298	0.57 0.54 0.59 0.61 0.61	408 238 230 247 248 250
Weisht of Average f	Feed in Mill Feed in Mill or Last 2 Star ndability culatins Load	. =	0.61	s/rev.	
	nd Size for Fe nd Size for Pr x		78. 24.5	micrometres micrometres kWh/s.ton kWh/tonne	

B1.F

B2.F

TABLE 6: BALL MILL GRINDABILITY
Sample 2

========	######################################	Gross	====== Net.		3223222222
Grinding	Mill			t Grindability	Circulating
Stase	Revolutions	Weisht	Weisht	,	Load
		প্র	ਭ	4/rev	7.
1	250	242	158	0.63	371
2	520	325	307	0.59	251
3	511	339	316	0.62	236
- 4	478	332	308	0.54	243
5	463	319	295	0.64	257
Halina of	Feed in Mill		 700		
	Feed in Mill		1140		
werzue or	1660 111 11111	_	1170		
Average fo	or Last 2 Stag	ies:			
Gri	ndability	=	0.64	₫/rev.	
Circ	culating Load	=	250	7.	
807 Paccin	ns Size for Fe	end =	2380.	micrometres	
	ns Size for Pr			micrometres	
.00% ,003,241		00000	, .,	mac. Smc Vi Lo	
Work Index	4	=	22.9	kWh/s.ton	
		=	25.3	kWh/tonne	

TABLE 7 : BALL MILL GRINDABILITY
Sampe 4

		=======	======	=======================================	=======================================
Grindins Stase	Mill Revolutions		Net Produc Weisht s	t Grindability ⊴⁄rev	Circulating Load %
1 2 3 4 5 6	310 513 444 443 421 447	293 364 338 346 324 337	199 341 309 320 296 312	0.64 0.67 0.70 0.72 0.70	301 222 248 239 263 248
Weisht of Average for Gri	Feed in Mill Feed in Mill or Last 2 Standability culating Load	= 3es: =		g g/rev.	
	ns Size for Fe ns Size for Pi (73. 21.2	micrometres micrometres kWh/s.ton kWh/tonne	

B4.F

R5.F

TABLE B : BALL MILL GRINDABILITY Sample 5

					and the part of a
Grindins Stase	Mill Revolutions	Gross Product Weight	Net Produc Weisht		Circulatins Load %
1 2 3 4 5	320 525 453 435 434	296 364 345 336 336	199 340 315 308 309	0.62 0.65 0.69 0.71 0.71	296 222 240 249 249
Weisht of	Feed in Mill Feed in Mill or Last 2 Stag	. =	700 1173		
Gri	ndability culating Load	=	0.71 249	s/rev. %	
	ns Size for Fo ns Size for Po			micrometres micrometres	
Work Index	<	= = ==================================		kWh/s.ton kWh/tonne	

LAURIE SMITH & ASSOCIATES PTY, LTD.
Incorporated in Western Australia
CONSULTING METALLURGISTS
Managing Director L.I. Smith, AWASM. (Metallurgy), M.Aus.I.M.M.

KARRINYUP 6018 WESTERN AUSTRALIA PHONE: (09) 447 5879 LAB: (09) 244 1423 FAX: (09) 447 8412

16 BRODRICK STREET

METALLURGICAL INVESTIGATIONS
FOR
BILLITON AUSTRALIA GOLD PTY LTD
CYANIDE LEACH TESTS
ON
MT TODD WEATHERED ORE
8 December, 1989

08.4956

S. J. Smith

TABLE OF CONTENTS

1.	INTRODUCTION
2.	PERCUSSION DRILL CORE SAMPLES RECEIVED
3.	WATER FOR TESTWORK
4.	QUALIFICATIONS
5.	SAMPLE PREPARATION
6.	HEAD ASSAYS AND ANALYSES
7.	GRINDING OF THE COMPOSITE SAMPLE
8.	SAMPLING OF GROUND PRODUCT
9.	LEACHING TESTS
10.	PREPARATION OF RESIDUE SAMPLES
11.	CALCULATIONS AND RESULTS
12.	DISCUSSION
FIGURES	

TABLES

INDIVIDUAL TEST CONDITIONS AND RESULT SUMMARIES

APPENDIX

5-6m

13-14m

METALLURGICAL INVESTIGATIONS FOR BILLITON AUSTRALIA GOLD PTY LTD CYANIDE LEACH TESTS ON MT TODD WEATHERED ORE 8 December, 1989

- 1. Introduction
 A program of testwork on four separate weathered ore composite samples at gold grades of 0.6, 0.8, 1.0 and 1.2ppm was drawn up by W.R. Lethlean & Associates Pty Ltd to determine the recovery and reagent consumption at:
 - (a) various grind times
 - (b) various leach times

A log of 512 samples was provided together with specific instructions regarding sample preparation, sample compositing and sample splitting. Instructions were also received regarding assays and tests to be conducted on specific riffle splits and the conditions for the tests.

2. Percussion Drill Samples Received
A total of 506 samples, representing one-metre intervals, were received on the 7th September, 1989. The samples were in labelled plastic bags, stacked on open pallets. The majority of the bags were damaged, allowing a quantity of material to be spilled and also allowing water to enter the bags. Consequently most of the samples contained moisture, and ranged from "slightly damp" to "mud".

BP137

Samples not received:

Addi

Comp. BMT 0.6

	Comp. BMT 1.0	BP149	8 samples	1-9m
		BP133	7 samples	/-14m
ltional	samples received:			
	Comp. BMT 0.6	BP111		3 – 4 m
		BP172		7-8m
	Comp. BMT 0.8	BP115	· ·	15-16m
	Comp. BMT 1.0	BP124	in de la companya de La companya de la co	2-3m
		BP120		19-20m
		BP159		20-21m 4-5m

Comp.	BMT	1.2	BP143		•	2-3m
•			BP145			5-6m
			BP152			5-6m
			BP171			1 - 2 m

3. Water for Testwork
Three additional 200 litre plastic drums of Billiton sitewater were received on 14 September, 1989.

4. Qualifications

- (i) No responsibility will be accepted for the data provided in this report except insofar as they apply to the samples tested.
- (ii) Billiton sitewater was used in all testwork except the time versus grind studies.
- (iii) All gold assays on liquor were determined by solvent extraction followed by AAS. Results are reported on a w/w basis. All copper and zinc assays on liquor were determined by AAS and reported on a w/v basis. Total sulphur was determined on composite leach liquors by classical gravimetric analysis.
- (iv) All solids samples were assayed by the fire method followed by gravimetric finish except where grades were very low, e.g. residues. In this instance the prill from cupellation was dissolved in aqua regia and the gold determined by AAS after solvent extraction. Duplicate determinations were conducted on all samples except leach residue size fractions of mass generally less than 60g, where the total mass available was assayed and on duplicate hole composite samples.

All head samples were pulverised prior to assay an all residue fractions coarser than 75um were pulverised except where the total sample available was taken for assay. Head samples were assayed for sulphur by a classical gravimetric method. Head samples were assayed for Fe, Cu, Zn, As, Pb and Ag by acid digestion followed by AAS.

5. Sample Preparation

Individual drill hole intersections nominated for inclusion in each composite had been selected on the basis of the initial assays conducted on the one-metre samples. Confirmation that the drill hole intersections selected were of the indicated grade was required. "Hole composites" were therefore prepared and splits submitted for assay.

Each individual one-metre sample was weighed and the weight recorded on sheets 1-8, Appendix 1. Where necessary, the sample was dried in the oven before weighing.

Visual inspection of the samples showed that, although the bulk of each sample was very fine, most samples contained some very coarse particles, too big to be taken directly to the roll crusher. The requested crushing procedure was therefore modified, and each sample was passed through the jaw crusher at a nominal closed side setting of 2mm. After this treatment the material was fine enough to split out the required quantity for each "hole composite".

The quantity of each intersection sample taken to make the hole composites is also recorded on sheets 1-8, Appendix 1.

Each hole composite was screened through a 2mm screen and the weights of the oversize and undersize fractions recorded before roll-crushing the oversize to all pass 2mm (Table 1).

Each "hole composite" was then mixed in a urethane lined mixer, and riffle-split to produce two assay samples of approximately 100g, each of which was assayed for Au.

The assayed head grades of a number of hole composites varied significantly from those calculated on the basis of individual one-metre intervals, and the allocation of hole composites to the different grade composites was revised. The original and revised sample distribution are shown in Tables 2 and 3 respectively. Some of the hole composite grades were outside the expected range and they were not therefore included in any of the four grade composites. Consequently some of the individual test composite masses were significantly less than planned. The masses available and the grades calculated from the hole assays are also shown in Table 3.

Each grade composite sample was mixed in a urethane-lined mixer and riffle-split into 32 portions, regardless of the quantity available.

Riffle-splitting presented some difficulty, as the material was not free-flowing, although it appeared completely dry to the touch. As a result the weight of individual splits in each grade composite shows a significant degree of variation. LS&A general practice is to avoid high temperature drying of ore samples prior to certain types of testwork because it has been found that organic materials which may be present can be distroyed or modified resulting in misleading results - particularly oxygen demand. Practice is generally to airdry to a workable moisture. The moisture content of such samples is then determined and the dry mass taken to test is calculated.

One split from each composite was used for the moisture determination. The moisture content of the four composites varied from 0.34% to 0.92% (Table 3).

The riffle splitting procedure adopted for all four composites was as outlined for the BMT 0.6 as shown in Appendix 2. As previously discussed the average mass of the splits for each composite varied.

6. Head Assays and Analyses
Throughout this report assays on solids and liquors are stated as ppm
or % on a w/w basis except for Cu, Zn and S assays on liquors which
are on a w/v basis. Extractions are stated as g/t (grams per tonne).

Four working samples from each of the composites 0.6, 0.8, 1.0 and 1.2 were submitted for gold assay and the total of each sample was pulverised prior to taking duplicate assay portion. Two of each of the four samples were analysed for further elements.

Sami	p1e	Au ppm	Au ppm	Au Ave pym	Cu ppm	Zn ppm	Ag	Pb ppm	As ppm	F %	s % -
BMT	0.6										
2 A		0.60	0.62	0.61	290	360	2.7	165	115	6.00	<0.01
4 C		0.61	0.62	0.62	295	365	15.8	180	115	6.02	<0.01
6 B		0.60	0.60	0.60							
8 D		0.62	0.65	9.64							
				0 (0		260			÷		
Ave				0.62	292	362					
RMT	0.8										
2 A	•••	0.77	0.78	0.78	305	205	<0.2	55	95	6.13	<0.02
4 C		0.73	0.73	0.73	315	210	<0.2	55	115		<0.02
6 B		0.88	0.87	0.88							
8 D		0.78	0.78	0.78							
									·		
Ave				0.79	310	208				-	
BMT	1.0										
2 A		1.08	1.07	1.08	355	320	0.5	370	285	6.1	0.08
4 C		1.20	1.19	1.20	365	310	0.5	355	290	6.2	0.08
6 B		1.12	1.13	1.12							·
8 D		1.11	1.11	1.11							

Ave				1.13	360	315					
BMT	1.2										
2 A		1.14	1.13	1.14	280	200	<0.2	125	345		<0.02
4 C		1.02	1.09	1.06	280	195	<0.2	125	350	6.33	<0.02
6 B		1.08	1.10	1.09	,			-			
8 D		1.20	1.18	1.19							
A				1.12	280	198					
Ave				1.12	200	170					

The analysis of the previously supplied sitewater was as follows:-

TDS	<10ppm
Na	1.5ppm
Ca	0.8ppm
Mg	0.4ppm
C1	<1 ppm
S04	<1 ppm
ρΗ	6.8

An analysis of the supplied 3 \times 200 litres of sitewater was not conducted.

7. Grinding of the Composite Samples
The fine nature of the weathered ore samples indicated that the standard rod load used for grinding would result in very short grind times with consequent possibility for error. Three trial grinds using different rod loads were conducted on a composite of portions of six one-metre intersections. The sizings are shown in Figure 1.

1376

The standard and selected reduced rod charge was:

	Standard Charge	Reduced Charge
19mm x 302mm	22	13
12mm x 302mm	6	6
Rod Mass (kg)	16.3	10.3

When the tests on BMT 0.6 and BMT 1.0 were completed work was commenced on a Billiton Primary Low Grade sample BMT PO.8. During testing of this low grade sample 110kg of primary ore and 20kg of Pine Creek ore grinding was conducted to provide samples for physical tests and establish rod wear. During this grinding exercise wear on the mill drive occurred and slippage resulted in a lower mill speed. The BMT 0.6 and BMT 1.0 samples were ground at 72 rpm and the BMT 0.8 and BMT 1.2 samples were ground at about 67 rpm. The details of the mill are:

Urethane lined with eight 5mm high x 5mm wide lifters inside diameter (between plates) 195mm Inside length 315mm

Grinding times to achieve P80 values of 150, 106 and 75 micron with this reduced rod charge were established by conducting three grinds of different times on each composite. The grind data are shown graphed in Figures 2 to 9. The actual grind times were established as:-

4 min 40 sec, 7 min 55 sec, 14 min - composite BMT 0.6 min 30 sec, 5 min 30 sec, 10.67 min - composite BMT 0.8 min 30 sec, 9 min 10 sec, 15 min - composite BMT 1.0 min 15 sec, 8 min 20 sec, 15 min - composite BMT 1.2

Grinding for leach tests was conducted in Billiton site water at 50% solids. The rod charge was accurately weighed before and after grinding each composite the rod wear was determined. The wear, together with that determined on other BMT samples and on a Pine Creek sample is shown in Table 4.

8. Sampling of Ground Product
Before transferring the ground pulp to the leach vessels, it was
passed through a pulp splitter to take out a one-eighth split for
duplicate gold assay. The pulp splitter used in the test program on
the primary ore had been modified, which resulted in improved
reproducibility of sample weight taken. The sample was filtered,
dried, weighed and pulverized before assaying in duplicate. These
assays are recorded in the test result summary sheets (sheet 2).

The remaining pulp would not settle overnight to higher than 40% solids, and leaching was required at 40% solids. In addition, the supernatant liquor was turbid and the surplus liquor could not be removed without taking some solids. To overcome this problem, a weighed quantity (1.20g) of technical grade calcium hydroxide was

added to the ground pulp after sampling, which resulted in a pulp approaching 50% solids after overnight settling.

9. Leaching Tests
After allowing the pulp to settle, the % solids was adjusted to 40 by syphoning off the surplus liquor. The leach vessels were wide-neck polythene jars of nominal 5 litre capacity, 170mm diameter x 170mm parallel shell length. The decanted liquor from each sample was weighed and the 40 removed in the decant was determined by titration. The quantity of CaO added to each leach test was then determined as the difference between that added for settling and the quantity removed in the decant. The quantity of CaO added for settling was determined from the preliminary grinding tests.

The standard procedure is to cap the leach vessels with a screw cap with a 26mm diameter hole in the centre. With the Billiton primary ore pulp samples, the cap was necessary to retain the pulp in the vessel and, in the preliminary CaO requirement tests, it was found that pulp would film onto the cap, be taken overhead of the hole and flow out of the hole. This problem was overcome by fitting a tube through the hole to act as a deflector. The hole was still retained at 26mm diameter. Although the weathered ore pulp volumes were lower than for the primary ore this same type of cap was used on all leach vessels.

The test conditions laid out for each composite is shown as Appendices 3-6. Also shown in these appendices is the samples used for grinding definition tests and for an environmental study leach.

NaCN concentration 0.05%
CaC concentration 0.01%
Pulp (% solids) 40
Temperature ambient

The initial NaCN addition was made to ensure that there was no deficiency in NaCN concentration within the first three hours. For that purpose a preliminary leach test was run for 3 hours, with excess cyanide (1.5kg NaCN/tonne). At the end of this test it was found, by titration a liquor sample, that cyanide had been consumed at the rate of 0.06kg NaCN/tonne of ore.

Taking this figure as the basis for the initial NaCN addition, it was possible to maintain the NaCN concentration near the required level of 0.05% throughout all leach tests, by making up the losses at each sampling stage.

The same starting addition, in terms of kg NaCN/tonne, was maintained for all tests. The mass of solids taken to the leach tests was calculated as the difference between the mass taken to grinding and the mass of ground sample split out for assay.

The leach vessels were roll-agitated at a speed of 42 rpm and the liquor sampled at 3, 6, 8 or 12 and 18 hours as called upon by the test program. All tests were run in batches of 10 and each composite program consisted of:-

Batch	1	2	off	P80	75 um	8	ĥours
		3	off	P80	75 um	12	hours
		2	off	P80	75um	18	hours
		2	off	P80	150um	8	hours
		1	off	P80	150um	18	hours
Batch	2	2	off	P80	106um	8	hours
		3	off	P80	106um	12	hours
		2	off	P80	106um	18	hours
		2	off	P80	150um	12	hours
		1	off	P80	150um	18	hours

The gross mass of the vessel and pulp was recorded prior to placing on the rolls and the gross mass again recorded when the vessel was removed from the rolls for liquor sampling. The pH of each pulp was recorded and the temperature of the pulp in one vessel only was determined at each time of sampling.

Settling of the pulp was quick and the liquor sample was removed with a pipette and filtered. The vessels were again weighed and Billiton sitewater added to return the gross mass to that recorded when the vessels were removed from the rolls. This procedure maintained the leach pulp at 40% solids throughout the test and also provided the mass of liquor sample removed for assay and test.

The cyanide concentration was determined by silver nitrate titration of a 10ml portion of the liquor using approximately 0.5g potassium iodide as indicator. After adding about 1ml excess of silver nitrate, the available CaO was determined by titration with oxalic acid using phenolphthalein indicator. The remainder of the liquor sample was assayed for gold, copper and zinc.

At the termination of each test, the pulp was filtered to recover about 250g of liquor to permit determination of total soluble sulphur in addition to gold, copper, zinc, NaCN and CaO. (Pulps were very slow filtering.) The filter cake was repulped with Perth tapwater and wet-screened on a 53 screen. The undersize was flocculated, washed twice by decantation and finally filtered, dried and weighed. The oversize was transferred to a tray, dried and weighed.

All test details are shown on sheet 2 of the accompanying tables.

10. Preparation of Residue Samples
The plus 53um material from the wet screening described above was dry-screened on a nest of screens and the size fractions weighed and bagged for assay. The minus 53 material recovered from dry screening was combined with the minus 53 from wet screening and the material passed through a 800um screen, mixed by rolling and bagged for assay.

All residue fractions coarser than 75um were pulverised prior to assay except for some minus 106um plus 75um fractions where the total sample available was taken for assay.

The sizings assays and gold distribution for the residue of each composite are shown on sheets 3, 4, 5 and 6 of the accompanying tables.

11. Calculations and Results

The leach extractions were calculated based on the mass of liquor in the leach vessel at the time of testing and this mass was determined by subtracting the mass of the vessel and the mass of the sample taken to leach from the gross mass at the time of testing. Allowance was made for the gold, copper and zinc contained in samples that were removed. The same procedure was used to calculate the reagent consumptions. The calculations for all four composite samples are included in the accompanying tables.

The total of 20 tests conducted on each of the grade composites is shown in one set of 14 sheets as follows:

- Sheet 1 Summary of calculated and assay data
- Sheet 2 Actual bench test data
- Sheet 3 Size and gold distribution of five residues
- Sheet 4 " " " " " "
- Sheet 5 " " " " " " "
- Sheet 6 " " " " " " " " "
- Sheet 7 Analysis of calculated and assay data for each grind level
- Sheet 8 Summary of individual test residue size fraction assays by leach hours
- Sheet 9 Summary of averages of residue size fraction assays
- Sheet 10 Summary of individual test residue size fraction gold distributions by leach hours
- Sheet 11 Summary of averages of residue size faction gold distributions
- Sheet 12 Summary of individual test calculated data by leach hours
- Sheet 13 Summary of averages of test calculated data

 Calc The calculations of contents of leach liquors and
 amples

Each sheet is identified with the BMT composite name and sheet No.

The sets of data are presented in the following order.

BMT 0.6

BMT 0.8

BMT 1.0

BMT 1.2

12. Discussion Discussion is generally confined to those matters only relating to the reproducibility of the testwork and to those matters which were observed at bench scale and may be of some value in design considerations.

P80 achieved by Grinding
The following average percentage passing the nominated screen size
was achieved.

P80 objective	75	106	150
BMT 0.6	80.5	81.3	78.3
BMT 0.8	82.7	78.8	81.0
BMT 1.0	79.4	80.8	80.5
BMT 1.2	79.4	78.4	78.6

Repeat Assays on BMT 1.0 Residue Size Fractions
The calculated heads for some of the tests on the BMT 1.0 composite were significantly higher than the ground head and in particular the residue calculated assay was in some cases significantly higher than those of the BMT 0.6 residue assays.

Repeat duplicate assays were conducted initially on three of the minus 53um residue fractions and then finally on all remaining minus 53um fractions.

From the twenty tests there were only five coarse size (plus 150um) fractions with reserve material and a single assay was also conducted on these fractions.

The original and repeat assays are shown in Table 5.

Substitution of repeat assays in the residue accounts resulted in a slight overall average decrease in residue grade.

		P80=75um	P80=106um	P80=150um	Total
Original Assays	ppm Au	0.21	0.25	0.28	0.25
Repeat Assays	ppm Au	0.21	0.24	0.29	0.24

The <u>average</u> calculated head for this sample remained unchanged at 1.15ppm Au when rounded to the second decimal place.

Sheets 1 and 7 from the repeat assay calculations are shown as Tables 6 and 7.

Comparison of Head Assays and Calculated Heads
The values for ground test head and calculated test head are shown
for each test on sheet 1 of each set. The calculated head from the
hole assays are shown in Table 3 and the values for the splits are
shown in 6 above. The following are averages.

		Split Head	Calculated Assay Head(1)	Ground Head	Caiculated Test Head
BMT	0.6	0.62	0.67	0.63	0.68
вит	0.8	0.79	0.76	0.85	0.90
BMT	1.0	1.13	0.98	1.15	1.25
BMT	1.0 (2)			1.15	1.25
вит	1.2	1.12	1.19	1.17	1.20

- (1) calculated from assays on Hole Composites
- (2) calculated from repeat assays on twenty minus 53um residue fractions and five plus 150um residue fractions

Soluble Copper in Grind Liquor After grinding one split of BMT 0.6 at 50% solids the liquor was sampled and assayed for copper.

pH 6.4 ppm Cu 0.15

Total Sulphur Assays on Leach Liquors
Total sulphur was determined on composites of terminal leach liquors
from three of the composites and sulphate sulphur from one composite
single test. All liquors were from 40% solids pulps.

Sample Composite	Liquor Composite	ppm Total S
BMT 0.6	P80=150um, 1 x 12hr	6 (1)
BMT 0.8	P80= 75um, 3 x 18hr	2
BMT 1.0	all 20 tests	18
BMT 1.2	P80= 75um, 3 x 18hr	12
BMT 1.2	P80= 53,75 & 150um, 6 x 18 h	ir 11
(1) Sulphat		

Unaccounted Mass of Test Samples
The mass of the recovered residue size fractions was added to the mass of the ground sample split out for duplicate assay and compared with the mass of the sample split taken into the grind.

Generally there is an unavoidable loss of material in the many handling operations. With the weathered ore samples the data shows a gain for some samples indicated on sheets 2 as a negative "Unaccounted Loss". This was probably due to the hygroscopic nature of the weathered ore. A check on one sample showed that after overnight oven-drying the sample mass increased by 0.6% over a period of seven hours standing at ambient temperature. All residues were dried at 110 deg. C overnight and then reheated at about 80 deg. C immediately prior to dry screening. The negative accounts are no doubt due to a small uptake of moisture during the screening operation.

The average maximum and minimum losses of mass in the tests were:

	Ave	Max	Min	
BMT 0.6	0.53	3.93	-2.35	
BMT 0.8	0.50	0.95	-0.36	
BMT 1.0	0.28	0.84	-0.20	
BMT 1.2	0.39	0.93	0.10	

Comparison of Copper Extractions and Cyanide Consumption
The average copper extractions for the four composites at P80 = 75um
and 18 hours leach time are compared with the cyanide consumptions
and assay heads.

	BMT 0.6	BMT 0.8	BMT 1.0	BMT 1.2
and the second s				
Assay Head ppm Cu	292	310	360	280
Copper Extraction g/t	5.4	9.7	41	27
NaCN Consumption kg/t	0.13	0.13	0.20	0.16

Because of the significant difference between copper extraction, one liquor sample, chosen at random from each composite test series was reassayed as a batch and the assay results confirmed the above extractions to be correct. The variations in cyanide consumptions are also consistent with the copper extractions.

Comparison of Composite Leach Response
The Analysis Sheet (7) for each composite sample have been brought
together in Table 8 in order that a comparison of significant test
data can be made.

Anomalous Results

BMT 0.8

All P80 = 106um leaches show low cyanide consumption compared with the other grind levels. The copper extraction in these tests is marginally lower than for other tests but does not account for the reduced cyanide consumption.

There may have been a small error in the initial NaCN addition.

BMT 1.0

Samples 1A and 7D show anomalous reagent consumptions. When samples were tested at three hours the <u>pulp</u> pH was 11.0 - 11.2. The pH of the liquor sample was not taken but the available CaO was zero.

It appears probable that a trace of acid was retained in the sample bottles after cleaning.

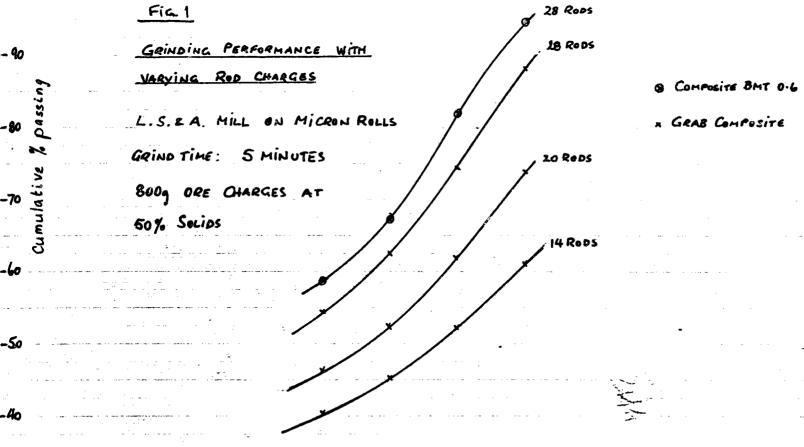
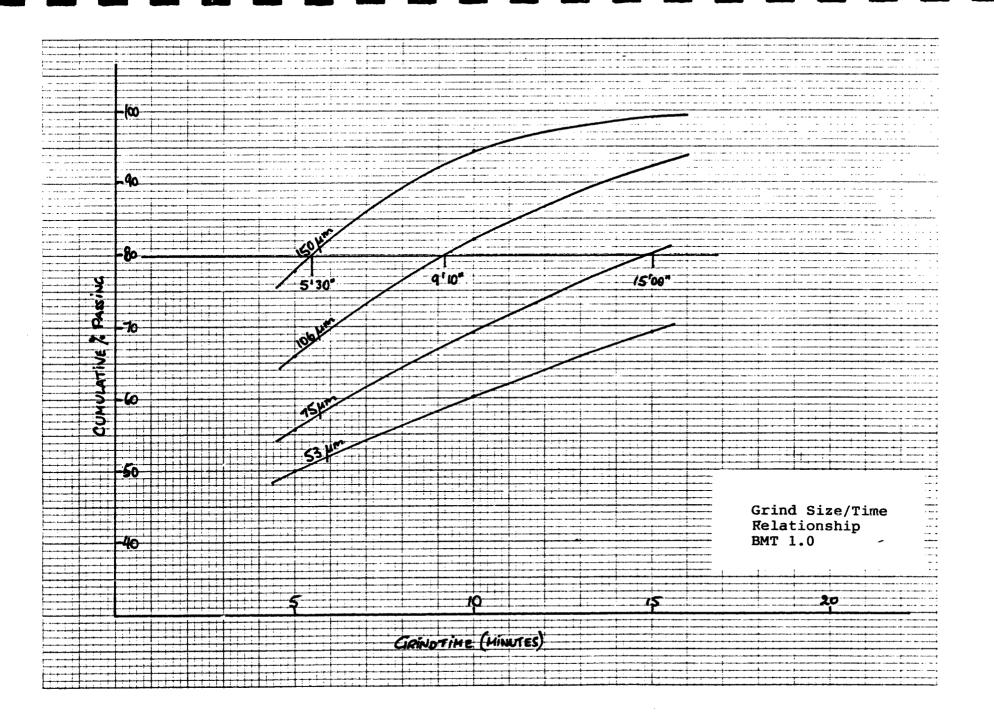
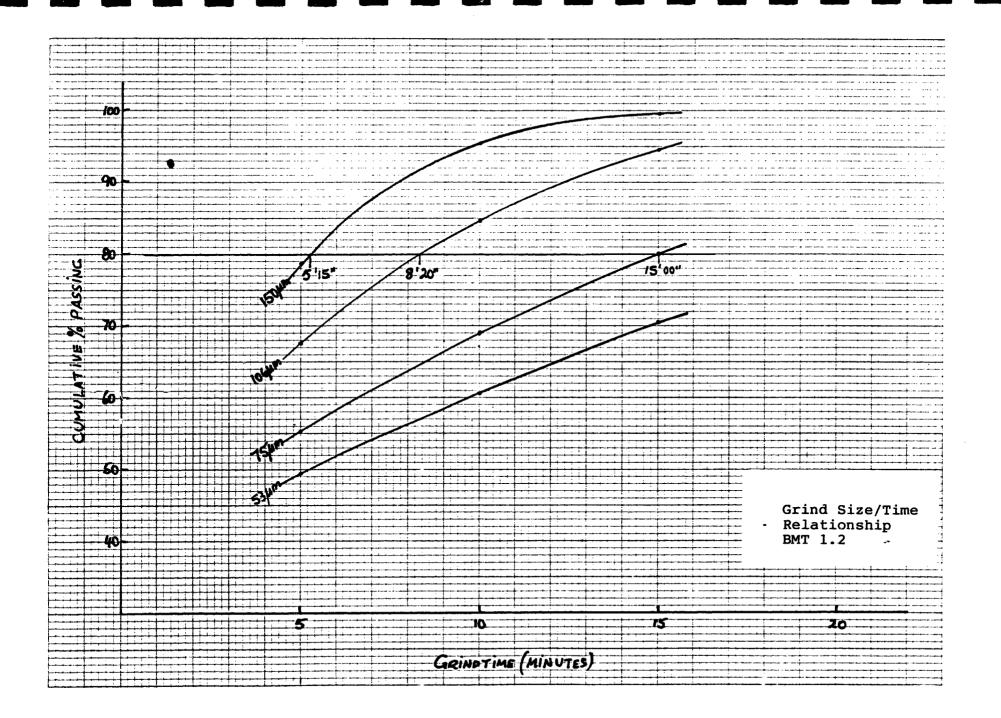




FIGURE 3

FIGURE 6

BMT5747 8-Dec-89.
BILLITON MT TODO MEATHERED ORE HOLE COMPOSITES.

Plus & minus 2mm size distribution in hole composite before roll crushing.

Grade Composite	fole Composite	% 12mm	% -2m
BHT 0.6	BP116	nd	nd
	BP130	22.6	77.4
	BP172	20.8	79.3
	BP163	25.2	74.8
	8P111	31.6	68.4
	BP121	28.5	71.5
	BP137	20.4	79.6
BMT 0.8	8P115	30.4	69.6
	8P152	21.7	78.3
	BP120	25.5	74.5
* * * * * * * * * * * * * * * * * * * *	BP118	27.9	72.1
	BP125	28.5	71.5
	BP171	16.7	83.3
	BP129	32.1	67.9
BMT 1.0	8 P136	31.6	68.4
and the second	BP124	27.0	73.0
	BP122	30.3	69.7
gi da da da mendan k	BP120	26.3	73.7
	8P159	19.3	80.7
BMT 1.2	99143	18.9	81.1
	BP123	28.8	71.2
	8P128	26.7	73.2
	BP145	12.8	87.2
	BP119	20.4	79.6
	BP169	23.5	76.5

nd = net determined

BHT5739 Sheet 1 29-Nov-89
BILLITON NT TODO NEATHERED ORE PERCUSSION DRILL 'HOLE COMPOSITE' ASSAYS.

Original Composite Nominated	North	Orill Hole No.	From metres	To	metres	Ave. Drill Grade ppm Au	Compo (1) ppn Au	osite Assa (2) ppm Au	(Ave.) ppm Au	Mass of Composite dry g	Actual Composite Moninated
BMT 0.6	10000	BP116	7	12	5.0	0.62	0.88	0.84	0.86	2298	ONT 0.6
8.0 THB	10040	BP137	8	17	9.0	0.64	0.73	0.89	0.81	4378	BMT 0.6
BMT 0.6	10050	BP130	2	12	10.0	0.65	0.54	0.60	0.57	4854	BMT 0.6
8MT 0.6	10070	BP121	2	. 11	9.0	0.52	0.51	0.51	0.51	4243	8MT 0.6
BMT 0.6	10100	BP111	4	15	11.0	0.66	1.24	1.30	1.27	5369	BMT 1.2
BMT 0.6	10135	BP163	9	19	10.0	0.61	0.60	0.62	0.61	4909	BMT 0.6
BMT 0.6	10170	BP172	8	18	10.0	0.69	0.73	0.75	0.74	4929	BHT C.6
BNT 0.8	10000	BP115	16	21	5.0	0.88	0.81	0.80	0.81	2303	8NT 0.8
BMT 0.8	10025	8P152	6	15	9.0	0.84	0.61	0.57	0.59	4437	
8.0 THB	10040	BP125	4	11	7.0	0.78	1.94	1.67	1.81	3353	
8.0 THB	10050	BP118	17	. 26	9.0	0.84	1.31	1.10	1.21	4370	3HT 1.2
8.0 TMB	10070	BP129	7	20	13.0	0.76	0.60	0.66	0.63	6479	
8.0 THB	10100	8P120	4	19	15.0	0.81	1.01	0.91	0.96	7677	BMT 1.0
BMT 0.8	10170	8P171	2	12	10.0	0.92	0.90	0.90	0.90	4870	BMT 1.0
BMT 1.0	10000	BP124	3	8	5.0	1.02	0.63	0.69	0.66	3677	
BNT 1.0	10040	BP136	5	14	9.0	1.06	0.96	0.90	0.93	6881-	BMT 1.0
BMT 1.0	10050	BP122	. 4	15	11.0	1.03	0.80	0.79	0.80	8393	BMT 0.8
BMT 1.0	10070	BP149	i	. 9	8.0	1.11	(1)	\$4.50 m			
BMT 1.0	10100	BP120	21	29	8.0	1.04	1.86	1.59	1.73	6066	
BNT_1.0	10135	BP159	5-	16	11.0	1.02	0.70	0.73	0.72	8413	BMT 0.8
BHT 1.0	10170	BP133	7	14	7.0	1.00	(1)	:			
BMT 1.2	10000	BP143	3	13	10.0	1.24	1.52	0.97	1.25	5851	
BMT 1.2	10040	8P123	5	11	6.0	1.24	1.12	1.11	1.12	3447	BMT 1.0
BMT 1.2	10050	BP145	. 6	17	11.0	1.21	1.05	1.05	1.05	6557	BMT 1.0
BMT 1.2	10070	BP119	23	35	12.0	1.16	1.13	1.18	1.16	7120	BHT 1.2
BMT 1.2	10100	BP128	2	12	10.0	1.29	2.54	2.34	2.44	5915	
BMT 1.2	10170	BP169	5	20	15.0	1.22	1.19	1.15	1.17	9139	BMT 1.2

BNT5739 Sheet 2 8-Dec-89
BILLITON HT TODO WEATHERED ORE PERCUSSION DRILL 'HOLE COMPOSITE' ASSAYS.
SORTED INTO ALLOCATED COMPOSITES.

SORTED IN	O ALLOCAT	ED COMPOSII	ES.						•			
0-1-11	N44	0-217		*-		A				M		
Original	NOFTE	Drill	From	To		Ave.	0			Mass		
Composite		Hole No.				Drill		osite Assa	•	of	Composite	
Nominated	. "					Grade	(1)	(2)	(ave.)		Nominated	· - · ·
			metres	metres	metres	ppin Au	ppm Au	ppm Au	ppm Au	dry g		
BMT 0.6	10000 B		7	12	5.0	0.62	0.88	0.84	0.86	2298	BNT 0.6	
8MT 0.6	10040 B	P137	8.	17	9.0	0.64	0.73	0.89	0.81	4378	BMT 0.6	
BMT 0.6	10050 B	P130	2	12	10.0	0.65	0.54	0.60	0.57	4854	RMT 0.6	
BHT 0.6	10070 8	P121	2	11	9.0	0.52	0.51	0.51	0.51	4243	BMT 0.6	
BMT 0.6	10135 B		9	19	10.0	0.61	0.60	0.62	0.61	4909	BMT 0.6	
BMT 0.6	10170 8	***	. 8	18	10.0	0.69	0.73	0.75	0.74	4.4	BMT 0.6	
COMPOSITE	BMT 0.6			Calculat	ed drv #	ass (g)				25611	800 (Ave	. split dry g)
							e of compos	site	0.67			
				Moisture			J 41 00mp0.			0.92	i a	
			,	INT SCALC	177					V.,,E		
8.0 TM8	10000 B	P115	16	21	5.0	0.88	0.81	0.80	0.81	2303	BMT 0.8	
BMT 1.0	10050 B		4	15	11.0	1.03	0.80	0.79	0.80	8393	BNT 0.8	
BMT 1.0	10135 8		5		11.0	1.02	0.70	0.73	0.72	8413	BMT 0.8	
	10103 0	,	,	10		4.VL	3.70	3.,0	****			
COMPOSITE	BMT 0.8		(Calculat	ed dry m	ass (g)				19109	597 (Ave.	split dry g)
		= ,			•		of compos	ite	0.76			
				Moisture			* 5.5	: '	•	0.84		
	-	and the second										
BMT 0.8	10100 BF	P120	4	- 19	15.0	0.81	1.01	0.91	0.96	7677	BMT 1.0	1 44 1
BMT 0.8	10170 B		2	12	10.0	0.92	0.90	0.90	0.90	4870	BMT 1.0	
					-							
MT 1.0	10040 89		5	14	9.0	1.06	0.96	0.90	0.93	6881	BMT 1.0	1
BMT 1.2			5			1.24	1.12	1.11	1.12		BMT 1.0	
BMT 1.2	10050 BF		6	17	11.0	1.21	1.05	1.05	1.05	6557	8MT. 1.0	
COMPOSITE	BMT 1.0		i	Calculate	ed dry m	ass (g)				29432	920 (Ave.	split dry g)
							of compos	ite	0.98			
				loisture	-				•	0.77		
									- '-			
BKT 0.6	10100 BF	111	4	15	11.0	0.66	1.24	1.30	1.27	5369	BMT 1.2	
BMT 0.8	10050 BF		17	26	9.0	0.84	1.31	1.10	1.21	4370	8MT 1.2	
BMT 1.2	10030 BF		23	35	12.0	1.16	1.13	1.18	1.16	7120	BMT 1.2	
BMT 1.2	10070 BF		23 5	20	15.0		1.13	1.15	1.17	9139	8NT 1.2	
m: 1.2	101/0 Bl	107	3	20	13.4	1.22	1.17	1.13	1.1/	71.07	Will 1.6	
COMPOSITE I	BMT 1.2	* * *		Calculate						25998	812 (Ave.	split dry g)
						ted grade	of corpos	ite	1.19		-	
				loisture	(\$)					0.34		
		•••				·						
ine follow	ing hole o	composites	vere not	taken ii	nto test	composit	es.					
9.0 TM	10025 BP	152	6	15	9.0	0.84	0.61	0.57	0.59	4437		•
3MT 0.8	10040 BP		4	11	7.0	0.78	1.94	1.67	1.81	3353		
MT 0.8	10070 BP		i	20	13.0	0.76	0.60	0.66	0.63	6479		
710	4		•	. 					.,			
MT 1.0	10000 BP	124	3	8	5.0	1.02	0.63	0.69	0.66	3677	, •	
KT 1.0	10070 BP		1	9	8.0	1.11	(1)					
MT 1.0	10100 BP		21	29	8.0	1.04	1.86	1.59	1.73	6066		
MT 1.0	10170 BP		7	14	7.0	1.00	(1)		2			
411 T*A	IVIIV OF	100	,	17	, , v	*.00	(*)					
MT 1.2	10000 BP	143	3	13	10.0	1.24	1.52	0.97	1.25	5851		
	10100 BP		2	12	10.0	1.29	2.54	2.34	2.44	5915		
KT 1.2	10100 91	110	- 4	. 12	10.0	1,47	2.37	2.07	4.77	J71J		

8HT5736 5-Dec-89 BILLITON HT TOOD CORPARISON OF GRINDING ROD NEAR

Composite Sample	Ore Type	Mass Ground	Grind Time	Feed F80	Product actual pass		Product actual	Product P80 non.	1/(P80	(E)	/(F80)^.5	Start	Finish	- Rod - Wear		Factor	
		g 	hours .	UM	nom. UM %		. 980 um			(4)		9	9	9	g/kg	g/(E#kg)	g/hour
आस	Prisary	35.662	17.63	1630	101	(1)		101		0.0747		16271.0	16214.0	57.0	1.60	21	3.23
9MT 2	Primary	19.898	11.00	1630				15		0.0907		16183.5	16139.1	44.4	2.23		4.04
BHT 2	Primary	9.610	5.50	1630				75		0.0907		16139.1	16121.3	17.8	1.85	20	3.24
BMT 2	Primary	9.872	5.50	1630				•75		0.0907		16121.3	16098.9	22.4	2.27	25	4.07
BHT 2	Primary .	9.555	5.50	1630				75		0.0907		16098.9	16074.9	24.0	2.51	28	4.36
-												Contract					
BMT 2	Primary											16074.9	16041.9	33.0			
um z	ri zmoi y											16021.8	15987.8	34.0			
	total	29.568	16.50	1630				75		0.0907				67.0	2.27	25	4.06
BMT 2	Primary	29.504	16.50	1630				75		0.0907	4.	15984.8	15928.7	56.1	1.90	21	3,40
للمدين شمال		10 000		IETA			70	76		A 4001		. 15000 F	triner i				
Pine Creek Pine Creek		10.000 10.000	5.24 5.24	1550 1550	07.0	(2)	70 70	75: 75		0.0901		15920.5	15895.1	25.4	2.54	28	4.85
LTHE CLEEK		10.000	3.24	1330	63.5	(2)	70	/3		0.0901		15895.1	15866.7	28.4	2.84	32	5.42
8.0 9 TMB	Primary L	10.073	6.21	1600	75.2	(3)		75		0.0905		16041.9	16021.8	20.1	2.00	22	3.24
BMT P 0.8	Primary L	10.129	6.58	1600	78.4	(3)		53		0.1124		15866.7	15845.5	21.2	2.09	19	3.22
BMT 9 0.8	Primary L	4.039	3.13	1600		(3)		38	•	0.1372							
. , .		10.090	3.75	1600	76.6			106	1.7	0.0721					-		· .
							- 1						er er Granden				
•	total	14.129	6.88			-				0.0907		15845.5	15820.5	25.0	1.77	20	3,63
BMT P Q.8	Primary L	10.126	2.58	1600	66.3	(3)		150		0.0566		15820.5	15811.3	9.2	0.91	16	3.57
						• •								III			
BMT 0.6	Weathered	5.476	1.62	820	80.8			75		0.0805							
		5.535	0.92	820	81.3			106		0.0622	1 .						
		4.773	0.47	820	78.3	(3)		150		0.0467							
	total	15.784	3.01							0.0639		10287.2	10274.1	13.1	0.83	. 13	4.35
		•	•												 		
				***		(-)											
8.0 TM	Weathered	4.113	1.25	820	82.7			75		0.0805							
	•	4.088 3.516	0.64 0.35	820 820	78.8 81.0			106 150		0.0622 0.0467		10024.5 10020.4	10020.6 10017.3	3.9 3.1		•	
		J.JIU	V.0J	020		(0)		130		V.V40/		10020.4	10017.5	3.1			
•	total	11.717	2.24					1		0.0640				7.0	0.60	9	3.13
								**.									
MT LA	Manharad	£ 817			79.4	(7)				A APAP							
MT 1.0 includes	Meathered	6.833 6.816	2.00 1.24	820 82 0	80.8			75 106		0.0805 0.0622							
definitio		5.937	0.63	820	80.5			150		0.0467							
00/11/12/20	n 9 11103		V.00			(0)		120		V.V101							
	total	19.586	3.87							0.0639		10273.6	10263.7	9.9	0.51	8	2.56
MT 1.2	Heathered	5.580	1.75	820	79.4	(3)		75		0.0805							
		5.593	0.92	820	78.4			106		0.0622							
		4.895	0.53	820	78.6			150		0.0467							
					*******	1-7											

⁽¹⁾ weighted nominated of 43 tests.

⁽²⁾ sizing on last two kg of Pine Creek.
(3) average from test residues.
(4) calculated from the nominal P80 and F80

BHT5746 8-Dec-89
BILLITON HT TODD WEATHERED ORE BOTTLE ROLL CYANIDE LEACH AT 40% SOLIDS.
REPEAT ASSAYS ON AVAILABLE RESERVES OF LEACH RESIDUES.

COMPOSITE BMT 1.0;

		-53u	n :			+150u		4		
Test	Ass	ay	Repeat	Assay	Ass	ay	Repeat	Leach		
No.	ppm Au	ppm Au	ppm Au	ppm Au	pon Au	ppm Au	ppm Au	Hours		
3C	0.11	0.10	0.12	0.12)			8		
6D	0.14	0.12	0.12	0.13)			8	war in garan	
38	0.12	0.14	0.12	0.11)			12	Batch 2	
6C	0.18	0.23	0.19	0.20) no fra	ction for	assay	12	Request	1
3 D	0.14	0.13	0.12	0.12) .			12	B136	
8A	0.15	0.14	0.12	0.15)			18		
48	0.10	0.09	0.12	0.10)			18		
Average	0.13	0.14	0.13	0.13						-
18	0.18	0.13	0.11	0.11	0.58			8		
5C	0.09	0.07	0.11	0.11	0.61			8		
7A .	0.09	0.09	0.10	0.10	0.51			12		* .
88	0.17	0.22	0.10	0.10	0.49	1.5		12		
2 C	0.17	0.11	0.10	0.10	0.53			12	uir, chro	
6A	0.18	0.15	0.10	0.10	0.55	1 - 1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		18	Batch 1	
4D	0.06	0.07	0.10	0.10	0.34			18	Request	
4A	0.09	0.08	0.12	0.11	0.59		0.60	8	8135	
58	0.08	0.08	0.10	0.11	0.62		0.68	8		
1A	0.13	0.17	0.08	0.09	0.61		0.64	12		
70	0.09	0.10	0.09	0.09	0.65		0.63	12		1 1
7C	0.07	0.06	0.09	0.09	0.60			18	insufficient f	or repea
10	0.06	0.06	0.08	0.09	0.59		0.62	18		
Average	0.11	0.11	0.10	0.10						1

BHT5754	Sheet 7	8-Dec-89			RESIDUE ASSAY	's substitu	ITED.****			
BILL TON MT TODO HEATHERED COMPOSITE BMT 1.0	UNE BUILLE K	OLL CYANIDE LI	P80=75um	SULIUS.	ρ	80=106um		· · · · · · · · · · · · · · · · · · ·	980=150um	and the second
AMALYSIS Test No. (% solids)	Units	Ave.	Max	Min	Ave.	Max	Min	Ave.	Max	Min
Hominal Grind 80% passing	UR	75	75	75	106	106	106	150	150	150
Total leach time	hours !	12.6	18.0	8.0	12.6	18.0	8.0	12.7	18.0	8.0
Extraction Au	10013	42.0	10.0		22.0				10.1	
at 3 hours	g/t	0.85	0.88	0.82	0.78	0.84	0.74	0.72	0.75	0.67
at 6 hours	a/t	1.00	1.07	0.97	0.92	0.97	0.90	0.87	0.89	0.86
at 8 hours	g/t	1.04	1.06	1.03	0.95	0.%	0.93	0.93	0.93	0.93
at 12 hours	g/t	1.06	1.09	1.04	1.00	1.03	0.96	0.95	0.97	0.93
at 18 hours	g/t	1.08	1.09	1.06	1.03	1.06	1.01	0.97	0.98	0.96
at 3 hours	*	66.4	69.7	62.6	63.3	66.7	60.7	58.2	61.4	53.3
at 6 hours		78.4	83.7	75.7	75.2	77.3	73.5	70.3	73.0	68.7
at 8 hours		83.7	83.8	83.6	79.5	79.6	79.5	75.7	76.4	75.0
at 12 hours	•	82.6	85.1	80.7	80.3	81.8	78.2	76.1	76.7	75.0
at 18 hours	•	84.1	85.1	83.0	82.2	84.0	80.5	77.7	78.3	77.1
Calculated Head	ppm Au	1.28	1.31	1.23	1.23	1.32	1.17	1.24	1.27	1.22
Ground Head Assay 1	ppe Au	1.16	1.39	1.05	1.14	1.20	1.07	1.10	1.19	0.98
Ground Head Assay 2	pon Au	1.19	1.57	1.09	1.13	1.19	1.08	1.16	1.22	1.02
Average Ground Head Assay	ppm Au	1.17	1.48	1.07	1.13	1.17	1.10	1.13	1.20	1.00
Calculated residue grade	ppm Au	0.21	0.25	0.19	0.24	0.26	0.19	0.29	0.31	0.27
Extraction Cu	! !			ļ						
at 3 hours	g/t	29	30	27 ;	27	27	25 ;	25	25	24
at 6 hours	g/t	34	. 36	31 ;	33	34	31	31	33	31
at 8 hours	g/t ¦	37	39	36	35	36	.34	34	34	34
at 12 hours	g/t ¦	37	39	36 ;	37	37	36	36	37	36
at 18 hours	g/t	41	42	40	38	39	37	37	39	36
Assay Head	ppm. Cu				*		1			
Extraction In	1									
at 3 hours	g/t	4.6	5.1	4.2	4.5	5.0	3.9	4:4	4.8	3.9
at 6 hours	g/t	5.7	6.1	5.3	5.3	5.6	5.2	5.3	5.6	5.1
at 8 hours	g/t	8.1	8.6	7.6	7.0	7.1	6.9	6.8	7.0	6.5
at 12 hours	g/t	6.5	7.1	6.1	6.4	6.9	6.1	6.5	6.6	6.3
at 18 hours	g/t	7.0	7.0	6.9	7.3	7.3	7.3	1.7	8.0	7.4
	-			į						
Assay Head	ppm Zn					e ja				
the Oil Community of the Community of th										-
NaCN consumption	ka/t	A 10	A 10	0.00	A 10	Λ 21	Α (A .	Λ 27	A 17	A 1A
at 3 hours	kg/t	0.15	0.18	0.08	0.15	0.21	0.10	0.23	0.47	0.10
at 6 hours	kg/t	0.19	0.22	0.14	0.17	0.21	0.13 ;	0.07	0.14	-0.04
at 8 hours	kg/t	0.22	0.22	0.21	0.21	0.22	0.20	0.18	0.19	0.17
at 12 hours	kg/t	0.23	0.25	0.18	0.24	0.28	0.20	0.12	0.22	0.03
at 18 hours	kg/t	0.20	0.23	0.17	0.19	0.20	0.19	0.18	0.19	0.17
CaO consumption					,					
at 3 hours	kg/t	1.89	2.10	1.57	1.83	1.%	1.60	1.83	2.00	1.57
at 6 hours	kg/t	1.91	2.12	1.59	1.84	1.98	1.62	1.95	2.29	1.58
at 8 hours	kg/t	1.97	2.01	1.93	2.00	2.01	1.98	1.97	2.03	1.92
at 12 hours	kg/t	1.89	2.13	1.59	1.79	1.91	1.62	1.95	2.30	1.58
at 18 hours	kg/t	1.64	1.69	1.59	1.64	1.65	1.62	1.60	1.63	1.57
Actual grind passing nomina	ted up (%)	79.4	80.1	79.0	80.8	81.7	79.6	80.5	81.9	78.9

-																					
BHT5754	Sheet 1	8-Dec-89				*****															
STALITON HT TODO HEATHERED	ORE BOTTLE	ROLL CYANIDA	Leach at	404 SOLIDS	S. :	COMPOSITE	8MT 1.0 ;														
**** REPEAT RESIDUE ASSAYS	SUBSTITUTED),1535		40		********							-								
SUMMY																					
Test No. (% solids)	Units	3C	ଥେ	38	60	30	AB	48	18	SC	7A	88	2C	6A	40	44	58	1A	70	7C	10
Nominal Grind 80% passing	UB	75	75	75	75	75	75	75	106	106	106	106	106	106	106	150	150	150	150	150	150
Total leach time	hours	8	8	12	12	12	18	18	8	8	12	12	12	18	18	8	8	12	12	18	18
Extraction Au																					
at 3 hours	g/t	0.86	0.84	0.82	0.82	0.83	0.88	0.88	0.78	0.78	0.75	0.77	0.74	0.84	0.78	0.75	0.73	0.67	0.68	0.75	0.75
at 6 hours	ø/t	0.98	0.99	1.07	0.99	1.01	0.97	0.99	0.91	0.90	0.92	0.94	0.90	0.97	0.92	0.89	0.87	0.86	0.87	0.88	0.88
at 8 hours	d/t	1.03	1.06	••••	••••	••••	••••	****	0.96	0.93				••••	••••	0.93	0.93	• • • • • • • • • • • • • • • • • • • •			
at 12 hours	g/t		1,00	1.09	1.05	1.09	1.04	1.05	••••	••••	1.01	1.01	0.%	1.03	0.98	4270	0.,0	0.%	0.97	0.93	0.95
at 18 hours	g/t			1.07	4.00	1.07	1.06	1.09				****	•.,0	1.06	1.01			V. 70	V.,,,	0.96	0.98
at 3 hours	y.	69.7	66.4	63.8	62.6	64.3	69.0	68.9	64.5	66.7	60.7	61.0	61.3	63.7	65.0	61.4	59.5	54.2	53.3	60.5	60.1
	i	80.2				78.4	75.7	76.9	75.0	77.3	74.3	74.4	75.1	73.5	76.8	73.0	70.7	68.7			70.2
at 6 hours	•		78.0	83.7	76.2	/0.9	13.1	70.7			74.3	17.7	/3.1	10.0	70.0			00.7	68.7	70.6	70.2
at 8 hours	•	83.6	83.8	. .	** 7				79.6	79.5		74.7	30.0	70.0		76.4	75.0	7, 7	•• •		
at 12 hours	\$			85.1	80.7	84.3	81.7	81,4			81.4	80.3	79.8	78.2	81.8			76.7	76.6	75.0	75.9
at 18 hours	*						83.0	85.1						80.5	84.0					77.1	78.3
Calculated Head	ppe Au	1.23	1.27	1.28	1.31	1.29	1.28	1.28	1.21	1.17	1.24	1.26	1.20	1.32	1.20	1.22	1.23	1.25	1.27	1.24	1.25
Ground Head Assay 1	ppa Au	1.39	1.11	1.13	1.12	1.21	1.12	1.05	1.20	1.12	1.15	1.16	1.15	1.11	1.07	1.10	1.09	1.07	1.19	0.98	1.15
Ground Head Assay 2	ppe, Au	1.57	1.14	1.13	1.11	1.17	1.10	1.09	1.14	1.08	1.13	1.14	1.19	1.10	1.12	1.14	1.22	1.18	1.20	1.02	1.21
Average Ground Head Assay	ppm Au	1.48	1.13	1.13	1.12	1.19	1.11	1.07	1.17	1.10	1.14	1.15	1.17	1.11	1.10	1.12	1.16	1.13	1.20	1.00	1.18
Calculated residue grade	ppin Au	0.20	0.21	0.19	0.25	0.20	0.22	0.19	0.25	0.24	0.23	0.25	0.24	0.26	0.19	0.29	0.31	0.29	0.30	0.28	0.27
Extraction Cu																					
at 3 hours	g/t	27	28	30	30	27	28	28	27	25	27	27	26	27	27	24	24	25	24	25	25
at 6 hours	g/t	34	36	34	36	34	34	31	33	33	34	34	33	31	31	31	31	33	31	31	31
at 8 hours	g/t	36	39						36	34						34	34				
at 12 hours	g/t			39	39	37	36	36			37	57	37	37	36			37	37	36	36
at 18 hours	g/t						42	40						39	37					39	36
	_																				
Assay Head	ppe Cu	360 (a	we. of two	head spli	ts)																
Extraction Za																					
	g/t	5.1	4.5	4.4	4.8	4.9	4.4	4.3	5.0	4.9	4.2	3.9	4.4	4.5	4.3	48	4.4	3.9	7.0		4 6
at 3 hours		_	4.9	4.4		4.2	4.6				5.3				5.2	4.8	4.6		3.9	4.8	4.5
at 6 hours	g/t	6.1	5.9	5.6	5.9	5.4	5.5	5.3	5.6	5.6	3.3	5.3	5.3	5.2	3.4	5.6	5.3	5.1	5.1	5.3	5.5
at 8 hours	g/t	8.6	7.6			. •			7.1	6.9						6.5	7.0				
at 12 hours	g/t			6.9	7.1	6.3	6.2	6.1			6.4	6.3	6.9	6.4	6.1			6.4	6.6	6.6	6.3
at 18 hours	g/t						7.0	6.9						7.3	7.3					7.4	8.0
Assay Head	ppe In	315 (a	ve. of two	head spli	ts)											•					
NaCH consumption																	•				
at 3 hours	kg/t	0.18	0.17	0.16	0.16	0.16	0.08	0.10	0.13	0.13	0.21	0.21	0.19	0.12	0.10	0.12	0.11	0.45	0.47	0.11	0.10
at 6 hours	kg/t	0,19	0.17	0.22	0.22	0.20	0.14	0.19	0.15	0.15	0.21	0.21	0.21	0.14	0.13	0.13	0.12	-0.03	-0.04	0.12	0.14
at 8 hours	ka/t	0.22	0.21	•••					0.22	0.20						0.19	0.17				
at 12 hours	kg/t		****	0.25	0.24	0.23	0.18	0.24		****	0.25	0.28	0.25	0.21	0.20	****	••••	0.04	0.03	0.20	0.22
at 18 hours	kg/t			7.23	V.E.	****	0.17	0.23					*****	0.20	0.19			••••		0.17	0.19
er 10 inot 2	rw c						V.11	4.20						0.20	V.1,					V.1,	V.17
CaO consumption	ta/t	1 84		1.05	9 15	9 14	1 57	1 44	1 04	1 04	1.87	1.90	1.38	1.63	1.60	2.00	1 41	1 67	1 44	1 27	1.4
at 3 hours	kg/t	1.91	1.98	1.92	2.10	2.10	1.57	1.64	1.96	1.%							1.91	1.97	1.94	1.57	1-61
at 6 hours	kg/t	1.92	2.01	1.93	2.11	2.12	1.59	1.68	1.98	1.97	1.87	1.90	1.88	1.64	1.62	2.00	1.91	2.28	2.29	1.58	1.62
at 8 hours	kg/t	1.93	2.01						2.01	1.98						2.03	1.92				
at 12 hours	kg/t			1.94	2.12	2.13	1.59	1.68			1.86	1.91	1.89	1.65	1.62			2.29	2.30	1.58	1.63
at 18 hours	kg/t						1.59	1.69						1.65	1.62					1.57	1.63
Actual grind passing nomina	ited un (t)	79.0	80.1	79.8	79.2	79.1	79.1	79.0	81.7	81.5	80.5	79.6	80.6	80.9	81.1	81.9	81.0	80.4	80.5	78.9	80.1

8MT5755

Composite of sheets 7

BILLITON HT TODO NEATHERED ORE BOTTLE ROLL CYANIDE LEACH AT 40% SOLIDS.

PRESENTATION OF ANALYSIS SHEETS

8-Dec-89

COMPOSITE BMT 0.6

COMPOSITE BAT 0.6

COMPOSITE BMT 1.0 !

COMPOSITE BMT 1.2

P80=75um P80=106um P80=150um P80=75us P80=106um P80=75um 980=106#m P80=150um P80=75um P80=106ss P80=150um **ANALYSIS** Test No. (% solids) Ave. Max Min! Ave. Max Min!! Ave. Max Min Mominal Grind 80% passing 75 75 75 106 106 106 106 150 150 150 150 175 75 75 106 106 106 150 150 150 150 175 75 75 1 106 106 106 150 150 150 !! 75 75 75 106 106 106 ! 150 Total leach time 8 ! 12.6 18 8 | 12.7 18 8 | 12.6 18 8 | 12.6 18 8 | 12.7 18 8 | 12.6 18 8 12.6 18 8 12.7 18 8 ::12.6 18 Extraction Au 0.51 0.57 0.47 | 0.48 0.51 0.44 | 0.48 0.50 0.45 | 0.76 0.81 0.72 | 0.66 0.70 0.63 | 0.64 0.67 0.60 | 0.85 0.88 0.82 | 0.78 0.84 0.74 | 0.72 0.75 0.67 | 0.81 0.87 0.75 | 0.70 0.76 0.53 | 0.68 0.73 0.61 | 1 at 3 hours 0.57 0.64 0.53 | 0.53 0.55 0.49 | 0.51 0.54 0.49 | 0.79 0.84 0.76 | 0.69 0.74 0.67 | 0.69 0.71 0.67 | 1.00 1.07 0.97 | 0.92 0.97 0.90 | 0.87 0.89 0.86 | 1.04 1.11 0.98 | 0.91 1.03 0.66 | 0.90 0.93 0.86 | at 6 hours q/t at 8 hours 1 0.55 0.55 0.55 0.55 0.52 0.53 0.51 0.54 0.55 0.53 10.83 0.85 0.80 0.74 0.76 0.71 0.72 0.70 11.04 1.06 1.03 0.95 0.96 0.93 0.93 0.93 0.93 11.06 1.10 1.02 0.79 0.89 0.70 10.97 0.98 0.95 11 0.61 0.66 0.55 ; 0.56 0.58 0.56 ; 0.53 0.56 0.51 ; 0.80 0.86 0.76 ; 0.70 0.72 0.69 ; 0.70 0.72 0.69 ; 1.06 1.09 1.04 ; 1.00 1.03 0.96 ; 0.95 0.97 0.93 ; 1.08 1.14 1.03 ; 1.03 1.10 0.98 ; 0.95 1.00 0.89 ; at 12 hours q/t 0.57 0.60 0.55 ; 0.55 0.56 0.54 ; 0.54 0.55 0.52 ; 0.79 0.80 0.79 ; 0.72 0.72 0.72 0.72 0.72 0.72 1.08 1.09 1.06 ; 1.03 1.06 1.01 ; 0.97 0.98 0.96 ; 1.10 1.14 1.06 ; 1.07 1.07 1.06 ; 1.02 1.03 1.01 ; at 18 hours at 3 hours 174.4 79.5 68.3 171.5 73.5 68.4 170.4 78.5 65.4 181.7 84.7 79.0 176.1 80.3 73.7 171.3 73.5 67.4 166.3 70.3 62.2 162.6 67.8 58.4 158.5 62.3 53.0 166.4 70.2 63.9 159.4 62.0 56.8 156.0 60.7 49.5 11 at 6 hours at 8 hours 86.2 87.5 84.7 | 82.2 83.2 79.6 | 78.0 80.8 75.2 | 87.2 87.7 86.7 | 81.9 82.4 80.3 | 79.6 80.7 78.8 | 82.3 84.5 80.2 | 79.2 83.2 76.0 | 76.0 77.0 75.1 | 88.1 89.2 87.1 | 83.5 85.4 80.1 | 78.8 79.8 77.8 | at 12 hours at 18 hours 86.9 87.5 86.2 | 80.6 80.5 | 79.3 81.4 77.2 | 87.7 88.5 87.0 | 82.1 82.4 81.9 | 80.0 80.7 79.2 | 84.2 85.8 82.6 | 81.8 85.4 73.2 | 78.7 79.4 77.9 | 89.0 89.2 88.9 | 85.7 86.2 85.2 | 80.8 81.1 80.4 Calculated Head \$\\ 0.69 0.76 0.63 \$\\ 0.67 0.70 0.63 \$\\ 0.68 0.73 0.63 \$\\ 0.93 0.99 0.88 \$\\ 0.87 0.94 0.84 \$\\ 0.90 0.95 0.86 \$\\ 1.28 1.31 1.22 \$\\ 1.24 1.36 1.15 \$\\ 1.24 1.28 1.20 \$\\ 1.22 1.28 1.17 \$\\ 1.17 1.30 0.88 \$\\ 1.22 1.28 1.13 \$\\ 1.22 1.28 1.13 \$\\ 1.22 1.28 1.23 1.23 \$\\ 1.24 1.24 1.26 1.26 1.26 1.26 1.27 \$\\ 1.24 1.28 1.27 1.28 1.27 \$\\ 1.27 1.28 1.27 1.28 1.27 1.28 1.27 \$\\ 1.28 1.27 1.28 1.27 1.28 1.27 1.28 1.27 1.28 1.27 \$\\ 1.28 1.27 Ground Head Assay 1 0.65 0.76 0.60 | 0.62 0.67 0.58 | 0.62 0.64 0.56 | 0.84 0.90 0.77 | 0.82 0.87 0.76 | 0.88 1.01 0.77 | 1.16 1.39 1.05 | 1.14 1.20 1.07 | 1.10 1.19 0.98 | 1.18 1.28 1.13 | 1.16 1.28 1.05 | 1.14 1.20 1.05 | DOM AU 1 0.64 0.69 0.59 | 0.63 0.70 0.58 | 0.63 0.68 0.55 | 0.67 0.92 0.82 | 0.81 0.86 0.77 | 0.88 1.03 0.75 | 1.19 1.57 1.09 | 1.13 1.19 1.08 | 1.16 1.22 1.02 | 1.18 1.29 1.05 | 1.15 1.28 1.04 | 1.19 1.30 1.11 | 1.19 1.08 | 1.16 1.22 1.02 | 1.18 1.29 1.05 | 1.15 1.28 1.04 | 1.19 1.30 1.11 | 1.19 1.30 1.11 | 1.19 1.08 | 1.16 1.22 1.02 | 1.18 1.29 1.05 | 1.15 1.28 1.04 | 1.19 1.30 1.11 Ground Head Assay 2 DOM: Au Average Ground Head Assay 1 0.65 0.72 0.60 | 0.63 0.69 0.58 | 0.62 0.66 0.56 | 0.85 0.89 0.80 | 0.81 0.85 0.77 | 0.88 1.02 0.76 | 1.17 1.48 1.07 | 1.13 1.17 1.10 | 1.13 1.20 1.00 | 1.18 1.25 1.12 | 1.16 1.27 1.08 | 1.16 1.21 1.10 | 1.17 1.18 | 1.26 1.12 | 1.18 1.25 1.12 | 1.16 1.27 1.08 | 1.16 1.21 1.10 | 1.18 1.25 1.12 | 1.18 1.25 1.12 | 1.16 1.27 1.08 | 1.16 1.21 1.10 | 1.18 1.25 1.12 | 1.18 1.25 1.12 | 1.16 1.27 1.08 | 1.16 1.21 1.10 | 1.18 1.25 1.12 | 1.18 1.25 1.12 | 1.16 1.27 1.08 DOM: AU Calculated residue grade pom Au 0.10 0.11 0.09 | 0.13 0.14 0.10 | 0.14 0.17 0.12 | 0.12 0.14 0.10 | 0.16 0.18 0.15 | 0.19 0.22 0.17 | 0.21 0.26 0.18 | 0.25 0.30 0.17 | 0.28 0.32 0.25 | 0.15 0.18 0.13 | 0.20 0.25 0.17 | 0.25 0.28 0.24 | 0.25 0.26 0.18 | 0.25 0.30 0.17 | 0.28 0.32 0.25 | 0.15 0.18 0.13 | 0.20 0.25 0.17 | 0.25 0.28 0.24 | 0.25 0.26 0.18 | 0.25 0.30 0.17 | 0.28 0.32 | 0.25 | 0.15 0.18 0.13 | 0.20 0.25 0.17 | 0.25 0.28 0.24 | 0.25 0.26 0.18 | 0.25 0.30 0.17 | 0.28 0.32 | 0.25 | 0.25 0.32 | 0.25 | 0.25 0.32 | 0.25 | 0.25 0.32 | 0.25 | 0.25 0.32 | 0.25 | 0.25 0.32 | 0.25 0.32 | 0.25 | 0.25 0.32 | 0.25 | 0.25 0.32 | 0.25 | 0.25 0.32 | 0.25 | 0.25 0.32 | 0.25 0.32 | 0.25 | 0.25 0.32 | 0.25 | 0.25 0.32 | 0.25 | 0.25 0.32 | 0.25 | 0.25 0.32 | 0.25 | 0.25 0.32 | 0.25 | 0.25 0.32 Extraction Cu at 3 hours 3.3 7.1 2.3 | 2.4 2.7 1.8 | 2.2 2.4 2.0 | 4.8 5.1 4.5 | 3.3 3.6 2.9 | 4.0 4.9 3.2 | 29 30 27 | 27 25 | 25 25 20 21 at 6 hours g/t 4.2 7.6 3.1 | 3.3 3.9 2.8 | 3.0 3.4 2.5 | 6.7 7.1 6.5 | 4.9 5.4 4.4 | 5.8 7.1 4.6 | 34 36 31 | 33 34 31 22 24 at 8 hours g/t 1 3.6 3.6 3.6 3.4 3.6 3.2 3.2 3.3 3.1 1 7.7 8.1 7.2 6.6 6.7 6.5 7.8 7.8 7.7 1 37 39 36 35 36 34 34 23 at 12 hours g/t 5.6 8.9 4.6 | 4.7 5.1 4.3 | 4.4 4.8 4.1 | 8.6 9.2 8.0 | 6.8 8.0 6.2 | 7.3 8.6 6.4 | 37 39 36 | 37 37 36 ! 36 37 at 18 hours 5.4 5.4 5.4 5.5 5.7 5.4 5.1 5.2 5.1 1 9.7 10.1 9.2 17.5 7.7 7.2 9.0 9.5 8.5 1 41 42 40 38 39 37 37 39 36!! 27 27 ! 27 28 27 ! 27 27 Assay Head 292 (average of two splits) 310 (average of two splits) 360 (average of two splits) 280 (average of two splits) Extraction In at 3 hours 4.9 5.7 4.2 | 5.0 5.9 3.9 | 5.2 5.9 4.5 | 3.0 3.0 3.0 | 2.6 2.7 2.4 | 3.0 3.3 2.9 | 4.6 5.1 4.2 | 4.5 5.0 3.9 | 4.4 4.8 3.9 | 2.3 2.4 2.2 | 2.1 2.3 1.6 | 2.3 2.4 2.2 | g/t 6.0 6.5 5.2 | 6.0 7.0 4.9 | 6.2 7.7 5.2 | 3.6 4.3 3.4 | 3.8 7.2 3.0 | 4.6 10.1 3.3 | 5.7 6.1 5.3 | 5.3 5.6 5.2 | 5.3 5.6 5.1 | 2.7 2.8 2.5 | 2.7 2.8 2.0 | 3.0 3.4 2.3 | at 6 hours q/t at 8 hours 5.9 6.0 5.7 | 5.7 5.6 | 5.9 5.9 5.9 | 3.8 3.9 3.8 | 3.7 3.7 3.7 | 4.3 4.6 3.9 | 8.1 8.6 7.6 | 7.0 7.1 6.9 | 6.8 7.0 6.5 | 2.9 2.8 | 2.6 3.1 2.2 | 3.0 3.0 3.0 | g/t 7.5 8.0 6.9 | 7.8 8.6 7.1 | 8.1 8.6 7.4 | 4.4 4.5 4.3 | 4.0 4.4 3.7 | 4.3 4.6 4.0 | 6.5 7.1 6.1 | 6.4 6.9 6.1 | 6.5 6.6 6.3 | 3.3 3.4 3.3 | 3.4 3.6 3.2 | 3.5 3.6 3.4 | at 12 hours q/t 8.5 8.5 8.5 | 9.0 9.1 8.9 | 9.2 9.3 9.0 | 4.9 5.1 4.8 | 4.2 4.2 4.2 | 5.0 5.2 4.8 | 7.0 7.0 6.9 | 7.3 7.3 7.3 | 7.7 8.0 7.4 | 3.8 3.9 3.7 | 3.9 3.9 3.9 | 4.0 4.0 4.0 | at 18 hours q/t Assay Head 362 (average of two splits) ! 208 (average of two splits) 315 (average of two splits) NaCN consumption at 3 hours ka/t 1 0.08 0.11 0.07 | 0.06 0.10 0.04 | 0.05 0.08 0.01 | 0.07 0.09 0.05 | 0.02 0.03 0.02 | 0.05 0.07 0.04 | 0.15 0.18 0.08 | 0.15 0.21 0.10 | 0.23 0.47 0.10 | 0.10 0.17 0.03 | 0.10 0.15 0.08 | 0.10 0.19 0.07 | 0.10 0.15 0.07 | 0.08 0.15 0.03 | 0.08 0.12 0.05 | 0.07 0.09 0.06 | 0.03 0.06 0.01 | 0.04 0.06 0.02 | 0.19 0.22 0.14 | 0.17 0.21 0.13 | 0.07 0.14 -0.04 | 0.13 0.18 0.08 | 0.12 0.16 0.10 | 0.11 0.14 0.07 | at 6 hours ka/t at 8 hours ka/t 1 0.12 0.17 0.09 | 0.12 0.16 0.03 | 0.11 0.14 0.06 | 0.14 0.17 0.10 | 0.07 0.09 0.06 | 0.08 0.10 0.07 | 0.23 0.25 0.18 | 0.24 0.28 0.20 | 0.12 0.22 0.03 | 0.17 0.18 0.15 | 0.14 0.18 0.10 | 0.15 0.16 0.13 | at 12 hours kq/t at 18 hours CaO consumption at 3 hours kq/t 1.72 2.12 1.55 | 1.69 1.97 1.50 | 1.68 1.96 1.53 | 1.99 2.10 1.91 | 1.88 1.97 1.77 | 1.83 1.91 1.73 | 1.89 2.10 1.57 | 1.83 1.96 1.60 | 1.83 2.00 1.57 | 11.56 1.61 1.46 | 11.48 1.55 1.32 | 11.50 1.54 1.48 | at 6 hours kg/t 1.81 2.10 1.55 | 1.79 1.90 1.50 | 1.76 1.98 1.53 | 1.99 2.10 1.92 | 1.88 1.98 1.76 | 1.84 1.93 1.75 | 1.91 2.12 1.59 | 1.84 1.98 1.62 | 1.95 2.29 1.58 | 1.55 1.60 1.47 | 1.48 1.54 1.31 | 1.50 1.54 1.47 | at 8 hours kq/t 2.04 2.10 1.98 | 1.98 1.99 1.97 | 1.97 1.99 1.95 | 2.07 2.12 2.03 | 1.95 1.99 1.91 | 1.86 1.92 1.80 | 1.97 2.01 1.93 | 2.00 2.01 1.98 | 1.97 2.03 1.92 | 11.57 1.60 1.54 | 1.40 1.48 1.31 | 1.51 1.54 1.49 | at 12 hours kg/t 1.73 1.87 1.57 | 1.73 1.91 1.54 | 1.67 1.81 1.55 | 1.97 2.07 1.92 | 1.86 1.95 1.78 | 1.83 1.92 1.76 | 1.39 2.13 1.59 | 1.7+ 1.91 1.62 | 1.95 2.30 1.58 | 1.56 1.59 1.47 | 1.52 1.54 1.49 | 1.50 1.52 1.46 | 1.50 1.52 1.54 1.49 | 1.50 1.52 1.54 1.40 | 1.50 1.52 1.54 1. at 18 hours Actual grind passing nominated um (%) \$80.8 81.8 80.0 \$81.3 82.1 80.5 \$78.3 82.7 87.3 81.2 \$79.8 80.8 78.3 \$179.4 80.1 79.0 \$80.8 81.7 79.6 \$80.5 81.9 78.9 \$179.4 80.3 77.2 \$78.4 79.6 76.5 \$78.6 79.3 78.3 \$179.4 80.1 79.0 \$179.4 80.5 \$1.9 78.9 \$179.4 80.3 77.2

BMT 0.6 Sheets 1 - 13 Calc.

										:				
													· · · · · · · · · · · · · · · · · · ·	
BHT5721	Sheet 1	16-0ct-89												
BILLITON HT TODO WEATHERED	ORE BOTTLE	ROLL CYANID	e leach at		3. ;	COMPOSITE	8MT 0.6 ;							
SURVRY				40	•	, a-q-q-2-r								
Test No. (1 solids)	Units	3C	60	3B	6C	30	. 8A	48	18	5C	.7A	88	2C	6A
Mominal Grind 80% passing	un	75	75	75	75	75	75	75	106	106	106	106	106	106
Total leach time	hours	8	8	12	12	12	18	18	8	8	12	12	. 12	18
Extraction Au at 3 hours	g/t	0.48	0.47	0.57	0.50	0.53	0.50	0.54	0.47	0.44	0.48	0.48	0.51	0.51
at 6 hours	g/t	0.53	0.53	0.61	0.64	0.58	0.54	0.58	0.52	0.49	0.55	0.53	0.55	0.55
at 8 hours	g/t	0.55	0.55						0.53	0.51				
at 12 hours	g/t			0.61	0.62	0.66	0.55	0.60			0.56	0.56	0.57	0.58
at 18 hours	g/t						0.55	0.60		40.7		~	***	0.56
at 3 hours at 6 hours	1	74.2 82.6	72.4 83.0	79.5 85.1	68.3 87.7	69.2 76.0	78.2 84.7	79.3 85.5	73.5 82.2	68.7 77.1	68.4 78.2	71.6 79.7	73.5 79.0	73.5 79.2
at 8 hours	ž.	84.7	85.3	93.1	97.7	70.0	94.1	63.3	84.1	81.0	≥10.2	17.1	77.0	17.4
at 12 hours	ì	01. 7	55.5	84.7	85.2	87.1	86.5	87.5	-,	7	79.6	83.2	82.2	83.0
at 18 hours	1						86.2	87.5						80.5
Calculated Head	ppe Au	0.65	0.64	0.72	0.72	0.76	0.63	0.68	0.63	0.63	0.70	0.67	0.69	0.69
Ground Head Assay 1	ppe Au	0.63	0.76	0.62 0.63	0.65	0.60 0.59	0.65 0.67	0.65 0.69	0.67 0.70	0.67 0.60	0.60 0.62	0.58 0.59	0.58 0.58	0.65 0.65
Ground Head Assay 2 Average Ground Head Assay	ppia Au ppia Au	0.64 0.64	0.67 0.72	0.63	0.60 0.63	0.60	0.66	0.67	0.70	0.64	0.61	0.59	0.58	0.65
nterage or owner mean nasely	Nom um	V.04	V., Z	7.00	0.00		5.100		. 4.147	V.O.	****		7,35	7,05
Calculated residue grade	ppm Au	0.10	0.10	0.11	0.10	0.10	0.09	0.09	0.10	0.13	0.14	0.11	0.12	0.14
Extraction Cu						*						•		
at 3 hours	g/t	2.4	2.3	2.9	7.1	2.7	3.0	2.5	2.0	1.8	2.7	2.7	2.3	2.7
at 6 hours	g/t	3.1	3.1	3.9	7.6	3.4	4.2	3.7	2.8	2.8	3.9	3.3	3.0	3.9
at 8 hours	g/t	3.6	3.6						3.6	3.2				
at 12 hours	g/t	•		4.7	8.9	4.6	5.0	4.7			4.8	4.3	4.3	5.1 5.7
at 18 hours	g/t						5.4	5.4						3./
Assay Head	ppm Cu	29 2 (a	ive. of the	o head spli	ts)								•	
Extraction In								_						
at 3 hours	g/t	4.2	4.2	4.7	5.7	5.0	5.4	5.4	4.2	3.9	5.1	5.3	4.8	5.9
at 6 hours	g/t	5.2	5.2	6.2	6.5	5.8	6.4	6.4	5.2	4.9	5.9	6.1	5.6	7.0
at 8 hours	g/t	5.7	6.0				÷.	-	5.7	5.6		• .	٠.	
at 12 hours	g/t g/t			6.9	8.0	7.2	7.6 8.5	7.6 8.5			7.7	7.4	7.1	8.6 9.1
at 18 hours	gy t						6.3	0.3						. 7.1
Assay Head	ppm Zn	3 62 (a	ive. of two	n head spli	ts)			*****			-			
MaCM consumption at 3 hours	kg/t	0.10	0.11	0.08	0.07	0.07	0.07	0.08	0.10	0.08	0.04	0.04	0.05	0.07
at 6 hours	kg/t	0.14	0.15	0.10	0.07	0.08	0.09	0.10	0.10	0.15	0.07	0.03	0.05	0.09
at 8 hours	kg/t	0.13	0.13		****				0.08	0.11				
at 12 hours	kg/t			0.09	0.09	0.10	0.17	0.17			0.13	0.03	0.11	0.16
at 18 hours	kg/t						0.14	0.13					•	C.12
					- ,	· . · · · ·	- :							
CaO consumption														
at 3 hours	kg/t	1.99	2.12	1.58	1.63	1.58	1.57	1.55	1.97	1.95	1.62	1.61	1.67	1.50
at 6 hours	kg/t	1.99	2.10	1.81	1.87	1.82	1.56	1.55	1.99	1.97	1.82	1.81	1.91	1.50
at 8 hours	kg/t kg/t	1.98	2.10	1.80	1.87	1.82	1.59	1.57	1.99	1.97	1.81	1.83	1.91	1.54
at 12 hours at 18 hours	kg/t kg/t			1.00	1.6/	1.00	1.59	1.57			1.41	1.00	4.74	1.55
The second secon				taga at										
Actual grind passing nomina	ated um (%)	80.0	81.8	80.3	80.7	81.2	80.9	81.0	81.3	82.1	80.9	80.5	82.0	80.9

13'

BMT5721 BILLITON MT TODO MEATHERED tests conducted (date) Test No. (% solids) Grind 80% passing Total leach time Vessel Sample mass Sitemater added Natural pH CaO added NaCH added Leach Time Gross off rolls Pulp temperature Liquor sample A	Units un hours g g g		2/10 6D 75 8	27/9 38 75 12	27/9 6C 75	27/9 30	28/9	28/9	2/10	2/10	27/9	27/9	27/9	28/9	28/9	2/10	2/10	27/9	27/9	28/9	28/5
Test No. (% solids) Grind 80% passing Total leach time Vessel Sample mass Sitewater added Natural pH CaO added NaCH added Leach Time Gross off rolls Pulp temperature	un hours 9 9 9	3C 75 8 407.5 693.7	60 75 8	38 75	6C 75	27/9 30				2/10	27/9	27/9	27/9	28/9	28/9	2/10	2/10	27/9	27/9	28/9	20/2
Test No. (% solids) Grind 80% passing Total leach time Vessel Sample mass Sitewater added Natural pH CaO added NaCH added Leach Time Gross off rolls Pulp temperature	un hours 9 9 9	3C 75 8 407.5 693.7	60 75 8	38 75	6C 75	30	84			£ 10	£1 1	6117	4117	40/7					6117	20/7	
Grind 80% passing Total leach time Vessel Sample mass Sitemater added Natural pH CaO added NaCH added Leach Time Gross off rolls Pulp temperature	un hours 9 9 9	75 8 407.5 693.7	75 8	75	75			48	18	5C	7A	86	20	6A	40	44	58	14	70	70	20/
Total leach time Vessel Sample mass Sitemater added Natural pH CaO added NaCH added Leach Time Gross off rolls Pulp temperature	hours g g g g	407.5 693.7	8			75	75	75	106	106	106	106	106	106	106	150	150	150	150	150	150
Vessel Sample mass Sitemater added Natural pH CaO added NaCH added Leach Time Gross off rolls Pulp temperature	g 9	693.7	407.8		12	12	18	18	8	8	12	12	12	18	18	8	8	12	12	18	18
Sample mass Sitemater added Natural pH CaO added NaCN added Leach Time Gross off rolls Pulp temperature	g g g	693.7	407.8	******			******		•		******									10	
Sitemater added Natural pH CaO added NaCN added Leach Time Gross off rolls Pulp temperature	g			407.0	408.3	405.0	407.5	407.8	408.4	406.6	407.9	407.6	407.0	408.4	406.6	406.3	406.8	408.3	407.5	406.3	406.8
Natural pH CaO added NaCN added Leach Time Gross off rolls Pulp temperature	g		652.4	695.3	667.4	695.3	672.6	678.6	695.9	697.5	686.2	683.4	653.9	698.2	672.3	708.0	6%.2	667.4	690.6	657.3	677.6
CaD added MaCM added Leach Time Gross off rolls Pulp temperature	•		979	1043	1001	1043	1009	1018	1044	1046	1029	1025	981	1047	1008	1062	1044	1001	1034	986	1016
MaCN added Leach Time Gross off rolls Pulp temperature	•	6.4	6.4	6.6	6.6	6.6			6.4	6.4	6.6	6.6	6.6			6.4	6.4	6.6	6.6		
Leach Time Gross off rolls Pulp temperature		1.41 0.56	1.41 0.53	1.15	1.15	1.15 0.56	1.11	1.10	1.42	1.41	1.15	1.15	1.15	1.11	1.10	1.42	1.42	1.11	1.11	1.08	1.10
Gross off rolls Pulp temperature	g hrs	v.æ	V.33	0.56 3	0.54 3	V.36	0.54 3	0.55 3	0.56	0.56 3	0.55 3	0.55 3	0.53	0.56	0.54	0.57	0.56 3	0.54	0.56	0.54	0.55
Pulp temperature		2141.3	2039.0	2147.0	2077.1	2144.6	20 8 9.2	2103.9	2149.2	2150.6	2122.9	2116.9	2042.2	2154.6	ა 2086.6	3 2174.9	2150.3	3 207 6.6	3	3	3100.1
	g deg C	16	2037.0	18	18	18	18	18	16		18	18	_						2133.0	2051.3	2100.1
FIGURE 2000 TE N	odeg t DH	11.0	11.2	10.7	10.7	10.8	11.0	11.1	11.1	16 11.1	10.7	10.8	18 11.1	18 11.0	18 11.1	16 11.2	16	18	18	18	18
•	pre Au	0.32	0.31	0.38	0.33	0.35	0.33	0.36	0.31	0.29	0.32	0.32	0.34	0.34	0.32	0.30	11.2 0.32	10.8	10.8	11.1	11.1
	ppa no	1.6	1.5	1.9	4.7	1.8	2.0	1.7	1.3	1.2	1.8	1.8	1.5	1.8	1.7			0.32	0.33	0.33	0.31
	ppm Zn	2.8	2.8	3.1	3.8	3.3	3.6	3.6	2.8	2.6	3.4	3.5	3.2	3.9	3.8	1.4 3.0	1.3 3.0	1.4 3.4	1.5 3.5	1.6 3.9	1.6
	NaCH	0.047	0.047	0.048	0.049	0. 04 9	0.049	0.049	0.047	0.048	0.051	0.051	0.051	0.049	0.049	0.049					3.8
	4 Maun 4 CaO	0.047	0.047	0.005	0.006	0.049	0.005	0.005	0.047	0.005	0.004	0.005	0.006	0.006	0.006	0.005	0.048 0.005	0.053 0.005	0.053 0.005	0.051 0.006	0. 0 51 0. 00 6
Gross after sample		2087.5	1981.7	2099.4	2034.4	2101.3	2036.6	2051.4	2091.6	2093.8	2071.5	2065.2	1996.3	2103.0	2033.5	2118.8	2094.1	2023.5	2082.1	1998.1	2048.2
CaD added	9 Q	2007.3	1701.7	0.15	0.15	0.15	2000.0	2031.4	2071.0	2075.0	0.15	0.15	0.15	2100.0	2000.3	2110.0	2074.1	0.15	û.15	1770.1	2040.2
NaCN added	q	0.03	0.03	0.13	V.1J	٧.17			0.03	0.02	V.13	V.13	0.13			0.01	0.02	V.13	0.13		
Leach time	hrs	3	3	3	3	ŧ	3	3	3	3	3	3	3	3	3	7.01	3	3	3	3	3
Gross off rolls	9	2141.2	2030.3	2146.2	2076.7	2144.2	2088.7	2103.2	2147.8	2150.3	2122.5	2116.3	2041.4	2153.9	2086.2	2175.3	2146.7	2076.1	2131.7	2051.0	2099.4
Pulp temperature	deg C	17	17	20	20	20	19	19	17	17	20	20	20	19	19	17	17	20.0.1	20	19	19
Liquor sample B	Dii Dii	10.9	11.1	11.1	11.0	11.1	11.0	11.0	10.9	10.9	11.1	11.1	11.2	10.9	11.0	11.0	11.0	11.2	11.2	11.0	11.0
fights ampte a	ppe Au	0.34	0.34	0.39	0.41	0.37	0.34	0.37	0.33	0.31	0.35	0.34	0.35	0.35	0.34	0.33	0.34	0.34	0.31	0.32	0.32
	ppa Cu	2.0	2.0	2.5	4.9	2.2	2.7	2.4	1.8	1.8	2.5	2.1	1.9	2.5	2.3	1.8	1.6	1.9	1.9	2.2	2.2
	ppm Zn	3.3	3.3	4.0	4.2	3.7	4.1	4.1	3.3	3.1	3.8	3.9	3.6	4.5	4.4	3.3	3.3	3.8	4.0	4.9	4.3
	% NaCN	0.045	0.045	0.045	0.047	0.046	0.045	0.045	0.047	0.943	0.046	0.049	0.048	0.045	0.045	0.044	0.045	0.048	0.047	0.047	0.047
	t CaO	0.003	0.004	0.004	0.005	0.003	0.005	0.005	0.003	0.003	0.005	0.006	0.005	0.006	0.006	0.003	0.004	0.005	0.005	0.006	0.006
Gross after sample	q	2083.4	1974.0	2097.2	2032.6	2097.6	2035.3	2049.7	2091.1	2095.2	2072.8	2067.5	1998.6	2100.0	2033.1	2119.0	2090.5	2027.4	2084.1	1997.0	2045.7
CaD added	q																				
NaCN added	q	0.05	0.05	0.05	0.03	0.04	9.05	0.05	0.03	0.07	0.04	0.01	0.02	0.05	0.05	0.06	0.05	0.02	0.03	0.03	0.03
Leach time	hrs	2	2	6	6	6	6	6	2	2	6	6	6	6	6	2	2	6	6	6	6
Gross off rolls	g	2141.2	2030.4	2145.4	2076.1	2143.4	2087.6	2102.0	2147.5	2149.9	2120.8	2115.5	2040.3	2152.9	2085.1	2175.4	2145.8	2075.3	2130.1	2050.2	2098.1
Pulp temperature	deg C	18	18	19	19	19	18	18	18	18	19	19	-19	18	18	18	18	19	19	18	18
Liquor sample C	pH	10.8	11.0	11.0	11.0	11.1	10.8	10.9	10.9	10.9	11.1	11.1	11.2	10.8	10.9	10.9	11.0	11.1	11.1	10.9	10.9
	ppm Au	0.33	0.33	0.37	0.38	0.41	0.33	0.36	0.32	0.31	0.34	0.34	0.35	0.35	0.34	0.32	0.33	0.34	0.31	0.32	0.31
	ppe Cu	2.2	2.2	2.9	5.5	2.9	3.1	2.9	2.2	2.0	3.0	2.7	2.7	3.2	3.1	2.0	1.9	2.6	2.7	2.8	3.0
	ppm Zn	3.5	3.7	4.3	5.0	4.5	4.7	4.7	3.5	3.4	4.8	4.6	4.4	5.3	5.1	3.6	3.6	4.6	4.8	5.2	5.3
	* NaCN	0.048	0.049	0.048	0.047	0.047	0.042	0.043	0.049	0.050	0.044	0.048	0.044	0.043	0.043	0.049	0.049	0.047	0.046	0.043	0.043
	t CaO	0.003	0.004	0.004	0.005	0.003	0.003	0.003	0.003	0.003	0.005	0.004	0.005	0.003	0.003	0.003	0.003	0.005	0.005	0.004	0.004
Gross after sample	g						2029.8	2043.8						20%.9	2027.5					1991.2	2038.6
CaO added	g																				
NaCN added	g						0.08	0.07						0.07	0.07					0.07	0.07
Leach time	hrs						6	6						6	6					6	6
Gross off rolls	9						2068.0	2100.4						2152.4	2084.3					2050.0	20%.8
Pulp temperature	deg C						16	16						16	16					16	16
Liquor sample D	pH						10.8	10.9						10.8	10.8					10.9	10.9
	ppm Au						0.31	0.34					-	0.32	0.31					0.31	0.30
	ppm Cu						3.2	3.2						3.4	3.2					3.0	3.1
	ppm Zn						5.0	5.0						5.4	5.2					5.4	5.3
	* NaCN						0.050	0.050						0.050	0.050					0.050	0.050
Sample mass account	1 Ca0						0.003	0.003						0.002	0.003					0.004	0.003
Residue recovered (screene	ed)a	690.1	630.1	674.9	685.6	691.0	669.9	678.3	687.1	665.9	677.8	682.9	654.3	696.8	670.9	706.8	695.2	669.1	697.1	655.7	677.0
Ground head to assay	Q.	110.5	%.3	104.8	107.0	104.5	97.9	99.5	110.5	106.5	111.1	111.1	100.1	109.2	99.1	114.0	113.4	107.5	122.0	104.2	114.5
Calculated head to grind	a	800.6	726.4	779.7	792.6	795.5	767.8	777.8	797.6	772.4	788.9	794.0	754.4	806.0	770.0	820.8	808.6	776.6	819.1	759.9	791.5
Actual head to grind	g	804.2	748.7	800.1	774.4	800.4	770.5	778.1	806.4	804.0	797.3	794.5	754.0	807.4	771.4	822.0	809.6	774.9	812.6	761.5	792.1
Unaccounted mass	1	0.45	2.98	2.55	-2.35	0.61	0.35	0.04	1.09	3.93	1.05	0.06	-0.05	0.17	0.18	0.15	0.12	-0.22	-0.80	0.21	0.08

BNT5721 Sheet 3 16-Oct-89
BILLITON MT TODO HEATHERED ORE BOTTLE ROLL CYANIDE LEACH AT 40% SOLIDS.

! COMPOSITE BMT 0.6 !

Particle size um						Ave. assay		
Test No.	3C				8			
+ 150		0.0	100.0			•		0.0
	46.3	6.7	93.3	0.26		0.26	12 04	17
- 150 + 106 - 106 + 75	92.0	13.3	80.0	0.17	0.17	0.17	15:64	22 1
- 75 + 53	68.5	9 9	70.0	0.21	•••	0.21	14.39	21 (
- 53	483.3	70.0	70.0	0.06	0.05	0.06	26.58	38.7
*************************			~~÷=====					
Calculated		100.0				0.10	68.5	100.0
Test No.	60	Non. P80un	75	Leach hrs	8	•		
+ 150	37.2	0.0	100.0				0.07	0.0
						0.24		
- 106 + 75				0.24		0.22		
- 75 + 53	65.5	10.4	/1.4	0.14		0.14 0.06	9.17	14.8
- 53	449.9	71.4		0.06	0.06	0.06	26.99	43.7
Calculated	630.1	100.0			****	0.10	61.8	100.0
Test No.	38	Mon. P80um	75	Leach hrs	12			
+ 150		0.0	100.0					0.0
- 150 + 106				0.24		0.24	11.16	14.6
- 106 + 75						0.24		
- 75 + 53	66.7	9.9	70.5	0.17		0.17		
- 53	475.5	70.5		0.06	0.08	0.07	33.29	43.5
Calculated	674.9	100.0				0.11	76.5	100.0
Test No.	6C	Non. P80um	75 .	Leach hrs	12			
+ 150	_	0.0	100.0		******			0.0
- 150 + 106	44.3			0.39		0.39	17.28	24.2
- 106 + 75	88.0		80.7	0.20				22.8
- 75 + 53	72.1		70.2	0.20 0.12	0.13	0.13	9.01	12.6
- 53	481.2			0.06			28.87	
Calculated	685.6	100.0				0.10	71.4	100.0
l'est No.	30	Mon. P80um	75	Leach hrs	12			
+ 150		0.0	100.0					0.0
- 150 + 106	43.1		93.8	0.23	•	0.23	9.91	14.6
- 106 + 75	87.1	12.6	81.2	0.20	0.20	0.20	17.42	
- 75 + 53	75.2	10.9	81.2 70.3	0.15	0.16	0.16	11.66	17.1
- 53	485.6	70.3			0.96	0.06	29.14	42.8

BMT5721 Sheet 4 16-Oct-89
BILLITON NT TOOD NEATHERED ORE BOTTLE ROLL CYANIDE LEACH AT 40% SOLIDS.

Particle size		Mass &						
	· g	Kerajijed	Passing	pps Au	ppin Au	pps au	ug Au	Au t
Test No.	8A	Non. P80um	75	Leach hrs	18			
+ 150		0.0	100.0					0.
- 150 + 106	39.9	6.0	94.0	0.23		0.23	9.18	15.
- 106 + 75	87.8	13.1	80.9	0.17	0.17	0.17	14.93	25.
- 75 + 53	71.2		70.3	0.13	0.11	0.12	8.54	14.0
- 53	471.0	70.3		0.05	0.06	0.06		
Calculated	669.9	100.0				0.09	58.6	100.0
Test No.	48	Non. P80un	75	Leach hrs	18			
+ 150	*********	0.0	100.0		· · · · · · ·			0.0
- 150 + 106	39.4	5.8	94.2	0.23		0.23	9.06	15.7
- 106 + 75		13.2						
- 75 + 53	74.5	11.0	70.0	0.13	0.13	0.13	9.69	16.8
- 53	474.9	11.0 70.0		0.13 0.06	0.04	0.05	23.,75	41.1
Calculated	678.3	100.0			·	0.09	57.7	100.0
Test No.	18	Non. P80us	196	Leach hrs	8 .			
+ 150	45.3	6.6	93.4	0.22	-	0.22	9.97	14.2
- 150 + 106		12.2			0.22			
- 106 + 75	92.9	13.5	67.7	0.20	0.15	0.18	16.26	44 4
- 75 + 53	58.6	0.5	50.7	0.20 0.13	V.13	0.13	16.26 7.62	10.9
- 53	406.8		37.2		0.05	0.05		26.1
Calculated	687.1	100.0		. 42 72 70 7 7 7 7		9.10	70.1	100.0
Test No.	5C	Non. P80ue	106	Leach hrs	8			
+ 150	40.1	6.0	94.0	9.26		0.26	10.43	12.4
- 150 + 106		11.9				0.35		
- 106 + 75	Q1 R	17 A	6R.3	0_17	0.16		15.15	13.0
- 75 + 53	59.8	9.0	59.3	0.17 0.15			8.97	10.7
- 53	394.8	59.3		0.06	0.05			25.8
Calculated	665.9	100.0			*****	0.13	84.0	100.0
lest No.	7A .	Non. P80un	106	Leach hrs	12			
+ 150	46.7	6.9	93.1	0.44		0.44	20.55	20.9
- 150 + 106	82.7	12.2		0.25			22.74	
- 106 + 75	9K 0	12.2 12.8	68.1	0.17	0.21	0 19	16.51	16.8
- 75 + 53	CO O	8.8	59.3	0.17		0.17	10.17	
- 53		59.3	37.3	0.08		0.17		
Calculated		100.0				0.14	98.1	100.0

BMT5721 Sheet 5 16-Oct-89
BILLITON HT TODD HEATHERED ORE BOTTLE ROLL CYANIDE LEACH AT 40% SOLIDS.

COMPOSITE BNT 0.6

Particle size	Mass g		Cum. Mass Passing	ppm Au	Assay ppm Au	Ave. assay ppm Au	Contents ug Au	
Test No.	88	Non. P80um	106	Leach hrs	12			
+ 150	50.0	7.3	92.7	0.26		0.26	13.00	16.9
- 150 + 106	83.5				0.25	0.24		
- 106 + 75	89.7	13.1	67.3	0.18	0.18	A IR	16 15	
- 75 + 53	89.7 56.6	8.3	59.0	0.18 0.17		0.17	9,62	12.5
- 53	403.1	59.0			0.05	v.05	18.14	
Calculated	682.9	100.0				0.11	76.9	100.0
Test Ho	2 C	Non. P80um	106	Leach hrs	12			
+ 150	40.3	6.2	93.8	0.27		0.27		13.5
- 150 + 106	77.2	11.8	82.0	0.24	0.26	0.25	19.30	
- 106 + 75	83.6	12.8	69.3	0.27	0.22	0.25	20.48	25.4
- 75 + 53	57.4	8.8	60.5	0.18	12.2	0.18	10.33	12.8
- 53	395.8	60.5		0.05	0.05	0.05	19.79	24.5
Calculated	654.3					0.12	80.8	100.0
Test No.	6A	Non. P80um	106	Leach hrs	18			;
+ 150	49.8	7.1	92.9	0.27		0.27	13.45	14.2
- 150 + 106	83.3	12 0	90.9	0.29	0.26	0.28	22 Q1	24 3
- 106 + 75	94.8	13.6	67.3	0.19	0.18	0.19	17.54	18.6
- 75 + 53	61.6	8.8	58.5	6.21		0.20		
- 53	407.3	58. 5		0.07		0.07		30.2
Calculated	6%.8	100.0				0.14	94.4	100.0
Test No.	40	Non. P80un	106	Leach hrs	18			
+ 150	46.8	7.0	93.0	0.24		0.24	11.23	12.7
- 150 + 106	79.7	11 9	81.1	0.25	0.27	0.24 0.27	21.12	
- 106 + 75	87.1	13.0	6R 2	0.21	0.18	0.20	16 68	
- 75 + 53	60.0	8.9	59.2	0.15	٧.10	0.15	9.60	10.2
- 53		59.2			0.07	0.06		33.8
Calculated	670.9	100.0	·.			0.13	88.1	100.0
fest No.	· 44 · · . · i	ion. P80ua	150	each hrs	8			
+ 150	144.5	20.4	79.6	0.26	0.26	0.26	37.57	37.5
- 150 + 106	84.2	11.9	67.6	0.22	0.21	0.22	18.19	18.1
- 106 + 75	76.7	10.9	56.8	0.19	0.26	0.23	17.26	17.2
- 75 + 53	44.7	6.3	50.5	0.13	V. 40	0.13	5.81	5.8
- 53	356.7	50.5	JV.J	0.06	0.06	0.06	21.40	21.4

Particle size um		Mass \$ Retained	Passing		ppm Au	Ave. assay ppe Au	Contents ug Au	Distrib'ı Au t
Test No.	58	Hom. P80um		Leach hrs	8			
+ 150	139.2	20.0	80.0	0.30	0.30	0.30	41.76	41.5
- 150 + 106	83.4	12.0	68.0	0.22	0.23	0.23	18.77	18.7
- 106 + 75	73.7	10.6	57.4	0.20	0.18	0.19		13.9
- 75 + 53	47.8	6.9	50.5	0.14		0.14	6.69	6.7
- 53	351.1	50.5		0.06	0.05	0.14 0.06	19.31	19.2
Calculated	695.2	100.0	,			0.14	100.5	100.0
Test No.	14	Nom. P80um	150	Leach hrs	12			
+ 150	163.8	24.5	75.5	0.28	0.33	0.31	49.96	43.1
- 150 + 106		11.3	64.2	0.25	0.25		18.93	16.3
- 106 + 75	61.2	9.1	55.1	0.18				9.5
- 75 + 53	42.5	6.4	48.7	0.16		0.16		
- 53		48.7		0.09	0.09	0.09	29.33	25.3
Calculated	669.1	100.0				0.17	116.0	100.0
Test No.	70	Non. P80un	150	Leach hrs	12			
+ 150	189.5	27.2	72.8	0.22	0.22	0.22	41.69	50.0
- 150 + 106	71.7	16.3		0.24				
- 106 + 75	62.4	9.0	53.6	0.15		0.15		
- 75 + 53	42.1	6.0		0.15		0.15		7.6
- 53		47.5		0.02		0.03		
Calculated	697.1	100.0			******	0.12		100.0
Test Ho.	7C	Non. P80un	150	Leach hrs	18			
+ 150	119.8	18.3	81.7	0.28	0.28	0.28	33.54	31.5
- 150 + 106	80.8	12.3	69.4	0.29	0.29	0.29	23.43	22.0
- 106 + 75	65.7			0.24		0.24		14.8
- 75 + 53	46.5	7.1	52.3	0.17	•	0.17	7.91	7.4
- 53		52.3		0.08	0.07	0.08	25.72	24.2
Calculated	655.7	100.0	******		- 	0.16	106.4	100.0
Test No.	10	Hom. P80um	150	Leach hrs	18			
+ 150	134.5	19.9	80.1	0.23	0.24	0.24	31.61	38.9
- 150 + 106	77.5	11.4	68.7	0.27	0.24	0.26	19.76	24.3
- 106 + 75	68.5	10.1	58.6	0.13	0.12		8.56	10.5
- 75 + 53	47.6	7.0	51.5	0.08		0.08	3.81	4.7
- 53	348.9	51.5		0.05	0.05	0.05	17.45	21.5

BMT5720 Sheet 7 16-0ct-89 BILLITON HT TOOD HEATHERED ORE BOTTLE ROLL CYANIDE LEACH AT 40% SOLIDS. COMPOSITE BMT 0.6 ; P80=106um PB0=150um P80=75ua ANALYSIS Test No. (% solids) Units Ave. Max Hin Ave. Max Min Ave. Max Min 150 Nominal Grind 80% passing 75 75 75 106 106 106 150 150 um 18.0 8.0 12:7 18.0 8.0 Total leach time hours 12.6 18.0 8.6 12.6 Extraction Au 0.50 0.48 0.48 at 3 hours g/t 0.51 0.57 0.47 0.51 0.44 0.45 g/t 0.53 0.53 0.55 0.49 0.51 0.54 0.49 0.57 0.64 at 6 hours 0.51 0.54 0.53 at 8 hours g/t 0.55 0.55 0.55 0.52 0.53 0.55 0.56 0.58 0.56 0.53 0.51 at 12 hours g/t 0.61 0.66 0.55 0.56 at 18 hours g/t 0.57 0.60 0.55 0.55 0.56 0.54 0.54 0.55 0.52 at 3 hours 74.4 79.5 68.3 71.5 73.5 68.4 70.4 78.5 65.4 \$ 79.2 71.6 at 6 hours ŧ 83.5 87.7 76.0 82.2 77.1 75.8 78.1 81.0 79.0 78.9 85.0 85.3 84.7 82.5 84.1 79.1 at 8 hours \$ 82.2 78.0 at 12 hours \$ 86.2 87.5 84.7 83.2 79.6 RO 8 75.2 86.2 80.6 80.6 80.5 79.3 77.2 at 18 hours 86.9 87.5 81.4 ŧ pon Au 0.69 0.76 0.63 0.67 0.70 0.63 0.68 0.73 0.63 Calculated Head Ground Head Assay 1 ppe Au 0.65 0.76 0.60 0.62 0.67 0.58 0.62 0.64 0.56 0.59 0.58 Ground Head Assay 2 ppm Au 0.64 0.69 0.63 0.70 0.63 0.68 0.55 Average Ground Head Assay ppa Au 0.65 0.72 0.60 0.63 0.69 0.58 0.62 0.66 0.56 0.09 Calculated residue grade 0.10 0.11 0.13 0.14 0.10 0.14 0.17 0.12 ppm Au Extraction Cu g/t 2.3 2.4 2.7 1.8 2.2 2.0 at 3 hours 3.3 7.1 2.4 at 6 hours g/t 4.2 7.6 3.1 3.3 3.9 2.8 3.0 3.4 2.5 at 8 hours g/t 3.6 3.6 3.6 3.4 3.6 3.2 3.2 3.3 3.1 8.9 4.7 5.1 at 12 hours g/t 5.6 4.6 4.3 4.4 4.8 4.1 at 18 hours g/t 5.4 5.4 5.4 5.5 5.7 5.4 5.1 5.2 5.1 Assay Head DOM CU Extraction In g/t 4.9 5.7 4.2 5.0 5.9 3.9 5.2 5.9 4.5 at 3 hours at 6 hours 5.2 7.0 4.9 6.2 7.7 5.2 q/t 6.0 6.5 6.0 5.9 at 8 hours g/t 5.9 6.0 5.7 5.7 5.7 5.6 5.9 5.9 7.4 at 12 hours g/t 7.5 8.0 6.9 7.8 8.6 7.1 8.1 8.6 9.0 8.9 9.3 at 18 hours g/t 8.5 8.5 8.5 9.0 9.1 9.2 pper Zri Assay Head **MaCM** consumption 0.07 0.06 0.10 0.04 0.05 0.08 0.01 at 3 hours kg/t 0.08 0.11 0.10 0.15 0.07 0.08 0.15 0.03 0.08 0.12 0.05 at 6 hours kg/t 0.09 0.08 0.10 0.10 0.10 0.13 0.13 0.13 0.11 at 8 hours kg/t 0.12 0.17 0.09 0.12 0.16 0.03 0.11 0.14 0.06 at 12 hours kg/t 0.13 0.12 0.12 0.12 0.10 0.10 0.10 at 18 hours kg/t 0.13 0.14 CaO consumption 1.53 1.68 1.% 1.72 2.12 1.69 1.97 1.50 at 3 hours kg/t 1.55 1.50 1.76 1.98 1.53 1.81 2.10 1.55 1.79 1.99 at 6 hours kg/t 2.04 2.10 1.98 1.98 1.99 1.97 1.97 1.99 1.95 kg/t at 8 hours 1.54 1.67 1.81 1.55 at 12 hours kg/t 1.73 1.87 1.57 1.73 1.91 kg/t 1.59 1.57 1.56 1.58 1.55 1.57 1.57 1.57 at 18 hours 1.58 82.1 78.3 81.7 72.8 80.8 81.8 80.0 81.3 80.5 Actual grind passing nominated um (1)

COMPOSITE BAT 0.6

Summary of 8 hour Residue Size Fraction Assays

Sample Identification	Grind P80	Head ppm Au	+ 150 ppm Au	† 106 ppm Au	+ 75 ppm Au	+ 53 ppm Au	- 53 ppm Au
3C	75	0.10	0.00	0.26	0.17	0.21	0.06
60	75	0.10	0.00	0.24	0.22	0.14	0.06
Average		0.10	0.00	0.25	0.19	0.18	0.06
18	106	0.10	0.22	0.22	0.18	0.13	0.05
5C	106	0.13	0.26	0.35	0.17	0.15	0.06
Average		0.11	0.24	0.28	0.17	0.14	0.05
4A	150	0.14	0.26	0.22	0.23	0.13	0.06
58	150	0.14	0.30	0.23	0.19	0.14	0.06
Average		0.14	0.28	0.22	0.21	0.14	0.06

Summary of 12 hour Residue Size Fraction Assays

,	Sample Identification	Grind P80 um	Head ppm Au	† 150 ppm Au	† 106 ppm Au	+ 75 ppm Au	+ 53 ppm Au	- 53 ppm Au
	38	75	0.11	0,00	0.24	0.24	0.17	0.07
	6C	75	0.10	0.00	0.39	0.19	0.13	0.06
	30	75	0.10	0.00	0.23	0.20	0.16	0.06
	Average		0.11	0.00	0.29	0.21	0.15	0.06
	7 A	106	0.14	0.44	0.28	0.19	0.17	0.07
	88	106	0.11	0.26	0.24	0.18	0.17	0.05
	2C	106	0.12	0.27	0.25	0.25	0.18	0.05
	Average		0.13	0.32	0.26	0.21	0.17	0.06
	18	150	0.17	0.31	0.25	0.18	0.16	0.09
	70	150	0.12	0.22	0.23	0.15	0.15	0.03
	Average		0.15	0.26	0.24	0.17	0.16	0.06

Summary of 18 hour Residue Size Fraction Assays

Sampl	e Identification	Grind P80 um	Head ppm Au	+ 150 ppn Au	+ 106 ppm Au	+ 75 ppm Au	+ 53 ppm Au	- 53 ppa Au
	84	75	0.09	0.00	0.23	0.17	0.12	0.06
	48	75	0.09	0.00	0.23	0.17	0.13	0.05
	Average		0.09	0.00	0.23	0.17	0.13	0.05
	6A	106	0.14	0.27	0.28	0.19	0.20	0.07
	40	106	0.13	0.24	0.27	0.20	0.15	0.08
	Average		0.13	0.26	0.27	0.19	0.17	6.07
	70	150	0.16	0.28	0.29	0.24	0.17	0.08
	10	150	0.12	0.24	0.26	0.13	90.08	0.05
** **	Average	******	0.14	0.26	0.27	0.18	0.13	0.06

BMT5721 Sheet 9 16-Oct-89
BILLITON HT TODO WEATHERED ORE BOTTLE ROLL CYANIDE LEACH AT 40% SOLIDS. COMPOSI

Summary of Residue Size Fraction Assays

Leach Time	Grind P80 um	Head ppn Au	+ 150 ppm Au	+ 106 ppm Au	+ 75 ppm Au	+ 53 ppm Au	- 53 ppm Au
18 Hour (2 tests)	150	0.14	0.26	0.27	0.18	0.13	0.06
12 Hour (2 tests)	150	0.15	0.26	0.24	0.17	0.16	0.06
8 Hour (2 tests)	150	0.14	0.28	0.22	0.21	0.14	0.06
Weighted Ave.		0.14	0.27	0.24	0.19	0.14	0.06
18 Hour (2 tests)	106	0.13	0.26	0.27	0.19	0.17	0.07
12 Hour (3 tests)	106	0.13	0.32	0.26	0.21	0.17	0.06
8 Hour (2 tests)	106	0.11	0.24	0.28	0.17	0.14	0.05
Weighted Ave.		0.13	0.28	0.27	0.19	0.16	0.06
18 Hour (2 tests)	7 ^c	0.09	0.00	0.23	0.17	0.13	0.05
12 Hour (3 tests)	75	0.11	0.00	0.29	0.21	0.15	0.06
8 Hour (2 tests)	75	0.10	0.00	0.25	0.19	0.18	0.06
Weighted Ave.		0.10	0.00	0.26	0.19	0.15	0.06

Summary of 8 hour Residue Size Fraction Gold Distribution

Sample Identification	Grind P80	Head ,ppm Au	+ 150 \$	+ 106	+, 75 \$	+ 53 \$	- 53 \$
3C	75	0.10	0.0	17.5	22.8	21.0	38.7
60	75	0.10	0.0	14.5	27.0	14.8	43.7
Average.		0.10	0.0	16.0	24.9	17.9	41.2
18	106	0.10	14.2	25.6	23.2	10.9	26.1
5C	106	0.13	12.4	33.1	18.0	10.7	25.8
Average		0.11	13.3	29.3	20.6	10.8	26.0
4A	150	0.14	37.5	18.1	17.2	5.8	21.4
58	150	0.14	41.5	18.7	13.9	6.7	19.2
Average	y=====	0.14	39.5	18.4	15.6	6.2	20.3

Summary of 12 hour Residue Size Fraction Gold Distribution

Sample Identification	Grind P80 UM	Head ppm Au	+ 150 *	+ 106 +	+ 75 *	+ 53 -\$	- 53 \$
38	75	0.11	0.0	14.6	27.1	14.8	43.5
6C	75	0.10	0.0	24.2	22.8	12.6	40.4
30	75	0.10	0.0	14.6	25.6	17.1	42.8
Average		0.11	0.0	17.8	25.1	14.9	42.2
7 A	106	0.14	20.9	23.2	16.8	10.4	28.7
	106	0.11	16.9	26.0	21.0	12.5	23.6
2 C	.106	0.12	13.5	23.9	25.4	12.8	24.5
Average		0.13	17.1	24.4	21.1	11.9	25.6
1Å	150	0.17	43.1	16.3	9.5	5.9	25.3
70	150	0.12	50.0	19.3	11.2	7.6	11.9
Average		0.15	46.5	17.8	10.4	6.7	18.6

Summary of 18 hour Residue Size Fraction Gold Distribution

Sampl	e Identification	Grind P80 um	Head ppm Au	+ 150 \$	+ 106	+ 75 \$	+ 53 \$	- 53 \$
	8A	75	0.09	0.0	15.7	25.5	14.6	44.2
	48	75	0.09	0.0	15.7	26.4	16.8	41.1
	Average		0.09	0.0	15.7	25.9	15.7	42.7
	6A	106	0.14	14.2	24.3	18.6	12.7	30.2
	40	106	0.13	12.7	24.0	19.3	10.2	33.8
	Average		0.13	13.5	24.1	18.9	11.5	32.0
	7C	150	0.16	31.5	22.0	14.8	7.4	24.2
	10	150	0.12	38.9	24.3	10.5	4.7	21.5
•	Average		0.14	35.2	23.2	12.7	6.1	22.8

8MT5721 Sheet 11 16-Oct-89
BILLITON NT TODO WEATHERED ORE BOTTLE ROLL CYANIDE LEACH AT 40% SOLIDS.

COMPOSITE SHT 0.6

Summary of Residue Size Fraction Gold Distribution

Leach Time	Grind P80 um	Head ppu Au	+ 150 \$	+ 106 \$	+ 75 \$	+ 53 \$	- 53 1
18 Hour (2 tests)	150	0.14	35.2	23.2	12.7	6.1	22.8
12 Hour (2 tests)	150	0.15	46.5	17.8	10.4	6.7	18.6
8 Hour (2 tests)	150	0.14	39.5	18.4	15.6	6.2	20.3
Heighted Ave.		0.14	40.4	19.8	12.9	6.3	20.6
18 Hour (2 tests)	106	0.13	13.5	24.1	18.9	11.5	32.0
12 Hour (3 tests)	106	0.13	17.1	24.4	21.1	11.9	25.6
8 Hour (2 tests)	106	0.11	13.3	29.3	20.6	10.8	26.0
Weighted Ave.		0.13	15.0	25.7	20.3	11.4	27.5
18 Hour (2 tests)	75	0.09	0.0	15.7	25.9	15.7	42.7
12 Hour (3 tests)	75	0.11	0.0	17.8	25.1	14.9	42.2
8 Hour (2 tests)	75	0.10	0.0	16.0	24.9	17.9	41.2
Weighted Ave.		0.10	0.0	16.7	25.3	16.0	42.1

BHT5721 Sheet 12 16-Oct-89
BILLITON HT TOOD MEATHERED ORE BOTTLE ROLL CYANIDE LEACH AT 40% SOLIDS.

COMPOSITE BNT 0.6

Summary of L.S.& A. 8 - Hour Bottle Roll Leach Test Results

Sample Identification	Grind PBO	Head Assay	Grade Ground	Au (Calc'd	each Resul. Residue	ts	L	each Parame	ters		Reager Consumpt		Cu Lea Assay	nch Results		In Lea Assay	ich Results	í
. •	ua.	Comp. ppm Au	Head ppm Au	Head ppn Au	Solids ppm Au	Extr'n	Time Hours	Pulp % Solids	NaCN	pH .	NaCN kg/t	CaO kg/t	_ Head ppm	Extract g/t	ion t	Head ppn	Extract g/t	ion .
3C	75	0.62	0.64	0.65	0.10	84.7	8	40	0.048	10.8	0.13	1.98	292	3.6	1.2	362	5.7	1.6
60	75	0.62	0.72	0.64	0.10	85.3	8	40	0.049	11.0	0.13	2.10	292	3.6	1.2	362	6.0	1.7
Average		0.62	0.68	0.64	0.10	85.0	8	40	0.049	10.9	0.13	2.04	29 2	3.6	1.2	362	5.9	1.6
18	106	0.62	0.69	0.63	0.10	84.1	8	40	0.049	10.9	0.08	1.99	292	3.6	1.2	362	5.7	1.6
5 C	106	0.62	0.64	0.63	0.13	81.0	8	40	0.050	10.9	0.11	1.97	292	3.2	1.1	362	5.6	1.5
Average		0.62	0.66	0.63	0.11	82.5	8	40	0.050	10.9	0.09	1.98	292	3.4	1.2	362	5.7	1.6
4A	150	0.62	0.65	0.67	0.14	78.9	8	40	0.049	10.9	0.10	1.95	292	3.3	1.1	362	5.9	1.6
58	150	0.62	0.66	0.69	0.14	79.1	8	40	0.049	11.0	0.10	1.99	292	3.1	1.1	362	5.9	1.6
Average		0.62	0.65	0.68	0.14	79.0	8	40	0.049	11.0	0.10	1.97	292	3.2	1.1	362	5.9	5

Summary of L.S.& A. 12 - Hour Bottle Roll Leach Test Results

Cample Identification	Grind P80	Head Assay	Grade Ground	Au i Calc'd	each Resul. Residue	ts	,	each Parame.	eters		Reager Consumpt		Cu Lea Assay	ich Results	;	In Lea Assay	ich Results	
		Comp.	Head	Head	Solids	Extr'n	Tire	Pulp	1		NaCN	CaG	Head	Extract	ion	Head	Extract	ion
		ppm Au	opa Au	ppm Au	ppie Au	1,	Hours	1 Solids	NaCH	рH	kg/t	kg/t	ppn	g/t	1,	ppm	g/t	1
38	75	0.62	0.63	0.72	0.11	84.7	12		0.048	11.0	0.09	1.80	292	4.7	1.6	362	6.9	1.
6C	75	0.62	0.63	0.72	0.10	85.2	12	40	0.047	11.0	0.09	1.87	292	8.9	3.0	362	8.0	2.
30	75	0.62	0.60	0.76	0.10	87.1	12	40	0.047	11.1	0,10	1.82	292	4.6	1.6	362	7.2	2.
Average		0.62	0.62	0.73	0.11	85.7	12	40	0.047	11.0	0.09	1.83	292	6.0	2.1	362	7.4	2.
7A	106	0.62	0.61	0.70	0.14	79.6	12	40	0.044	11.1	0.13	1.81	292	4.8	1.6	362	1.1	2.
88	106	0.62	0.59	0.67	0.11	83.2	12	40	0.048	11.1	0.03	1.83	292	4.3	1.5	362	7.4	2.
2C	106	0.62	0.58	0.69	0.12	82.2	12	40	0.044	11.2	0.11	1.91	292	4.3	1.5	362	7.1	1.
Average		0.62	0.59	0.69	0.13	81.7	12	40	0.045	11.1	0.09	1.85	292	4.5	1.5	362	7.4	2.
1A	150	0.62	0.60	0.73	0.17	76.3	12	40	0.047	11.1	0.06	1.81	292	4.1	1.4	362	7.4	2.
70	150	0.62	0.56	0.63	0.12	80.8	12	40	0.046	11.1	0.10	1.74	292	4.3	1.5	362	1.7	2.
Average		0.62	0.58	0.68	0.15	78.6	12	40	0.047	11.1	0.08	1.77	292	4.2	1.4	362	7.6	2.

Summary of L.S.& A. 18 - Hour Bottle Roll Leach Test Results

mple Identification	Grind P80	Head Assay	Grade Ground	Au L Calc'd	each Resul. Residue	ts	ι	each Parame	eters		Reager Consumpl		Cu Lea Assay	ich Results		In Lea Assay	ich Results	;
		Comp.	Head DDM Au	Head pom Au	Solids ppm Au	Extr'n L	Time Hours	Pulp % Solids	% NaCN	рH	NaCN kg/t	CaO kg/t	Head	Extract g/t	ion L	Head DDM	Extract g/t	ion 1
	*******										•		***	•				
8A	75	0.62	0.66	0.63	0.09	86.2	18	40	0.050	10.8	9.14	1.59	292	5.4	1.9	362	8.5	2.
4B	75	0.62	0.67	0.68	0.09	87.5	18	40	0.050	10.9	0.13	1.57	292	5.4	1.8	362	8.5	2.3
Average		0.62	0.67	0.66	0.09	86.9	18	40	0.050	10.9	0.13	1.58	292	5.4	1.8	362	8.5	2.3
6 A	106	0.62	0.65	0.69	0.14	80.5	18	40	0.050	10.8	0.12	1.55	- 292	5.7	1.9	362	9.1	2.5
4D	106	0.62	0.64	0.68	0.13	80.6	18	40	0.050	10.8	0.12	1.58	292	5.4	1.8	362	8.9	2.4
Average		0.62	0.64	0.69	0.13	80.6	18	40	C.050	10.8	0.12	1.56	292	5.5	1.9	362	9.0	7.1
7C	150	0.67	0.64	0.71	0.16	77.2	18	40	0.050	10.9	0.10	1.57	292	5.1	1.7	362	9.3	2.6
10	150	0.62	0.63	0.64	0.12	81.4	18	40	0.050	10.9	6.10	1.57	292	5.2	1.8	362	9.0	2.5
Average		0.62	0.64	0.68	0.14	79.3	18	40	0.050	10.9	0.10	1.57	292	5.1	1.8	362	9.2	2.5

BMT5721

Sheet 13

16-0ct-89

BILLITON NT 1390 MATHERED ORE BOTTLE ROLL CYANIDE LEACH AT 40% SOLIDS.

COMPOSITE BHT 0.6 ;

Summary of L.S.& 4. Southle Roll Leach Test Results

Leach Time	Grind P80 um	Head Assay	Grade Ground	Au (Calc [°] d	each Pesu) Residue		l	each Parame	eters		Reager Consumpt		Cu Lea Assay	nch Results	i	Zn Lea Assay	ach Results	į.
		Comp.	Head	Head	Solids	Extr'n	Time	Pulp	*		NaCH	Ca0	Head	Extract	ion	Head	Extract	ion
		ppm Au	ppm Au	ppe Au	ppa Au	\$	Hours	* Solids	NaCH	pH	kg/t	kg/t	ppe	g/t	*	ppm	g/t	1
18 Hour (2 tests)	150	0.62	0.64	0.68	0.14	79.3	18	40	0.050	10.9	0.10	1.57	292	5.1	1.8	362	9.2	2.5
12 Hour (2 tests)	150	0.62	0.58	0.68	0.15	78.6	12	40	0.047	11.1	0.08	1.77	292	4.2	1.4	362	7.5	2.1
8 Hour (2 tests)	150	0.62	0.65	0.68	0.14	79.0	8	40	0.049	11.0	0.10	1.97	292	3.2	1.1	362	5.9	1.6
Weighted Ave.		0.62	0.62	0.68	0.14	79.0	13	40	0.049	11.0	0.09	1.77	292	4.2	1.4	362	7.5	2.1
18 Hour (2 tests)	106	0.62	0.64	0.69	0.13	80.6	18	40	0.050	10.8	0.12	1.56	292	5.5	1.9	362	9.0	2.5
12 Hour (3 tests)	106	0.62	0.59	0.69	0.13	81.7	12	40	0.045	11.1	0.09	1.85	292	4.5	1.5	362	7.4	2.0
8 Hour (2 tests)	106	0.62	0.66	0.63	0.11	82.5	8	40	0.050	10.9	0.09	1.98	292	3.4	1.2	362	5.7	1.6
Weighted Ave.	*****	0.62	0.63	0.67	0.13	81.6	13	40	0.048	11.0	0.10	1.81	292	4.5	1.5	362	7.4	2.0
18 Hour (2 tests)	75	0.62	0.67	0.66	0.09	86.9	18	40	0.050	10.9	0.13	1.58	292	5.4	1.8	362	8.5	2.3
12 Hour (3 tests)	75	0.62	0.62	0.73	0.11	85.7	12	40	0.047	11.0	0.09	1.83	292	6.0	2.1	362	7.4	2.0
8 Hour (2 tests)	75	0.62	0.68	0.64	0.10	85.0	8	40	0.049	10.9	0.13	2.04	292	3.6	1.2	362	5.9	1.6
Weighted Ave.		0.62	0.65	0.69	0.10	85.8	13	40	0.048	10.9	0.11	1.82	292	5.2	1.8	362	7.3	2.0

6A	115:21	Sheet (a)	C					, i = i = = = = = = = = = = =														
Ca	alculation sheet only						COMPOSIT	TE 8MT 0.6	•													
Sa	ample mass	g	693.7	652.4	695.3	667.4	695.3	672.6	- 678.6	695.9	697.5	686.2	683.4	653.9	698.2	672.3	708	696.2	667.4	690.6	657.3	677.6
Ve	essel + sample	g	1101.2	1060.2	1102.3	1075.7	1100.3	1080.1	1086.4	1104.3	1104.1	1094.1	1091	1060.9	1106.6	1078.9	1114.3	1103	1075.7	1098.1	1063.6	1084 4
In	vessel at A	g	1040.1	978.8	1044.7	1001.4	1044.3	1009.1	1617.5	1044.9	1046.5	1028.8	1025.9	981.3	1048	1007.7	1060.6	1047.3	1000.9	1034.9	987.7	1015.7
		ug Au	332.832	303.428	396.986	330.462	365.505	333.003	366.3	323.919	303.485	329.216	328.288	333.642	356.32	322.464	318.18	335.136	320.288	341.517	325.941	314.867
		mg Cu	1.66416	1.4682	1.98493	4.70658	1.87974	2.0182	1.72975	1.35837	1.2558	1.85184	1.84662	1.47195	1.8864	1.71309	1.48484	1.36149	1.40126	1.55235	1.58032	1.62512
		ug Zn	2912.28	2740.64	3238.57	3805.32	3446.19	3632.76	3663	2925.72	2720.9	3497.92	3590.65	3140.16	4087.2	3829.26	3181.8	3141.9	3403.06	3622.15	3852.03	3859.66
		g NaCN	0.488847	0.460036	0.501456	0.490686	0.511707	0.494459	0.498575	0.491103	0.50232	0.524688	0.523209	0.500463	0.51352	0.493773	0.519694	0.502704	0.530477	0.548497	0.503727	0.518007
		g CaO	0.031203	0.029364	0.052235	0.060084	0.052215	0.050455	0.050875	0.052245	0.052325	0.041152	0.051295	0.058878	0.06288	0.060462	0.05303	0.052365	0.050045	0.051745	0.059262	0.060942
Rei	moved in A	g	53.8	57.3	47.6	42.7	43.3	52.6	52.5	57.6	56.8	51.4	51.7	45.9	51.6	53.1	56.1	56.2	53.1	50.9	53.2	51.9
		ug Au	17.216	17.763	18.088	14.091	15.155	17.5	18.9	17.856	16.472	16.448	16.544	15.606	17.544	16.992	16.83	17.984	16.992	16.797	17.556	16.089
		mg Cu	0.08608	0.08595	0.09044	0.20069	0.07794	0.1052	0.08925	0.07488	0.06816	0.09252	0.09306	0.06885	0.09288	0.09027	0.07854	0.07306	0.07434	0.07635	0.08512	0.08304
		ug Zn	150.64	160.44	147.56	162.26	142.89	189.36	189	161.28	147.68	174.76	180.95	146.88	201.24	201.78	168.3	168.6	180.54	178.15	207.48	197.22
		g Nach	0.025286	0.026931	0.022848	0.020923	0.021217	0.025774	0.025725	0.027072	0.027264	0.026214	0.026367	0.023409	0.025284	0.026019	0.027489	0.026976	0.028143	0.026977	0.027132	0.026469
		g CaO	0.001614	0.001719	0.00238	0.002562	0.002165	0.00263	0.002625	0.00288	0.00284	0.002056	0.002585	0.002754	0.003096	0.003186	0.002805	0.00281	0.002655	0.002545		0.003114
In	vessel at 8	g	1040	970.1	1043.9	1001	1043.9	1008.6	1016.8	1043.5	1046.2	1028.4	1025.3	980.5	1047.3	1007.3	1061	1043.7	1000.4	1033.6	987.4	1015
		ug Au	353.6	329.834	407.121	410.41	386.243	342.924	376.216	344.355	324.322	359.94	348.602	343.175	366.555	342.482	350.13	354.858	340.136	320.416	315.968	324.8
		mg Cu	2.08	1.9402	2.60975	4.9049	2.29656	2.72322	2.44032	1.8783	1.88316	2.571	2.15313	1.86295	2.61825	2.31679	1.9098	1.66992	1.90076	1.96384	2.17228	2.233
		ug In	3432	3201.33	4175.6	4204.2	3862.43	4135.26	4168.88	3443.55	3243.22	3907.92	3998.67	3529.8	4712.85	4432.12	3501.3	3444.21	3801.52	4134.4	4838.26	
		g NaCN	0.468	0.436545	0.469755	0.47047	0.480194	0.45387	0.45756	0.490445	0.449866	0.473064	0.502397	0.47064	0.471285	0.453285	0.46684	0.469665		0.485792		0.47705
		g CaO	0.0312	0.038804		0.05005	0.031317	9.05043	0.05084	0.031305	0.031386	0.05142	0.061518	0.049025	0.062838	0.060438	0.03183	0.041748	0.05002	0.05168		0.0609
Rei	moved in B	g	57.8	56.3	49	44.1	46.6	53.4	53.5	56.7	55.1	49.7	48.8	42.8	53.9	53.1	56.3	56.2	48.7	47.6	54	53.7
		ug Au	19.652	19.142	19.11	18.081	17.242	18.156	19.795	18.711	17.081	17.395	16.592	14.98	18.865	18.054	18.579	19.108	16.558	14.756	17.28	17.184
		mg Cu	0.1156	0.1126	0.1225	0.21609	0.10252	0.14418	0.1284	0.10206	0.09918	0.12425	0.10248	0.08132	0.13475	0.12213	0.10134	0.08992	0.09253	0.09044	0.1188	0.11814
		ug Zn	190.74	185.79	196	185.22	172.42	218.94	219.35	187.11	170.81	188.86	190.32	154.08	242.55	233.64	185.79	185.46	185.06	190.4	264.6	274.91
		g NaCN	0.02601	0.025335	0.02205	0.020727	0.021436	0.02403	0.024075	0.026649	0.023693	0.022862	0.023912	0.020544	0.024255	0.023895	0.024772	0.02529	0.023376	0.022372	0.02538	0.025239
_	• . •	g CaO	0.001734	0.002252	0.00196	0.002205	0.001398	0.00267	0.002675	0.001701	0.001653	0.002485	0.002928	0.00214	0.003234	0.003186	0.001689	0.002248	0.002435	0.00238	0.00324	0.003222
In	vessel at C	9	1040	970.2	1043.1	1000.4	1043.1	1007.5	1015.6	1043.2	1045.8	1026.7	1024.5	979.4	1046.3	1006.2	1061.1	1042.8	999.6	1032	986.6	1013.7
		ug Au	343.2	320.166	385.947	380.152	427.671	332.475	365.616	333.824	324.198	349.078	348.33	342.79	366.205	342.108	339.552	344.124	339.864	319.92	315.712	314.247
		ang Cu	2.288	2.13444	3.02499	5.5022	3.02499	3.12325	2.94524	2.29504	2.0916	3.0901	2.76615	2.64438	3.34816	3.11922	2.1222	1.98132	2.59896	2.7864	2.76248	3.0411
		ug Zn	3640	3589.74	4485.33	5092	4693.95	4735.25	4773.32	3651.2	3555.72	4928.16	4712.7	4309.36	5545.39	5131.62	3819.96	3754.08	4598.16	4953.6	5130.32	5372.61
		g NaCN	0.4992	0.475398	0.500688	0.470188	0.490257	0.42315	0.436708 0.030468	0.511168	0.5229	0.451748	0.49176	0.430936	0.449909	0.432666	0.519939	0.510972	0.469812	0.47472		
0	mand in C	g CaO	0.0312	0.038808	0.041724	0.03002	0.031293	0.030225 57.8	58.2	0.031296	0.031374	0.051335	0.04098	0.04897	0.031389 56	0.030186 57.6	0.031833	0.031284	0.04998	0.0516	0.039464 59	0.040548 59.5
KE	moved in C	g a. An						19.074	20.952						19.6	19.584					18.88	18.445
		ug Au mg Cu						0.17918	0.16878						0.1792	0.17856					0.1652	0.1785
								271.66	273.54						296.8	293.76					306.8	315.35
		ug Zn						0.024276	0.025026						0.02408	0.024768					0.02537	0.025585
		g NaCH							0.023026						0.00168	0.001728					0.00236	0.00238
To.	unceni at N	g CaO						1007.9	1014						1045.8						986.4	1012.4
ш	vessel at D	g ug Au						312.449	344.76						334.656						305.784	303.72
	•	ng Cu						3.22528	3.2448							3.21728					2,9592	
		ug Zn						5039.5	5070						5647.32						5326.56	
		g NaCN						0.50395	0.507						0.5229						0.4932	
		g CaO						0.030237	0.03042							0.030162						0.030372
Res	sidue	ug Au	68.6	61.7545	76.5	71.4415	68.125	58.6	57.707	70.1	84.047	98.0865	76.9475	80.785	94.4145	88.1345	100.1435	100.5305	116.031	83.4395	106.3665	81.1855
Cal	lculated Head	ug Au	448.71	418.83	499.62	483.77	528.19	425.59	462.11	440.49	441.80	481.01	458.41	454.16	485.08	454.44	475.10			434.91	465.87	436.62
Sau	mple leached	g	693.7	652.4	695.3	667.4	695.3	672.6	678.6	695.9	697.5	686.2	683.4	653.9	698.2	672.3	708.0	696.2	667.4	690.6	657.3	677.6

BMT 0.8 Sheets 1-13 Calc.

BMT5726 BILLITON MT TODD MEATHERED	Sheet 1	7-Dec-89	NE LEARN AT	AND ONE THE		COMPOSITE	RMT A R							
STEELING IN TOOL MENTINEMEN	ONE BUILLE	NOCE CIPILI	AL CEMMINE	40	,		UIII V.C ,							
SUMMARY														
Test No. (% solids)	Units	3C		38	60	30	8 A	48	18	5C	7A	88	2 C	
Nominal Grind 80% passing		75	75	75	75	75	75	75	106	106	106	106	106	į
Total leach time	hours	8	8	12	12	12	18	18	8	8	12	12	12	
Extraction Au		. 70			4 70	4 76	A : 70		0.46	A 7A	A //	A /7	A /4	^
at 3 hours	g/t	0.78	0.81	0.79	0.72	0.72	0.75	0.73	0.69	0.70	0.64	0.63 0.67	0.64	0.
at 6 hours	g/t	0.81	0.84	0.84	0.76	0.76	0.77	0.77	0.74	0.70 0.71	0.68	V.0/	0.68	0.
at 8 hours	g/t	0.80	0.8 5	0.86	0.80	0.76	0.79	0.79	V./0	V./1	0.69	0.69	0.69	0.
at 12 hours	g/t			V.00	V.80	V./0	0.80	0.79			V.07	V.07	V.07	0.
at 18 hours	g/t	84.7	81.5	80.6	79.0	82.1	83.2	80.9	73.7	80.3	76.9	75.2	76.5	75
at 3 hours at 6 hours	1	88.0	84.7	84.8	83.4	86.4	85.8	84.7	78.8	79.3	80.8	80.4	80.3	79.
at 8 hours	1	87.0	85.8	04.0	00.7	00.7	03.0	04.7	80.8	81.3	00.0	W.1	00.0	
at 12 hours	•	07.0	03.0	87.0	87.3	87.1	87.7	86.7	Ų.Ų	01.0	82.4	82.1	82.2	82
at 18 hours	•			07.0	67.0	01.1	88.5	87.0					****	82
gr 10 lindi 2	•							01.0						-
Calculated Head	pom Au	0.92	0.99	0.99	0.91	0.88	0.90	0.91	0.94	0.88	0.84	0.84	0.84	0.1
Ground Head Assay 1	pom Au	0.84	0.90	0.81	0.86	0.77	0.83	0.84	0.80	0.84	0.86	0.87	0.80	0.1
Ground Head Assay 2	por Au	0.86	0.88	0.91	0.88	0.82	0.92	0.82	0.85	0.78	0.83	0.77	0.86	0.
Average Ground Head Assay	ppm Au	0.85	0.89	0.86	0.87	0.80	0.88	0.83	0.83	0.81	0.85	0.82	0.83	0.1
Calculated residue grade	ppm Au	0.12	0.14	0.13	0.12	0.11	0.10	0.12	0.18	0.16	0.15	0.15	0.15	0.
Extraction Cu			-											
at 3 hours	g/t	4.6	5.1	4.6	4.9	4.5	4.8	4.6	3.4	3.6	3.3	3.6	3.0	3
at 6 hours	g/t g/t	6.7	7.1	6.5	6.7	6.5	6.8	6.5	5.2	5.1	5.0	5.4	4.4	4.
at 8 hours	g/t	7.2	8.1	0.5	0.7	0.5	0.0	0.5	6.7	6.5	3.0	4.7	74.7	**
at 12 hours	g/t	1.4	0.1	8.4	8.9	8.0	9.2	8.7	• • •		7.2	8.0	6.2	6.
at 18 hours	g/t			0.1		0.10	10.1	9.2				•••	•••	7.
Assay Head	ppn Cu	310	(ave. of two	head spli	ts)									
	,													
Extraction In								_ 1						_
at 3 hours	g/t	3.0	3.0	3.0	3.0	3.0	3.0	3.0	2.7	2.7	2.7	2.7	2.5	2
at 6 hours	g/t	3.5	3.4	3.7	3.5	4.3	3.5	3.6	3.5	3.2	3.2	7.2	3.0	3.
at 8 hours	g/t	3.8	3.9						3.7	3.7				
at 12 hours	g/t			4.5	4.4	4.3	4.3	4.3			4.3	4.4	3.8	3,
at 18 hours	g/t			-			5.1	4.8						4
Assay Head	ppa Zn	208	lave. of two	head spli	ts)									
NaCN consumption														
at 3 hours	kg/t	0.08	0.09	0.08	0.06	0.06	0 .0 5	0.05	0.02	0.03	0.02	0.02	0.03	0.
at 6 hours	kg/t	0.07	0.06	0.06	0.08	0.08	0.09	0.06	0.04	0.06	0.01	0.02	0.06	0.
at 8 hours	kg/t	0.11	0.10						0.06	0.09				
at 12 hours	kg/t		****	0.13	0.16	0.10	0.17	0.13			0.08	0.08	0.09	0.0
at 18 hours	kg/t						0.13	0.13						0.
												•		
CaD consumption														
at 3 hours	kg/t	2.10	2.04	1.93	1.96	2.07	1.96	1.91	1.91	1.97	1.84	1.85	1.96	1.
at 6 hours	kg/t	2.10	2.03	1.92	1.%	2.06	1.97	1.92	1.90	1.98	1.83	1.85	1.95	1.
at 8 hours	kg/t	2.12	2.03						1.91	1.99				
at 12 hours	kg/t			1.92	1.%	2.07	1.98	1.93			1.84	1.84	1.95	1.
at 18 hours	kg/t						1.99	1.92						1.
Actual grind passing nomin	ated um (%)	87.3	83.3	81.2	81.7	82.1	82.1	81.5	79.4	80.7	78.3	78.8	80.6	79

BMT5726 BILLITON HT TODO MEATHER	Sheet 2 ED ORE BOTTLE	ROLL CYANII	6-Dec-89 De Leach at	1 40% SOLIE	s. ;	COMPOSITE	8NT 0.8								
tests conducted (date) Test No. (% solids) Grind 80% passing	Units un	9/11 3C 75	9/11 60 75 8	9/11 38 75	9/11 6C 75	9/11 30 75	9/11 8A 75	9/11 48 75 18	13/11 18 106	13/11 50 106	13/11 7A 106	13/11 88 106	13/11 20 106	13/11 6A 106	13/11 40 106
Total leach time	hours	8		12	12	12	18	******	8	8 	12	12	12	18	18
Vessel Sample mass	. g g	407.6 479.0	407.? 496.9	407.0 524.8	408.6 503.4	408.5 486.9	406.5 502.6	406.0 525.6	405.3 506.1	407.0 486.7	408.6 514.0	407_0 503.3	407.2 474.2	408.0 507.0	408.1 487.4
Sitewater added Natural pH	9	718	745	787	755	730	754	788	759	730	771	755	711	760	731
CaD added	g	1.05	1.05	1.05	1.03	1.05	1.04	1.06	1.01	1.01	1.00	0.97	0.98	0.95	0.98
HaCH added Leach Time	9	0.39	0.40	0.42	0.41	0.40	0.41	0.42	0.41	0.40	0.42	0.41	0.39	0.41	0.40
Gross off rolls	hrs g	3 1604.8	3 1649.8	3 1718.8	3 1666.8	3 1625.6	3 1662.6	3 1721.4	3 1670.4	3 1623.7	3 1693.5	3 1665.5	3 1592.5	3 1675.5	3 1626.6
Pulp temperature	deg C	26	26	26	26	26	26	26	22	22	22	22	22	22	22
Liquor sample A	pH	11.3	11.3	11.3	11.3	11.4	11.4	11.2	11.5	11.5	11.5	11.5	11.6	11.6	11.6
	pre Au	0.52	0.54	0.53	0.48	0.48	0.50	0.49	0.46	0.47	0.43	0.42	0.43	0.44	0.44
	ppe Cu ppe In	3.1 2.0	3.4 2.0	3.1 2.0	3.3 2.0	3.0 2.0	3.2 2.0	3.1 2.0	2.3 1.8	2.4 1.8	2.2 1.8	2.4 1.6	2.0 1.7	2.0 1.6	1.9 1.7
	1 NaCH	0.049	0.048	0.048	0.050	0.051	0.051	0.050	0.053	0.053	0.053	0.053	0.053	0.052	0.053
	% CaO	0.006	0.005	0.005	0.006	0.006	0.007	0.007	0.006	0.007	0.007	0.005	0. 00 7	0.007	0.009
Gross after sample can added	9	1549.5	1592.5	1662.8	1608.4	1572.3	1608.9	1668.1	1617.8	1570.2	1636.0	1612.9	1540.2	1623.4	1574.3
NaCN added	g ·	0.00 0.00	0.00 0.00	0.00 0.06	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0. 0 0 0. 0 0	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00
Leach time	hrs	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Gross off rolls	g	1605.0	1649.7	1718.6	1666.6	1625.4	1662.5	1721.2	1670.4	1623.5	1693.3	1665.3	1592.3	1675.3	1626.5
Pulp temperature	deg C	25	26	26	26	26	26	26	24	24	24	24	24	24	24
Liquor sample B	phi ppe Au	11.3 0.50	11.3 0.52	11.3 0.52	11.3 0.47	11.4 0.47	11.4 0.48	11.2 0.48	11.3	11.3 0.43	11.3 0.42	11.3 0.42	11.4 0.42	11.4 0.43	11.5 0.42
	ppe Ou	4.2	4.5	4.1	4.2	4.1	4.3	4.1	3.3	3.2	3.2	3.4	2.8	2.8	2.9
	spe In	2.2	2.1	2.3	2.2	2.7	2.2	2.3	2.2	2.0	2.0	4.7	1.9	1.9	2.0
	* NaCN	0.046	0.046	0.046	0.045	0.046	0.045	0.046	0.048	0.047	0.050	0.049	0.047	0.050	0.049
Gross after sample	% CaO	0. 00 6 1555.9	0.005 1596.2	0.005 1665.3	0. 005 1613.1	0.006 1572.4	0. 00 6 1612.2	0.006 1667.8	0.006 1616.4	0.006 1570.0	0.007 1640.4	0.005 1612.0	0.007 1540.0	0.007 1623.1	0.007 1574.5
Call added	g g	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NaCN added	g	0.03	0.03	0.03	0.04	0.03	0.04	0.03	0.02	0.02	0.00	0.01	0.02	0.00	0.01
Leach time	hrs	2	2	6	6	6	6	6	2	2	6	6	6	6	6
Gross off rolls Pulp temperature	g ása C	1604.7 26	1649.7 26	1718.4 25	1666.5	1625.3	1662.3 25	1721.0 25	1670.4	1623.9 24	1693.1 23	1665.3 23	1592.3	1675.2	1626.4 23
Liquor sample C	cieg C pH	11.3	26 11.3	11.2	25 11.2	25 11.4	11.3	11.3	24 11.3	24 11.3	23 11.3	25 11.3	23 11.4	23 11.4	23 11.5
21423. 2	ppm Au	0.46	0.49	0.50	0.46	0.44	0.46	0.46	0.44	0.41	0.40	0.40	0.40	0.42	0.41
	pon Cu	4.3	4.8	5.1	5.4	4.8	5.6	5.3	4.1	3.9	4.4	4.9	3.8	3.8	4.1
	ppm Zn	2.2	2.3	2.7	2.6	2.5	2.6	2.6	2.2	2.2	2.6	2.5	2.3	2.2	2.3
	1 NaCN 1 CaO	0.044 0.004	0.044 0.005	0.042 0.005	0. 04 2 0. 00 5	0.045 0.005	0.042 0.005	0. 04 2 0.605	0.045 0.005	0.044 0.005	0.042 0.006	0.043 0.005	0.044 0.007	0.043 0.005	0.045
Gross after sample	9	V	0.005	0,000	0.003	0.000	1609.4	1669.1	7.003	0.200	0.000	0.003	v	1636.7	1574.1
Ca@ added	9						0.00	0.00						0.00	0.00
NaCN added	g						0.06	0.06						0.00	0.00
Leach time Gross off rolls	hrs g						6 1665.8	6 1723.4						6 1692.8	6 1626.2
Pulp temperature	deg C						22	22						21	21
Liquor sample D	pH ·						11.3	11.3						11.3	11.4
	ppm Au						0.43	0.43						0.39	0.39
	ppm Cu ppm Zn						5.8 2.9	5.3 2.7						- 4.5 2.4	4.2 2.4
	% NaCN						0.049	0.047						0.040	0.043
	% CaO						0.904	0.005						0.006	0.006
Sample mass account	- 41 -	, e	100	rn: -		407 -		PA		407 -	• •				
Residue recovered (screen Ground head to assay	-	475.3 76.7	493.4 85.0	521.5 88.9	500.3 88.8	484.5 83.1	500.1 88.3	521.3 83.1	507.3 99.8	485.0 82.1	511.0 83.5	500.7 93.7	476.2 85.8	503.1 85.5	482.0 79.1
Calculated head to grind	g g	552.0	578.4	610.4	589.1	567.6	588.4	604.4	607.1	567.1	594.5	594.4	63.6 562.0	83.5 588.6	79.1 561.1
Actual head to grind	g	555.7	581.9	613.7	592.2	570.0	590.9	608.7	605.9	568.8	597.5	597.0	560.0	592.5	566.5
Unaccounted mass	*	0.67	0.60	0.54	0.52	0.42	0.42	0.71	-0.20	0.30	0.50	0.44	-0.36	0.66	0.95

- 53

Calculated

350.3 72.3

484.5 100.0

BMT5726 Sheet 3 6-Dec-89 BILLITON NT TOOD MEATHERED ORE BOTTLE ROLL CYANIDE LEACH AT 40% SOLIDS. COMPOSITE BAT 0.8 ; Leach Residue Gold Distribution Particle size Mass Mass & Cum. Mass Assay Assay Ave. assay Contents Distrib'n
um g Retained Passing ppm Au ppm Au ppm Au ug Au & & g Retained Passing pom Au pom Au pom Au ug Au Au \$ 3C Nom. P80um 75 Leach hrs 8 ÷ 150 - 150 + 106 - 150 + 106 - 106 + 75 - 75 + 53 - 53 - 53 - 53 - 53 - 60.5 - 12.7 - 87.3 - 12.7 - 87.3 - 75.5 - 0.0 100.0 0.28 16.94 29.5 0.21 11.72 20.4 0.08 28.72 50.1 Calculated 475.3 100.0 0.12 57.4 Test No. 6D Nom. P80um 75 Leach hrs 8 + 150 - 150 + 106 0.0 100.0 - 150 + 106 - 106 + 75 - 75 + 53 - 75 + 53 - 53 - 75 + 53 - 41.8 0.20 10.20 14.6 Calculated 493.4 100.0 0.14 70.1 100.0 Test No. 3B Nom. P80um 75 Leach hrs 12 + 150 97.8 18.8 81.2 0.30 0.33 0.32 47.1 9.0 72.2 0.30 - 150 + 106 - 106 + 75 30.81 45.9 - 75 + 53 47.1 9.0 72.2 0.21 0.21 9.89 14.7 - 53 376.6 72.2 0.07 0.07 0.07 26.36 Calculated 521.5 100.0 0.13 67.1 100.0 60 Nom. P80um 75 Leach hrs 12 Test No. + 150 - 150 + 106 0.0 100.0 91.8 18.3 81.7 - 106 + 75 0.26 0.29 0.28 25.25 43.3 - 75 + 53 48.6 9.7 71.9 0.20 0.20 9.72 16.7 359.9 71.9 - 53 0.07 0.05 0.07 23.39 40.1 Calculated 500.3 100.0 0.12 58.4 100.0 Test No. 3D Nom. P80um 75 Leach hrs 12 + 150 - 150 + 106 0.0 100.0 17.9 - 106 + 75 86.8 82.1 0.27 0.28 0.26 23.44 42.4 0.19 - 75 + 53 9.8 72.3 47.4 9.01

0.19

0.07

22.77

6.11 55.2

0.06

0.07

16.3

41.2

100.0

BMT5726 Sheet 4 6-Dec-89
BILLITON NT TODD MEATHERED ORE BOTTLE ROLL CYANIDE LEACH AT 40% SOLIDS.

COMPOSITE BHT 0.8 ;

Particle size	Nass g	Retained	Passing	ppm Au	ppm Au	ppm Au	Contents ug Au	Distrib' Au %
Test Ho.	8A							
+ 150								
- 150 + 106		0.0	100.0					
- 106 + 75	89.6	17.9	82.1	0.24 0.19	0.23	0.24	21.06	40.
- 75 + 53	50.8	10.2	71.9	0.19		0.19	9.65	18.
- 53	359.7	71.9		0.06	0.06	0.06	21.58	41.
Calculate:	500.1	100.0				0.10	52.3	100.
Test No.	48	Nom. P80um	75	Leach hrs	18			
+ 150								
- 150 + 106	•	0.0	100.0					
	96.5	18.5	81.5	0.30	0.26	0.28	27.02	43.
- 75 + 53	53.3	10.2	71.3	0.17		0.17	9.06	14.6
- 53	371.5	71.3		0.17 0.07			26.01	41.9
Calculated	521.3	100.0				0.12	62.1	100.0
	18							
+ 150				0.50		0.50	20.05	22.0
	64.5						20.64	
- 106 + 75								
- 75 + 53	43.1	8.5	58.3	0.50		0.30	12.93	14.2
- 53	295.7	58.3		0.26 0.50 0.0 _ნ	0.08	0.07	20.70	22.8
Calculated	507.3	100.0					90.9	
Test No.	5C	Nom. P80um	106	Leach hrs	8			
+ 150	31.5	6.5	93.5	0.51		0.51	16.07	20.1
- 150 + 106	62.0	12.8	80.7	0.30			18.60	
- 150 + 106 - 106 + 75 - 75 + 53	62.5	12.9	67.8	0.26		0.26	16.25	20.3
- 75 + 53	44.5	9.2	58.7	0.27		0.27	12.02	15.0
- 53	284.5				0.06			21.3
Calculated	485.0					0.16		100.0
Test No.	7A	Non. P80um			12			
+ 150	45.5	8.9		0.37	•	0.37	16.84	22.2
- 150 + 106	65.3	10.0	70 7	A 7A		0.30	19.59	25.8
- 106 + 75	63.1	12.3	66.0	0.25		0.25	15.78	20.8
- 75 + 53	40.7	8.0	58.0	0.22		(22	8.95	11.8
- 53	296.4	58.0		0.06	0.04	0.05	14.82	19.5

1370

BMT5726 Sheet 5 6-Dec-89
BILLITON MT 1000 MEATHERED ORE BOTTLE ROLL CYANIDE LEACH AT 40% SOLIDS.

COMPOSITE BHT 0.8

Particle size	g	Retained	Passing	ppm Au	ppe Au	ppm Au	ug Au	
Test No.	88	Nom. P80um	106	Leach hrs	12			
+ 150	42.0						19.74	26.2
	64.3	12.8	78.8	0.27		0.27		23.0
- 106 + 75	62.7	12.5	66.2	0.21		0.21	13.17	17.5
- 75 + 53	41.7	8.3	57.9	0.22		0.22	9.17	12.2
- 53	290.0	12.5 8.3 57.9		0.06	0.05	0.06	15.95	21.2
Calculated	500.7	100.0				0.15	75.4	100.0
Test No.	2 C	Nos. P80um	106	Leach hrs	12			
+ 150	33.3	7.0	93.0	0.44		0.44	14.65	20.6
- 150 + 106	59.2	12.4	80.6	0.28		0.28	£9.58	20.6 23.3
- 106 + 75	59.2 59.4	12.5		0.24		0,24	14.2€	20.1
- 75 + 53	40.7	8.5	59. մ	0.21		0.∠1	8.55	12.0
- 53	283.6	6.5 59.6		0.06	0.06	0.06	17.02	24.0
Calculated	476.2	100.0			*****	0.15	71.0	100.0
Test No.	6A	Non. P80um	106	Leach hrs	19			
+ 150	37.0	7.4	92.6	0.45		0.45	16.65	21.3
- 150 + 106	64.4	12.8	79.8	0.31		0.31	19.96	25.5
- 106 + 75	63.0	12.5	67.3	0.21		0.21	13.23	16.9
	43.3			0.21		0.21	9.09	11.6
- 53	295.4	58.7		0.07	0.06	0.21 0.07	19.20	24.6
Calculated		100.0				0.16		
iest No.	4 D	Non. P80um	106	Leach hrs	18			
+ 150	32.1	6.7	93.3	0.41		0.41	13.16	16.9
- 150 + 106	60.6	12.6	80.8	0.22		0.22	13.33	
- 106 + 75	59.4	12.3	68.4	0.23		0.23	13.66	17.5 11.6
- 75 + 53	59.4 42.9	8.9	59.5	0.21				
- 53	287.0	59.5		0.10	0.10	0.10	28.70	36.9
Calculated		100.0					77.9	100.0
rest No.	4 A	Nom. P80um						
+ 150	102.9	18.6	81.4	0.41	0.36			
- 150 + 106	72.8	13.1	68.3	0.36	0.39	0.38	27.30	
- 106 + 75	58 .6	10.6 6.5	57.7	0.23		0.23	13.48	12.5
- 75 + 53	35.9	6.5	51.2				10.05	
- 53	283.9	51.2		0.06	0.06	0.06	17.03	15.8
		100.0	****			0.19	*****	100.0

BMT5726 Sheet 6 6-Dec-89
BILLITON MT TODD MEATHERED ORE BOTTLE ROLL CYANIDE LEACH AT 40% SOLIDS.

COMPOSITE BHT 0.8

Particle size ym	đ	Retained	Passino	DOM: Au	.DDM AU	DOM AU	ug Au	Au t
Test No.	58		150	Leach hrs	8			****
+ 150	91.9	18.6		0.57			51.92	46.5
- 150 + 106						0.28	17.81	16.1
- 106 + 75	52.4	10.6	58.0	0.38		0.38	19.91	18.0
- 75 + 53	34.1	6.9	51.1	0.21		0.21	7.16	/ 5
- 53	52.4 34.1 253.1	51.1		ũ., j	0.05	0.06	13.92	::.:
Calculated		100.0						100.0
Test No.	1A							
+ 150	102.6	20.2				0.44	44.63	50.6
- 150 + 106	64.1	12.6	67.2	0.23		0.23		
- 150 + 106 - 106 + 75 - 75 + 53	52.3	10.3	56.9	0.23		0.23	12.03	16.7 13.6
- 75 + 53	32.9	6.5	50.5	0.20		0.20	6.58	7.5
- 53	256.6	50.5		0.04	0.04	0.04	10.26	11.6
Calculated	508.5	100.0	******	*******	****	0.17		100.0
Test No.	70	Nom. P80um	150	Leach hrs	12			
+ 150 - 150 + 106 - 106 + 75	99.8	19.6	80.4	0.45	0.48	0.47	46.41	52.6
- 150 + 106	65.2	12.8	67.7	0.22		0.22	14.34	16.3
- 106 + 75	53.9	10.6	57.1	0.20		0.20	10.78	12.2
- 75 + 53	33.1	6.5	50.6	0.19		0.19	6.29	7.1
- 53	258.4	50.6		0.04	0.04	0.04	10.34	11.7
Calculated	510.4	100.0					88.2	100.0
Test No.								
+ 150	89.5	18.5	81.5	0.49		0.49	43.86	47.8
- 150 ± 106	60.4	12.5	69.1	0.26		0.26	15.70	17.1
- 106 + 75	51.3	10.6	58.5	0.25				
- 75 + 53	32.1	6.6	51.9	0.17		0.17	5.46	6.0
- 53	251.6	51.9		0.06	0.05	0.06	13.84	15.1
Calculated	484.9						91.7	100.0
lest No.	10	Nom. P80um	150 L	each hrs	18			
+ 150	90.6	18.6	81.4	0.42	0.42	0.42	38.05	45.2
- 150 + 106		12.6					14.76	
- 106 + 75			SR 4	0.21		0.21		
- 75 + 53	33.3	6.8	51.6	0.21		A 21	K 00	gτ
- 53	251.2	51.6	-=	0.05	0.06	0.06	13.82	16.4
Calculated		100.0		A+		0_17	84.2	100.0

BMT5726	Sheet 7	7-Dec-89								
BILLITON MT TOOD MEATHERED	ORE BOTTLE	ROLL CYANIDE LI		SOLIDS.	,	100= 100····			300-150···	
COMPOSITE BHT 0.8 C		!	P80=75um	!		180=106um	!		780=150um	
Test No. (% solids)	Units	Ave.	Max	Min	Ave.	Max	Min	Ave.	Max	Min
Nominal Grind 80% passing	UM	; 75	75	75	106	106	106	150	150	150
Total leach time	hours	12.6	18.0	8.0	12.6	18.0	8.0	12.7	18.0	8.0
Extraction Au		;		;			;			
at 3 hours	g/t	0.76	0.81	0.72	0.66	0.70	0.63	0.64	0.67	0.60
at 6 hours	g/t	0.79	0.84	0.76	0.69	0.74	0.67	0.69	0.71	0.67
at 8 hours	g/t	0.83	0.85	0.80	0.74	0.76	0.71	0.71	0.72	0.70
at 12 hours	g/t	0.80	0.86	0.76	0.70	0.72	0.69	0.70	0.72	0.69
at 18 hours	g/t	0.79	0.80	0.79	0.72	0.72	0.72	0.72	0.72	0.72
at 3 hours	*	81.7	84.7	79.0	76.1	80.3	73.7	71.3	73.5	67.4
at 6 hours	*	85.4	88.0	83.4	79.3	80.8	76.9	76.7	78.5	74.7
at 8 hours	*	86.4	87.0	85.8	81.1	81.3	80.8	77.5	78.5	76.5
at 12 hours	*	87.2	87.7	86.7	81.9	82.4	80.3	79.6	80.7	78.8
at 18 hours	1	87.7	88.5	87.0	82.1	82.4	81.9	80.0	80.7	79.2
Calculated Head	ppm Au	0.93	0.99	0.88	0.87	0.94	0.84	0.90	0.95	0.86
Ground Head Assay 1	ppm Au	0.84	0.90	0.77	0.82	0.87	0.76	0.88	1.01	0.77
Ground Head Assay 2	ppm Au	0.87	0.92	0.82	0.81	0.86	0.77 ¦	0.88	1.03	0.75
Average Ground Head Assay	ppm Au	0.85	0.89	0.80	0.81	0.85	0.77	0.88	1.02	0.76
Calculated residue grade	ppm Au	0.12	0.14	0.10	0.16	0.18	0.15	0.19	0.22	0.17
Extraction Cu		i !		į			, ;			
at 3 hours	g/t	4.8	5.1	4.5 ¦	3.3	3.6	2.9	4.0	4.9	3.2
at 6 hours	g/t	6.7	7.1	6.5	4.9	5.4	4.4	5.8	7.1	4.6
at 8 hours	g/t	7.7	8.1	7.2	6.6	6.7	6.5	7.8	7.8	7.7
at 12 hours	g/t	8.6	9.2	8.0	6.8	8.0	6.2	7.3	8.6	6.4
at 18 hours	g/t	9.7	10.1	9.2	7.5	7.7	7.2	9.0	9.5	8.5
Assay Head	ppa Cu	† † †		!						
Extraction In		† ! !		!						
at 3 hours	g/t	3.0	3.0	3.0 ¦	2.6	2.7	2.4	3.0	3.3	2.9
at 6 hours	g/t	3.6	4.3	3.4 ¦	3.8	7.2	3.0	4.6	10.1	3.3
at 8 hours	g/t	3.8	3.9	3.8 ¦	3.7	3.7	3.7	4.3	4.6	3.9
at 12 hours	g/t	4.4	4.5	4.3	4.0	4.4	3.7	4.3	4.6	4.0
at 18 hours	g/t	¦ 4.9	5.1	4.8	4.2	4.2	4.2	5.0	5.2	4.8
Assay Head	ppm Zn	4 † 1 •								
NaCM consumption		† 1 1 1		1			1			
at 3 hours	kg/t	0.07	0.09	0.05	0.02	0.03	0.02	0.05	0.07	0.04
at 6 hours	kg/t kg/t	0.07	0.09	0.06	0.02	0.06	0.02	0.03 0.04	0.06	0.02
at 8 hours	kg/t	0.07	0.09	0.10	0.08	0.05	0.06	0.10	0.11	0.02
at 12 hours	kg/t kg/t	0.11	0.17	0.10	0.08	0.09	0.06	0.10	0.10	0.07
at 18 hours	kg/t	0.13	0.13	0.13	0.05	0.06	0.04	0.10	0.10	0.08
		; ; ;								
CaO consumption		!		1						
at 3 hours	kg/t	1.99	2.10	1.91	1.88	1.97	1.77	1.83	1.91	1.73
at 6 hours	kg/t	1.99	2.10	1.92	1.88	1.98	1.76	1.84	1.93	1.75
at 8 hours	kg/t	2.07	2.12	2.03	1.95	1.99	1.91	1.86	1.92	1.80
at 12 hours	kg/t	1.97	2.07	1.92	1.86	1.95	1.78	1.83	1.92	1.76
at 18 hours	kg/t	1.96	1.99	1.92	1.83	1.90	1.76	1.87	1.92	1.83
Actual grind passing nomina	ted um (%)	82.7	87.3	81.2	79.8	80.8	78.3	81.0	81.5	79.8

Sample Identification	Grind P80 um	Head ppm Au	+ 150 ppm Au	+ 106 ppm Au	f 75 ppm Au	+ 53 ppm Au	- 53 ppn Au
3C	75	0.12	0.00	0.00	0.28	0.21	0.08
60	75	0.14	0.00	0.00	0.36	0.20	0.09
Average		0.13	0.00	0.00	0.32	0.21	0.08
19	106	0.18	0.50	0.32	0.26	0.30	0.07
5C	106	0.16	0.51	0.30	0.26	0.27	0.06
Average		0.17	0.51	0.31	0.26	0.29	0.07
4A	150	0.19	0.39	0.38	0.23	0.28	0.06
58	150	0.22	0.57	0.28	0.38	0.21	0.06
Average		0.21	0.48	0.33	0.31	0.25	0.06

Summary of 12 hour Residue Size Fraction Assays

Sample Identification	Grind P80 um	Head ppm Au	+ 150 .ppm Au	† 106 ppm Au	+ 75 ppm Au	+ 53 ppm Au	- 53 ppn Au
38	75	0.13	0.00	0.00	0.32	0.21	0.07
6C	75	0.12	0.00	0.00	0.28	0.20	0.07
30	75	0.11	0.00	0.00	0.27	0.19	0.07
Average		0.12	0.00	0.00	0.29	0.20	0.07
7 A	106	0.15	0.37	0.30	0.25	0.22	0.05
88	106	0.15	0.47	0.27	0.21	0.22	0.06
2C	106	0.15	0.44	0.28	0.24	0.21	0.06
Average		0.15	0.43	0.28	0.23	0.22	0.06
1A	150	0.17	0.44	0.23	0.23	0.20	0.04
70	150	0.17	0.47	0.22	0.20	0.19	0.04
Average		0.17	0.45	0.23	0.22	0.20	0.04

Summary of 18 hour Residue Size Fraction Assays

Sample Identification	Grind P80 UM	Head ppm Au	† 150 ppn Au	† 106 ppm Au	+ 75 ppm Au	+ 53 ppm Au	- 53 ppm Au
8A	75	0.10	0.00	0.00	0.24	0.19	0.0
48	75	0.12	0.00	0.00	0.28	0.17	0.0
Average		0.11	0.00	0.00	0.26	0.18	0.0
6 A	106	0.16	0.45	0.31	0.21	0.21	0.0
4D	106	0.16	0.41	0.22	0.23	0.21	0.1
Average		0.16	0.43	0.27	0.22	0.21	0.0
7C	150	0.19	0.49	0.26	0.25	0.17	0.0
1D	150	0.17	0.42	0.24	0.21	0.21	0.0
Average		0.18	0.46	0.25	0.23	0.19	0.0

BMT5726 Sheet 9 6-Dec-89
BILLITON HT TODD MEATHERED ORE BOTTLE ROLL CYANIDE LEACH AT 40% SOLIDS.

COMPOSITE BHT 0.3 !

Summary of Residue Size Fraction Assays

Leach Time	Grind P80 Um	Head ppm Au	+ 150 ppm Au	+ 106 ppm Au	† 75 ppm Au	+ 53 ppm Au	- 53 ppm Au
18 Hour (2 tests)	150	0.18	0.46	0.25	0.23	0.19	0.06
12 Hour (2 tests)	150	0.17	0.45	0.23	0.22	0.20	0.04
8 Hour (2 tests)	150	0.21	0.48	0.33	0.31	0.25	0.06
Weighted Ave.		0.19	0.46	0.27	0.25	0.21	0.05
18 Hour (2 tests)	106	0.16	0.43	0.27	0.22	0.21	0.08
12 Hour (3 tests)	106	0.15	0.43	0.28	0.23	0.22	0.06
8 Hour (2 tests)	106	0.17	0.51	0.31	0.26	0.29	0.07
Weighted Ave.	*****	0.16	0.45	0.29	0.24	0.23	0.07
18 Hour (2 tests)	75	0.11	0.00	0.00	0.26	0.18	0.07
12 Hour (3 tests)	75	0.12	0.00	0.00	0.29	0.20	0.07
8 Hour (2 tests)	75	0.13	0.00	0.00	0.32	0.21	0.08
Weighted Ave.	*****	0.12	0.00	0.00	0.29	0.20	0.07

Summary of 8 hour Residue Size Fraction Gold Distribution

Sample Identification	Grind P80 um	Head ppm Au	+ 150 \$	+ 106 \$	+ 75 *	+ 53 \$	- 53 ,\$
3C	75	0.12	0.0	0.0	29.5	20.4	50.1
60	75	0.14	0.0	0.0	41.8	14.6	43.7
Average		0.13	0.0	0.0	35.6	17.5	46.9
. 18	106	0.18	22.0	22.7	18.3	14.2	22.8
5C	106	0.16	20.1	23.3	20.3	15.0	21.3
Average		0.17	21.1	23.0	19.3	14.6	22.1
46	150	0.19	36.9	25.4	12.5	9.4	15.8
SB	150	0.22	46.9	16.1	18.0	6.5	12.6
Average	******	0.21	41.9	20.7	15.3	7.9	14.2

Summary of 12 hour Residue Size Fraction Gold Distribution

Sample Identification	Grind P80	Head ppm Au	+ 150 *	+ 106 \$	+ 75 \$	+ 53	- 53 1
38	75	0.13	0.0	0.0	45.9	14.7	39.3
6C	75	0.12	0.0	0.0	43.3	16.7	40.1
30	75	0.11	0.0	0.0	42.4	16.3	41.2
Average		0.12	0.0	0.0	43.9	15.9	40.2
 7A	106	0.15	22.2	25.8	20.8	11.8	19.5
88	106	0.15	26.2	23.0	17.5	12.2	21.2
2 C	106	0.15	20.6	23.3	20.1	12.0	24.0
Average		0.15	23.0	24.0	19.4	12.0	21.5
14	150	0.17	50.6	16.7	13.6	7.5	11.6
70	150	0.17	52.6	16.3	12.2	7.1	11.7
Average		0.17	51.6	16.5	12.9	7.3	11.7

Summary of 18 hour Residue Size Fraction Gold Distribution

Sample Identification	Grind P80	Head ppm Au	+ 150	+ 106 *	+ 75	+ 53	- 53 \$
8A	75	0.10	0.0	0.0	40.3	18.5	41.3
4B	75	0.12	0.0	0.0	43.5	14.6	41.9
Average		0.11	0.0	0.0	41.9	16.5	41.6
6 A	106	0.16	21.3	25.5	16.9	11.6	24.6
40	106	0.16	16.9	17.1	17.5	11.6	36.9
Average		0.16	19.1	21.3	17.2	11.6	30./
7C	150	0.19	47.8	17.1	14.0	6.0	15.1
10	150	0.1.	45.2	17.5	12.5	8.3	16.4
Average		0.18	46.5	17.3	13.3	7.1	15.8

BMT5726

BMT5726 Sheet 11 6-Dec-89
BILLITON HT TOOD MEATHERED ORE BOTTLE ROLL CYANIDE LEACH AT 40% SOLIDS.

Summary of Residue Size Fraction Gold Distribution

Leach Time	Grind P80 Um	Head ppm Au	+ 150 •	† 106 *	+ 75 \$	+ 53	- 53 t
18 Hour (2 test	ts) 150	0.18	46.5	17.3	13.3	7.1	15.8
12 Hour (2 test	ts) 150	0.17	51.6	16.5	12.9	7.3	11.7
8 Hour (2 test	ts) 150	0.21	41.9	20.7	15.3	7.9	14.2
Woighted Ave.		0.19	46.7	18.2	13.8	7.4	13.9
18 Hour (2 test	ts) 106	0.16	19.1	21.3	17.2	11.6	30.7
12 Hour (3 test	(s) 106	0.15	23.0	24.0	19.4	12.0	21.5
€ Hour (2 test	is) 106	0.17	21.1	23.0	19.3	14.6	22.1
Weighted Ave.		0.16	21.3	23.0	18.8	12.6	24.3
18 Hour (2 test	s) 75	0.11	0.0	0.0	41.9	16.5	41.6
12 Hour (3 test	s) 75	0.12	0.0	0.0	43.9	15.9	40.2
8 Hour (2 test	s) 75	0.13	0.0	0.0	35.6	17.5	46.9
Weighted Ave.		0.12	0.0	0.0	41.0	16.5	42.5

BNT5726 Sheet 12 7-Dec-89
BILLITON NT TOOD MEATHERED ORE BOTTLE ROLL CYANIDE LEACH AT 404 SOLIDS.

COMPOSITE BHT 0.8 :

Summary of L.S.& A. 8 - Hour Bottle Roll Leach Test Results

ample Identification	Grind P80	Head : Assay	Grade Sround	Au i Calc'd	each Resuli Residue	ts	Ł	each Parame	iters		Reagen Consumpt		Cu Lea Assay	ch Results		In Lea Assay	nch Results	
	us	Comp. ppm Au	Head ppn Au	Head ppm Au	Solids ppm Au	Extr'n	Time Hours	Pulp % Solids	¥ NaCH	pH	NaCN kg/t	CaO kg/t	Head ppn	Extract g/t	ion 1	Head ppm	Extracti g/t	ion 1
3C	75	0.79	0.85	0.92	0.12	87.0	8	40	0.044	11.3	0.11	2.12	310	1.2	2.3	208	3.8	1.
60	75	0.79	0.89	0.99	0.14	85.8	8	40	0.044	11.3	0.10	2.03	310	8.1	2.6	208	3.9	1.
Average		0.79	0.87	0.%	0.13	86.4	8	40	0.044	11.3	0.11	2.07	310	1.1	2.5	208	3.8	1.
18	106	0.79	0.83	0.94	0.18	80.8	8	40	0.045	11.3	0.06	1.91	310	6.7	2.2	208	3.7	1.1
5C	106	0.79	18.0	0.88	0.16	81.3	8	40	0.044	11.3	0.09	1.99	310	6.5	2.1	208	3.7	1.
Average		0.79	0.82	0.91	0.17	81.1	8	40	0.045	11.3	0.08	1.95	310	6.6	2.1	208	3.7	1.0
4 A	150	0.79	1.02	0.89	0.19	78.5	8	40	0.045	11.2	0.09	1.80	310	7.8	2.5	208	4.6	2.3
58	150	0.79	0.93	0.95	0.22	76.5	8	40	0.042	11.2	0.11	1.92	310	1.7	2.5	208	3.9	1.
Average		0.79	0.97	0.92	0.21	77.5	8	40	0.044	11.2	6.10	1.86	310	7.8	2.5	208	4.3	2.

Summary of L.S.& A. 12 - Hour Bottle Roll Leach Test Results

Sample Identification	Grind P90 um	Head Assay	Grade Ground	Au L Calc'd	each Resul Residue	ts	ι	each Parame	ters	_	Reagen Consumpt		Cu Lea Assay	ch Results		In Lea Assay	sch Results	i
		Comp.	Head	Head	Solids	Extr'n	Time	Pulp	- \$		NaCN	CaO	Head	Extract	ion	Head	Extract	ion
		DOB AU	ppm Au	pps Au	pps Au	*	Hours	t Solids	MacH	pH .	kg/t	kg/t	ppe	g/t	····	ppe	g/t 	
38	75	0.79	0.86	0.99	0.13	87.0	12	40	0.042	11.2	0.13	1.92	310	8.4	2.7	208	4.5	2.
6C	75	0.79	0.87	0.91	0.12	87.3	12	40	0.042	11.2	0.16	1.96	310	8.9	2.9	208	4.4	2.
30	75	0.79	0.80	0.88	0.11	87.1	12	40	0.045	11.4	0.10	2.07	310	8.0	2.6	208	4.3	2.
Average		0.79	0.84	0.92	0.12	87.1	12	40	0.043	11.3	0.13	1.98	310	8.4	2.7	208	4.4	2.
7A	106	0.79	0.85	0.84	0.15	82.4	12	40	0.042	11.3	0.08	1.84	310	7.2	2.3	208	4.3	2.
88	106	0.79	0.82	0.84	0.15	82.1	12	40	0.043	11.3	90.0	1.84	310	8.0	2.6	208	4.4	2.
2C	106	0.79	0.83	0.84	0.15	82.2	.12	40	0.044	11.4	0.09	1.95	310	6.2	2.0	208	3,8	1.
Average	******	0.79	0.83	0.84	0.15	82.2	12	40	0.043	11.3	0.08	1.88	310	7.1	2.3	200	4.2	2.
18	150	0.79	0.82	0.86	0.17	80.0	12	40	0.045	11.4	0.07	1.02	310	6.7	2.2	208	4.2	2.
.7D	150	0.79	0.83	0.89	0.17	80.7	12	40	0.043	11.4	0.09	1.76	310	6.4	2.1	208	4.0	1.
Average		0.79	0.82	0.87	0.17	80.3	12	40	0.044	11.4	0.08	1.79	310	6.5	2.1	208	4.1	2.

Summary of L.S.& A. 18 - Hour Bottle Roll Leach Test Results

ample Identification	Grind P80	Head			each Resul	ts	L	each Parane	ters		Reagen			ch Results			ich Results	
	UM	Assay	Ground	Calc'd	Residue						Consumpt		Assay			Assay		,
		Comp. ppm Au	Head ppm Au	Head ppm Au	Solids ppm Au	Extr'n	Time Hours	Pulp % Solids	NaCN	pH	NaCN kg/t	CaO kg/t	Head pps	Extract g/t	\$ 100	Head ppn	Extract: g/t	,cm \$
8A	75	0.79	0.88	0.90	0.10	88.5	18	40	0.049	11.3	0.13	1.99	310	10.1	3.3	208	5.1	2.
48	75	0.79	0.83	0.91	0.12	87.0	18	40	0.047	11.3	0.13	1.92	310	9.2	3.0	208	4.8	2.
Average		0.79	0.85	0.90	0.11	87.7	18	40	0.048	11.3	0.13	1.96	310	9.7	3.1	208	4.9	2
6 A	106	0.79	0.80	0.87	0.16	82.4	16	40	0.040	11.3	0.06	1.76	310	1.1	2.5	208	4.2	2
40	106	0.79	0.77	0.88	0.16	81.9	18	40	0.043	11.4	0.04	1.90	310	7.2	2.3	208	4.2	2
Average		0.79	0.78	0.88	0.16	82.1	16	40	0.012	11.4	0.05	1.83	310	7.5	2.4	208	4.2	2
76	150	0.79	0.93	0.91	0.19	79.2	18	. 40	0.046	11.3	0.11	1.92	310	9.5	3.1	208	5.2	2
10	150	0.79	0.76	0.89	0.17	80.7	18	40	0.041	11.3	9.08	1.63	310	8.5	2.8	208	4.8	2
Average		0.79	0.85	0.90		80.0	18	: 40	0.044	11.3	0.10	1.87	310	9.0	2:9	208	5.0	2

8MT5726

Sheet 13

7-Dec-89

BILLITON MT TODO MEATHERED ORE BOTTLE ROLL CYANIDE LEACH AT 40% SOLIDS.

! COMPOSTTE BUT 0.8

Summary of L.S.& A. Bottle Roll Leach Test Results

Leach Time	Grind P80	Head Assay	Grade Ground	Au L Calc'd	each Resul Residue	ts		each Param	eters		Reager Consumpt		Cu Lea	ach Results	i	In Lea Assay	ach Results	
	•	Comp.	Head	Head	Solids	Extr'n	Time	Pulp	*		NaCN	CaO	Head	Extract	ion	Head	Extract	ion
		ppa Au	ppm Au	ppm Au	ppm Au	ŧ	Hours	\$ Solids	NaCN	pH	kg/t	kg/t	ppm	g/t	*	ppn	g/t	ŧ
18 Hour (2 tests)	150	0.79	0.85	0.90	0.18	80.0	18	40	0.044	11.3	0.10	1.87	310	9.0	2.9	208	5.0	2.
12 Hour (2 tests)	150	0.79	0.82	0.87	0.17	80.3	12	40	0.044	11.4	0.08	1.79	310	6.5	2.1	208	4.1	2.
8 Hour (2 tests)	150	0.79	0.97	0.92	0.21	77.5	8	40	0.044	11.2	0.10	1.86	310	7.8	2.5	206	4.3	2.
Weighted Ave.	-	0.79	0.88	0.90	0.19	79.3	13	40	0.044	11.3	0.09	1.84	310	7.8	2.5	208	4.4	2.
18 Hour (2 tests)	106	0.79	0.78	0.88	0.16	82.1	18	40	0.042	11.4	0.05	1.83	310	7.5	2.4	208	4.2	2.0
12 Hour (3 tests)	106	0.79	0.83	0.84	0.15	82.2	12	40	0.043	11.3	0.08	1.88	310	7.1	2.3	208	4.2	2.
8 Hour (2 tests)	106	0.79	0.82	0.91	0.17	81.1	8	40	0.045	11.3	0.08	1.95	310	6.6	2.1	208	3.7	1.4
Weighted Ave.		0.79	0.81	0.87	0.16	81.9	13	40	0.043	11.3	0.07	1.88	310	7.1	2.3	208	4.1	2.0
18 Hour (2 tests)	75	0.79	0.85	0.90	0.11	87.7	18	40	0.048	11.3	0.13	1.96	310	9.7	3.1	208	4,9	2.4
12 Hour (3 tests)	75	0.79	0.84	0.92	0.12	87.1	12	40	0.043	11.3	0.13	1.98	310	8.4	2.7	208	4.4	2.
8 Hour (2 tests)	75	0.79	0.87	0.96	0.13	86.4	8	40	0.044	11.3	0.11	2.07	310	7.7	2.5	208	3.8	1.
Weighted Ave.		0.79	0.85	0.93	0.12	87.1	13	40	0.045	11.3	0.12	2.00	310	8.6	2.8	208	4.4	2.1

<u> </u>														
8MT5725 Billiton MT Todd Meathered		31-Oct-89 ROLL CYANID	e leach at	40% SOLIDS	i. !	COMPOSITE	BHT 1.0 ;							
	WILL WO	1000	b 884	40	• ,									
SURVEY	*	70	45	70	40	. 70	òΛ	48	18	. SC	7A	88	2C	6
Test No. (% solids)	Units	3C	60 75	38 76	6C	30 75	8A 75	46 75	106	106	- 106	106	106	106
Nominal Grind 80% passing	UB bound	75 8	75 8	75 12	75 12	/3 12	/5 18	/5 18	8 100	. 106	12	100	12	18
Total leach time	hours	0	0	12	14	14	70	TO.	U,	·	**	**	11	20
Extraction Au	g/t	0.86	0.84	0.82	0.82	0.83	0.88	0.88	0.78	0.78	0.75	0.77	0.74	0.84
at 3 hours at 6 hours	g/t g/t	0.98	0.99	1.07	0.99	1.01	0.97	0.99	0.91	0.90	0.92	0.94	0.90	0.97
at 8 hours	g/t g/t	1.03	1.96	1.07	U		V.	44.	0.96	0.93	***-	••••	••••	•
at 12 hours	g/t	7.40	T138	1.09	1.05	1.09	1.04	1.05	. •••••		1.01	1.01	0.96	1.03
at 18 hours	g/t			410.	41- -	*	1.06	1.09			`, ==			1.06
at 3 hours	*	70.3	66.2	63.2	62.2	63.8	68.7	69.5	63.1	67.8	61.0	58.4	60.2	61.9
at 6 hours	ì	80.8	77.8	83.0	75.8	77.8	75.3	77.6	73.3	78.5	74.7	71.2	73.7	71.4
at 8 hours	i	84.3	83.5				-		77.9	80.7				
at 12 hours	ì	•		84.5	80.2	83.6	81.2	82.1			81.8	76.9	78.2	76.0
at 18 hours	1			-			82.6	85.8						78.2
Calculated Head	ppe Au	1.22	1.27	1.29	1.31	1.30	1.29	1.27	1.24	1.15	1.23	1.31	1.23	1.36
Ground Head Assay 1	ррани ррайи	1.39	1.11	1.13	1.12	1.21	1.12	1.05	1.20	1.12	1.15	1.16	1.15	1.11
Ground Head Assay 2	ppe Au Doe Au	1.57	1.14	1.13	1.11	1.17	1.10	1.09	1.14	1.08	1.13	1.14	1.19	1.10
Average Ground Head Assay	ррини рриAu	1.48	1.13	1.13	1.12	1.19	1.11	1.07	1.17	1.10	1.14	1.15	1.17	1.11
				-										
Calculated residue grade	ppm Au	0.19	0.21	0.20	0.26	0.22	0.22	0.18	0.27	0.22	0.23	0.30	0.27	0.30
Extraction Ca					_==		-			40		. 27	né	'A'T
at 3 hours	g/t	27	28	30	30	27	28	28	27	25	27	27	26	27
at 6 hours	g/t	34	36	34	36	34	34	31	33	33	34	34	33	31
at 8 hours	g/t	36	39						36	34	77	. 27	77	- 77
at 12 hours	g/t		-	39	39	37	36	36			37	37	37	37
at 18 hours	g/t						42	40 -						39
Assay Head	ppm Cu	360 (ave. of the	o head spli	.ts)									
Extraction In														
at 3 hours	g/t	5.1	4.9	4.4	4.8	4.2	4.6	4.3	5.0	4.9	4.2	3.9	4.4	4.5
at 6 hours	g/t	6.1.	5.9	5.6	5.9	5.4	5.5	5.3	5.6	5.6	5.3	5.3	5.3	5.2
at 8 hours	g/t	8.6	7.6						7.1	6.9				
at 12 hours	g/t			6.9	7.1	6.3	6.2	6.1		•	6.4	6.3	6.9	
at 18 hours	g/t						7.0	6.9						7.3
A	Ta	315 (an of the	o head spli	i÷e\									
Assay Head	ppe Zn	915 f	ave, u um	Home Shirt	13)									
HaCH consumption														
at 3 hours	kg/t	0.18	0.17	0.16	0.16	0.16	0.08	0.10	0.13	0.13	0.21	0.21	0.19	0.12
at 6 hours	kg/t	0.19	0.17	0.22	0.22	0.20	0.14	0.19	0.15	0.15	0.21	0.21	0.21	0.14
at 8 hours	kg/t	0.22	0.21						0.22	0.20				
at 12 hours	kg/t			0.25	0.24	0.23	0.18	0.24			0.25	0.28	0.25	0.21
at 18 hours	kg/t						0.17	0.23						0.2
CaO consumption					•			•						
at 3 hours	kg/t	1.91	1.98	1.92	2.10	2.10	1.57	1.64	1.96	1.96	1.87	1.90	1.88	1.6
at 6 hours	kg/t	1.92	2.01	1.93	2.11	2.12	1.59	1.68	1.98	1.97	1.87	1.90	1.88	1.6
at 8 hours	kg/t	1.93	2.01						2.01	1.98				
at 12 hours	kg/t			1.94	2.12	2.13	1.59	1.68			1.88	1.91	1.89	1.6
at 18 hours	kg/t						1.59	1.69						1.6
Actual grind passing nomin	isted up (%)	79.0	80.1	79.8	79.2	79.1	79.1	79.0	81.7	81.5	80.5	79.6	80.6	80.
Union A nice harmana	- 1-7			777			. ,							

											السلام جاريان السلام جاريان	-		
	,													
BNTS725 Billiton Ht todd Neathered	Sheet 2		4-Dec-89 If I Fach at	AON SOLTE	rg.	COMPOSITE	AMT 1.0	ļ.						
	GIL 337111							' '				24.4	2112	4444
tests conducted (date) Test No. (% solids)	Units	11/10 3C	11/10 6D	9/10 38	9/10 6C	9/10 30	11/10 8A	11/10 48	11/10 18	11/10 SC	9/10 7A	9/10 88	9/10 2C	11/10 64
Frind 80% passing	UR	75	75	75	75	75	75	75	106	106	106	106	106	106
otal leach time	hours	8	8	12	12	12	18	18	8	8	12	12	12	18
'essel		409.0	407.8	407.0	406.8	406.6	406.9	406.9	402.0	407.6	406.3	408.3	408.4	407.2
ample sass	g g	750.7	724.6	712.9	750.7	743.4	748.7	717.7	723.7	727.7	730.4	717.9	731.8	739.7
itemater added	g	1126	1087	1069	1126	1115	1123	1077	1086	1092	1096	1077	1098	1110
atural pH		6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4
a0 added	g	1.49	1.49	1.42	1.63	1.62	1.23	1.24	1.48	1.48	1.41 0.59	1.41	1.42 0.59	1.25 0.60
laCH addeu .each Time	g hrs	0.61 3	0.59 3	0.57 3	0.61 3	0.60 3	0.60 3	0.58 3	0.59 3	0.60 3	3	0.58 3	3	v.60 3
ross off rolls	9 9	2286.1	2218.7	2197.9	2293.3	2272.2	2276.2	2201.1	2217.5	2226.5	2232.1	2206.0	2241.7	2254.8
ulp temperature	deg C	20	20	19	19	. 19	19	19	20	20	19	19	19	19
iquor sample A	pH	11.3	11.4	11.1	11.2	11.3	11.4	11.4	11.4	11.5	11.1	11.1	11.0	11.3
	ppm Au	0.57	0.56	0.54	0.54	0.55	0.59	0.59	0.52	0.52	0.50	0.51	0.49	0.56
	ppa Cu	18	19	20	20	18	.19 3.1	19 2.9	18 3.3	17 3.3	- 18 2.8	18 2.6	17 2.9	18 3.0
	ppm Zn % NaCN	3.4 0.042	3.3 0.043	2.9 0.042	3.2 0.043	2.8 0.043	0.048	0.047	0.046	0.046	0.040	0.040	0.041	0.046
	% CaO	0.005	0.005	0.005	0.005	0.005	0.005	0.006	0.006	0.005	0.004	0.004	0.004	0.004
ross after sample	9	2234.6	2161.8	2148.1	2243.0	2221.2	2223.5	2147.4	2164.7	2178.5	2181.9	2155.4	2191.8	2201.6
aO added	g													
aCX added	g	0.08	0.07	0.09	0.08	0.08	0.02	0.03	0.04	0.04	0.11	0.11	0.10	0.04
each time	hrs	3	3	3	3	3	3	3	3	3	3	3	3	3
ross off rolls	9	2285.2	2217.5	2188.3	2281.7	2263.8	2275.3	2200.0	2216.7	2225.4	2231.6	2202.8	2237.6 21.5	2254.1 21.5
ilp temperature	deg C pH	22 11.1	22 11.2	21.5 10.9	21.5 11.0	21.5 11.1	21.5 11.3	21.5 11.2	22 11.2	22 11.3	21.5 11.0	21.5 10.9	10.9	11.2
iquor sample 8	pon Au	0.63	0.63	0.69	0.64	0.65	0.62	0.63	0.58	0.58	0.59	0.60	0.58	0.62
	ppm Cu	22	23	22	23	22	22	20	21	21	22	22	21	20
	ppe Zn	3.9	3.8	3. 3	3.8	3.5	3.5	3.4	3.6	3.6	3.4	3.4	3.4	3.3
	* NaCH	0.047	0.047	0.045	0.045	0.046	0.044	0.042	0.046	0.047	0.049	0.048	0.047	0.046
	t CaO	0.004 2234.0	0.003	0.004 2136.7	0.004 2228.2	0.004 2209.9	0.003 2217.7	0.003 2149.7	0.004 2164.9	0.004 2173.6	0.004 2177.8	0.004 2148.7	0.004 2184.4	0.003 2197.2
ross after sample aŭ added	g	2234.0	2168.5	2130.7	2220.2	2207.7	221.1	2197.1	2104.7	21/3.0	21/1.0	2140.7	2104.4	2171.2
au audeu aCN added	g g	0.03	0.03	0.05	0.06	0.06	0.06	0.08	0.04	0.03	0.02	0.02	0.03	0.04
each time	hrs	2	2	6	6	6	6	6	2	2	6	6	6	6
ross off rolls	9	2283.9	2217.1	2187.C	2279.4	2262.5	2273.7	2197.8	2216.0	2224.7	2230.0	2201.8	2236.3	2252.7
ulp temperature	deg C	22	22	20	20	20	20.5	20.5	22	22	20	20	20	20.5
iquor sample C	pH	11.1	11.2	10.9	11.0	11.1	11.3	11.2	11.2 0.59	11.3 0.57	11.0 0.62	11.0 0.62	10.9 0.59	11.2 0.63
	ppe Au ppe Cu	0.63 22	0.65 24	0.67 24	0.65 24	0.67 23	0.64 22	0.64 22	V.37 22	21	23	23	23	23
	ppm Zn	5.4	4.7	4.3	4.4	3.9	3.8	3.8	4.4	4.3	4.0	3.9	4.3	4.0
	% MaCN	0.045	0.045	0.046	0.047	0.047	0.044	0.044	0.043	0.044	0.045	0.043	0.045	0.043
	\$ CaO	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.002	0.003	0.003	0.003	0.003	0.002
ross after sample	g						2217.8	2142.9						2197.7
aO added	g													0.07
aCN added	9						0.06 6	0.06 6						0.07
each time ross off rolls	hrs g						2272.8	2196.8						2250.9
ulp temperature	deg C						19	19						19
iquor sample D	pH						11.3	11.2						11.2
	ppm Au						0.62	0.64					•	0.62
	ppa Cu						25	24						23
*	ppm Zn						4.2 0.048	4.1 0.048						4.4 0.048
	1 NaCH 1 CaO						0.048	0.002						0.002
aple-mass-account-	i vau						3.000	v. v42						#.VVL
mple-sess-account esídue recovered (screene		748.9	726.3	705.8	748.2	736.7	747.8	717.5	722.3	726.1	725.3	717.4	728.7	739.0
round head to assay	-/s g	112.6	117.2	129.9	100.4	119.6	103.8	143.7	128.0	114.5	113.5	148.6	117.7	116.9
Calculated head to grind	g	861.5	843.5	835.7	848.6	856.3	851.6	861.2	850.3	840.6	838.8	866.0	846.4	855.9
ctual head to grind	g	863.3	841.8	842.8	851.1	863.0	852.5	861.4	851.7	842.2	843.9	866.5	849.5	856.6
Inaccounted mass	*	0.21	-0.20	0.84	0.29	0.78	0.11	0.02	0.16	0.19	0.60	0.06	0.36	0.08

BMT5725 Sheet 3 33-Oct-89
BILLITON NT 1700 MEATHERED GRE BOTTLE ROLL CYMNIOE LEACH AT 40% SOLIDS.

Particle size um				Assay PPB Au				
Test No.								
+ 150		0.G	100.0			- *		0.0
- 150 + 106	56.6	7.6	92.4	0.50		0.50	28.30	19
- 106 + 75	100.7	13.4	79.0	0.37	0.42	0.40	39.78	27.
- 75 + 53	68.5	9.1	69.8	A 7A		A 7A	7A EE	44 1
- 53	523.1	69.8		0.11	0.10	0.11	54.93	38.3
Calculated	748.9	100.0		******		4.4	143.6	
Test No.	60	Non. P80am	75	Leach hrs	8			
+ 150		0.0	100.0					0.0
- 150 + 106	49.3	6.8	93.2	0.56		0.56	27.61	18.2
- 1A/ A 7E	94.9	13.1	80.1	0.37 0.32 0.14	0.38	0.38	35.59	23.5
- 100 + 75 - 75 + 53	66.5	9.2	71.0	0.32		0.32	21.28	14.0
- 53	515.6	71.0		0.14	0.12	0.13	67.03	44.2
Calculated		100.0				0.21		
Test No.	38	Mon. P80um	75	Leach hrs	12		* * *	
4 15A		0.0	100.0					0.0
- 150 + 106 - 106 + 75 - 75 + 53	51.0	7.2	92.8	0.47		0.47	23.97	16.7
- 106 + 75	91.3	12.9	79.8	0.37	0.43	0.40	36.52	25.5
- 75 + 53	62.7	8.9	71.0	0.28		0.28	17.56	12.3
- 53	500.8	71.0		0.12	0.14	0.13	65.10	45.5
Calculated	705.8	100.0				,	143.2	
	6C							
+ 150		0.0	100.0					0.0
- 150 + 106	57.8	1.7	92.3	0.48		0.48	27.74	14.2
- 106 + 75	97.7	13.1	79.2	0.39	0.39	0.39	38.10	19.6
- 75 + 53	64.9	8.7	70.5	0.32		0.32	20.77	10.7
- 53	527.8	70.5	-	0.18	0.23	0.21	108.20	55.5
Calculated	748.2	100.0			*********	0.26	194.8	100.0
fest No.	30	ion. P80um	75	Leach hrs	12			
+ 150			100.0					0.0
- 150 + 106 - 106 + 75 - 75 + 53	54.9	7.5	92.5	0.48		0.48	26.35 40.14	16.6
- 106 + 75 - 75 + 53	99.1	13.5	79.1	0.40	0.41	0.41	40.14	25.3
	65.4	8.9		0.34		0.34	22.24	14.0
- 53	517.3			0.14	0.13	0.14	69.84	44.0
Calculated	736.7	100.0				0.22	158.6	100.0

BN15725 Sheet 4 31-Oct-89
BILLITON NY TOOD MEATHERED DIE BOTTLE ROLL CYANIDE LEACH AT 40% SQLIDS.

Particle size um	Xass g				Assay ppm Au			
Test No.	8A	Non. P80us	75	Leach hrs	18			
+ 150		0.0	100.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-		0.0
- 150 + 106	54.7	7.3	92.7	0.45		0.45	24.62	14.7
- 106 + 75						0.43		26.0
- 75 + 53				0.35		0.35		14.0
- 53	524.6	70.2		0.15	0.14	0.15	76.07	45.3
Calculated	747.8	100.0				0.22	167.8	100.0
Test No.	48	Non. P80um	75	Leach hrs	18	_		
+ 150		0.0	100.0					0.0
- 150 + 106	54.9	7.7	92.3	0.49		0.49	26.90	20.8
- 106 + 75				0.38		0.38	36.29	28.0
- 75 + 53	66.7	9.3	69.7	0.28		0.28	18.68	14.4
- 53	500.4	69.7		0.10	0.09	0.10	47,54	36.7
Calculated	717.5	100.6				0.18	129.4	100.0
Test Ho.	18	Non. P80um	106	Leach hrs	8			
+ 150	47.2	6.5	93.5	0.58		0.58	27.38	13.8
- 150 + 106				0.53				
- 106 + 75	97.2	13.5	68.3	9.36	0.39	- 0.38	36.45	18.4
- 75 + 53	56.6	7.8 60.4	66.4	0.37		0.37	20.94	10.6
- 53	436.4	60.4		0.13	V.18	0.16	0/.04	34,1
Calculated	722.3	100.0				0.27	198.3	100.0
Test No.	5C ·	Non. P80us	106	Leach hrs	8	_		·
+ 150	51.4	7.1	92.9	0.61		0.61	31.35	19.4
- 150 + 106	83.1	11.4	81.5	0.49 0.36	0.54	0.52	42.80	26.5
- 106 + 75	95.6	13.2	68.3	0.36				
- 75 + 53	55.1		60.7				15.98	
- 53	440.9	60.7		0.07	0.09	0.08	35.27	21.9
Calculated	726.1	100.0	*********			0.22	161.3	100.0
Test No.	7A	Non. P80un	106	Leach hrs	12			
+ 150	57.1	7.9	92.1	0.51		0.51	29.12	17.8
- 150 + 106	84.6	11.7	80.5	0.51	0.51	0.51	43.15	26.3
- 106 + 75		13.4	67.0	0.38	0.38		37.01	
- 75 + 53			59.9			0.30		
- 53	434.7	59.9		0.09	0.09	0.09	39.12	23.9

BMT5725 Sheet 5 31-Oct-6?
BILLITON NT TOOD NEATHERED ORE BOTTLE ROLL CYANIDE LEACH AT 40% SOLIDS.

COMPOSITE BHT 1.0 !

Particle size um	Mass g	Mass % Retained	Cum. Hass Passing	Assay ppm Au	Assay ppn Au	Ave. assay ppn Au	Centents ug Au	
Test No.	88	Hom. P80um	106	Leach hrs	12			
+ 150	60.5	â.4	91.6	0.49		0.49	29.65	13.0
- 150 + 106	85,5			0.54				
- 106 + 75	07 0	17 1	66.6	0.45	0.41	0.43	40.33	18.5
- 75 + 53	53.6	7.5	59.1			0.43 0.36		
- 53	424.0	59.1		0.22	0.17	0.20	82.68	38.0
Calculated	717.4	100.0		******		0.30	217.7	100.0
Test No.	2 C	Non. P80um		Leach hrs	12			
150	52.2 89.2 102.0	7.2		0.53		0.53	27.67	14.2
- 150 + 106	89.2	12.2	80.6	0.55	0.57	0.56	49.95	25.6
- 106 + 75	102.0	14.0	66.6	0.37	0.39	0.38	38.76	19.9
- 75 + 53	51.6	7.1	59.5	0.35		0.35	18.06	9.3
- 53	433.7	59.5		0.11	0.17	0.14	60.72	31.1
Calculated	728.7	100.0				0.27	195.2	100.0
Test No.	6A	Non. P80um	106	Leach hrs	18			
+ 150	54.0	7.3	92.7	0.55		0.55	29.70	13.6
- 150 + 106								
- 106 + 75	99.9	13.5	67.4	0.36	0.36	0.36	35.%	16.5
- 75 + 53	57.6	7.8	59.6	0.37 0.15		0.37	21.31	9.8
- 53	440.7	57.6		V.15	0.18		12.12	33.3
Calculated	739.0	100.0				0.30	218.3	100.0
Test No.	40	Nom. 980um	106	Leach hrs	18	+ +,		
+ 150	51.9						17.65	
- 150 + 106	86.9	11.9	81.1	0.39 0.34	0.39	0.39	33.89	26.9
- 106 + 75	98.0	13.4	67.7	0.34	0.30	0.32	31.36	24.9
- 75 + 53	56.8	7.8	59.9	0.26		_	14.77	-,
- 53	438.9	59.9		0.07	0.06	0.07	28.53	22.6
Lalculated	732.5	100.0				0.17	126.2	100.0
Test No.	4A I	ion. P80un	150	Leach hrs	8	4		
+ 150	128.8	18.1	81.9	0.59	0.59	0.59	75.99	39.5
- 150 + 106	85.6	12.0	69.8	0.47	0.47			20.9
- 106 + 75	73.1		59.6			0.39		14.8
- 75 + 53			53.0	0.33			15.44	
- 53	376.8	53.0	•	0.08	0.09	0.09	32.03	16.7
Calculated	711.1	100.0				0.27	192.2	100.0

BHT5725 Sheet 6 31-Oct-89
BILLITGN MT TOOD MEATHERED ORE BOTTLE ROLL CYANIDE LEACH AT 40% SOLIDS.

COMPOSITE BHT 1.0

Uin .	Hass g	Retained	Passing	ppm Au	ppe Au	ppm Au	ug Au	AU \$
Test Ho.	58		150	Leach hrs	8	e de Sa		
+ 150	140.9		R1 0	0 62	0.62	0.62	87.36	41.
- 150 + 106	88.9	12.0	69.0	0.51	0.52	0.52	45.78	21.0
- 106 + 75	76.4	10.3	58.7	0.37		0.37	28.27	13.
	47.1			0.41		0.41	19.31	9.
- 53		52.4		0.08	0.08	0.08	31.06	14.
Calculated		100.0				0.29	211.8	100.0
Test No.	1A	Non. P80um	150	Leach hrs	12			
+ 150	139.5	19.6	80.4	0.62	0.60	0.61	85.10	37.4
- 150 + 106	86.7	12.2	68.3	0.47	0.49	0.48	41.62	18.3
- 106 + 75	73.7	10.3	58.0	0.39				
- 75 + 53	44.5	6.2	51.7	0.38		0.39 0.38	28.74 16.91	7.4
- 53	369.1	10.3 6.2 51.7		0.17	0.13	0.15	55.37	24.3
Calculated	713.5	100.0		*****		0.32	227.7	100.0
Test No.	70							
+ 150	143.0	19.5	80.5	0.65	0.65	0.65	92.95	41.0
- 150 + 106	88.4	12.1	48.4	0.56	0.56	0.56	49.50	22.3
- 106 + 75	76.3	10.4	57.9	0.39	•	0.39	29.76	13.4
- 75 + 53	43.7	6.0	52.0	0.32		0.39 0.32	13.98	6.3
- 53	380.2	52.0		0.10	0.09	0.10	36.12	16.2
Calculated		100.0					222.3	
Test No.	7C	Non. P80um		Leach hrs				
+ 150	155.6	21.1	78.9	0.60	0.59	0.60	92,58	46.3
- 150 + 106	90.4	12.3	66.6	0.50	0.46	0.48	45.59	21.
- 106 + 75	79.6	10.8	55.8	0.34		0.34	27.06	13.5
- 75 + 53	90.4 79.6 44.8	6.1	49.7	0.29		0.29	12.99	6.5
- 53	366.2			0.06	0.07	0.07		11.9
Calculated	736.6	100.0				0.27	199.8	100.0
Test Ha.	10	Non. P80um	150	Leach hrs	18			
+ 150	142.2	19.9	80.1	0.57	0.60			
- 150 + 106			68.2	0.41	0.48			20.9
- 106 + 75	75.8	10.6	57.7	0.35		0.35	26.53	14.0
- 75 + 53	41.5		51.9	0.29		0.29	12.04	6.0
- 53	371.4			0.06	0.06	0.06	22.28	12.7
Calculated	712 7	100.0			******	0.25	182.0	100.0

BMT5725 Sheet 7 31-0ct-89 BILLITON HT TOOD MEATHERED ORE BOTTLE ROLL CYANIDE LEACH AT 404 SOLIDS. P80=106um P80=150um P80=75um COMPOSITE BHT 1.0 ! **AHALYSIS** Min ! Max Min : Ave. Max Test No. (% solids) Units Ave. Max Min ' Ave. 150 150 150 75 75 106 106 106 75 Nominal Grind 80% passing 12.7 18.0 8.0 18.0 8.0 12.6 18.0 8.0 12.6 Total leach time hours Extraction Au 0.74 0.72 0.75 0.67 0.84 at 3 hours g/t 0.85 0.88 0.82 0.78 0.92 0.86 0.97 0.90 0.87 0.89 1.07 0.97 at 6 hours g/t 1.00 0.95 0.% 0.93 0.93 0.93 0.93 1.03 1.04 1.06 at 8 hours g/t 1.06 1.09 1.04 1.00 1.03 0.96 0.95 0.97 0.93 g/t at 12 hours 0.97 0.98 0.96 1.03 1.06 1.01 at 18 hours g/t 1.08 1.09 1.06 58.5 62.3 53.0 67.8 58.4 70.3 62.2 62.6 ŧ 66.3 at 3 hours 71.2 70.7 74.1 67.2 75.3 74.4 78.5 78.3 83.0 at 6 hours ŧ 77.0 77.6 76.5 79.3 80.7 77.9 at 8 hours ŧ 83.9 84.3 83.5 83.2 76.0 76.0 77.0 75.1 84.5 80.2 79.2 \$ 82.3 at 12 hours 77.9 82.6 81.8 85.4 78.2 78.7 79.4 \$ 84.2 85.8 at 18 hours 1.15 1.24 1.28 1.20 1.36 1.22 1.24 Calculated Head DOM AU 1.28 1.31 1.20 1.07 1.10 1.19 0.98 1.14 1.05 1.16 1.39 Ground Head Assay 1 DOM AU 1.13 1.22 1.02 1.57 1.09 1.19 1.08 1.16 Ground Head Assay 2 ppm Au 1.19 1.10 1.13 1.20 1,00 1.17 1.48 1.07 1.13 1.17 Average Ground Head Assay ppm Au 0.28 0.32 0.25 0.26 0.18 0.25 0.30 0.17 0.21 Calculated residue grade ppm Au Extraction Cu 25 24 27 27 25 25 27 29 30 at 3 hours g/t 36 31 33 34 31 31 33 31 g/t 34 at 6 hours 39 35 36 34 34 34 34 g/t 37 36 at 8 hours 36 36 37 39 36 37 37 36 at 12 hours g/t 37 36 37 37 39 42 40 38 39 at 18 hours g/t 41 ppm Cu Assay Head Extraction In 4.2 4.5 5.0 3.9 4.4 4.8 3.9 g/t 5.1 4.6 at 3 hours g/t 5.7 6.1 5.3 5.3 5.6 5.2 5.3 5.6 5.1 at 6 hours 7.0 6.5 7.0 7.1 6.9 6.8 at 8 hours g/t 8.1 8.6 7.6 6.5 6.6 6.3 7.1 6.1 6.4 6.9 6.1 at 12 hours g/t 6.5 7.3 7.7 8.0 7.4 7.3 7.3 g/t 7.0 7.0 6.9 at 18 hours **Assay Head** ppm Zn **MaCN** consumption 0.21 0.10 0.23 0.47 0.10 0.15 0.18 0.08 ka/t 0.15 at 3 hours 0.07 0.14 -0.04 0.22 0.14 0.17 0.21 0.13 kg/t 0.19 at 6 hours 0.20 0.18 0.19 0.17 0.22 0.22 0.21 0.21 0.22 at 8 hours kg/t 0.03 0.28 0.20 0.12 0.22 0.25 0.18 0.24 at 12 hours kg/t 0.23 0.17 0.20 0.19 0.18 0.19 0.23 0.17 0.19 0.20 at 18 hours kg/t CaO consumption 1.83 1.96 1.60 1.83 2,00 1.57 2.10 1.57 ka/t 1.89 at 3 hours 1.95 2.29 1.58 1.59 1.84 1.98 1.62 2.12 kg/t 1.91 at 6 hours 2.03 1.92 2.01 1.93 2,00 2.01 1.98 1.97 at 8 hours kg/t 1.97 1.91 1.95 2.30 1.58 2.13 1.59 1.79 1.62 at 12 hours kg/t 1.89 1.57 1.62 1.60 1.63 1.69 1.59 1.64 1.65 kg/t 1.64 at 18 hours 81.9 78.9 Actual grind passing nominated um (1) | 79.4 80.1 79.0 80.8 81.7 79.6 80.5

8MT5725 Sheet 8 31-Oct-89
8ILLITON MT TODD MEATHERED ORE BOTTLE ROLL CYANIDE LEACH AT 404 SOLIDS.

COMPOSITE BMT 1.0

Summary of 8 hour Residue Size Fraction Assays

Sample Identification	Grind P80 Gai	Head .ppm Au	+ 150 ppm Au	+ 106 ppm Au	+ 75 ppn Au	† 53 ppn Au	- 53 ppm Au
3C	75	0.19	0.00	0.50	0.40	0.30	0.11
60	75	0.21	0.00	0.56	0.38	0.32	0,13
Average	*****	0.20	0.00	0.53	0.39	0.31	0.12
18	106	0.27	0.58	0.54	0.38	0.37	0.16
5C	106	0.22	0.61	0.52	0.38	0.29	0.08
Average		0.25	0.60	0.53	0.38	0.33	0.12
48	150	0.27	0.59	6.47	0.39	0.33	0.09
58	150	0.29	0.62	0.52	0.37	0.41	0.08
Average		0.28	0.61	0.49	0.38	0.37	0.05

Summary of 12 hour Residue Size Fraction Assays

Sample Identification	Grind P80	Head ppn Au	+ 150 ppa Au	+ 106 ppm Au	+ 75 ppa Au	+ 53 ppa Au	- 53 ppn Au
39	75	0.20	0.00	0.47	0.40	0.28	0.13
6C	75	0.26	0.00	0.48	0.39	0.32	0.21
30	75	0.22	0.00	0.48	0.41	0.34	0.14
Average		0.23	0.00	0.48	0.40	0.31	0.16
7A	106	0.23	0.51	0.51	0.38	0.30	0.09
88	106	0.30	0.49	0.54	0.43	0.36	0.20
2 C	106	0.27	0.53	0.56	0.38	0.35	0.14
Average		0.27	0.51	0.54	0.40	0.34	0.14
18	150	0.32	0.61	0.48	0.39	0.38	0.15
70	150	0.30	0.65	0.56	0.39	0.32	0.10
Average	******	0.31	0.63	0.52	0.39	0.35	0.12

Summary of 18 hour Residue Size Fraction Assays

	Sample Identification	Grind P80	Head ppm Au	+ 150 ppm Au	+ 106 ppm Au	+ 75 ppm Au	+ 53 ppn Au	- 53 ppm Au
	8A	75	0.22	0.00	0.45	0.43	0.35	0.15
	48	75	0.18	0.00	0.49	0.38	0.28	0.10
	Average	-	0.20	0.00	0.47	0.41	0.32	0.12
٠.	6A	106	0.30	0.55	0.68	0.36	0.37	0.17
	40	106	0.17	0.34	0.39	0.32	0.26	0.07
	Average		0.23	0.45	0.53	0.34	0.32	0.12
	7C	150	0.27	0.60	0.48	0.34	0.29	0.07
	10	150	0.25	0.59	0.45	0.35	0.29	0.06
	Aver age		0.26	0.59	0.46	0.35	0.29	9.06

BNT5725 Sheet 9 31-Oct-89
BILLITON HT TODO MEATHERED ORE BOTTLE ROLL CYANIDE LEACH AT 40% SOLIDS.

COMPOSITE BUT 1.

Summary of Residue Size Fraction Assays

Leach Time	Grind P80 um	Head ppn Au	+ 150 ppm Au	+ 106 ppm Au	+ 75 ppa Au	+ 53 ppm Au	- 53 ppm Au
18 Hour (2 tests)	150	0.26	0.59	0.46	0.35	0.29	0.06
12 Hour (2 tests)	150	0.31	0.63	0.52	0.39	0.35	0.12
8 Hour (2 tests)	150	0.28	0.61	0.49	0.38	0.37	0.08
Waighted Ave.		0.28	0.61	0.49	0.37	0.34	0.09
18 Hour (2 tests)	106	0.23	0.45	0.53	0.34	0.32	0.12
12 Hour (3 tests)	106	0.27	0.51	0.54	0.40	0.34	0.14
8 Hour (2 tests)	106	0.25	0.60	0.53	0.38	0.33	0.12
Heighted Ave.		0.25	0.52	0.53	0.37	0.33	0.13
18 Hour (2 tests)	75	0.20	0.00	0.47	0.41	0.32	0.12
12 Hour (3 tests)	75	0.23	0.00	0.48	0.40	0.31	0.16
8 Hour (2 tests)	75	0.20	0.00	0.53	0.39	0.31	0.12
Weighted Ave.		0.21	0.00	0.49	0.40	0.31	0.14

Sample Identification	Grind P80	Head ppn Au	+ 150 +	+ 106 t	+ 75 *	† 53 \$	- 53 - 1
3C	75	0.19	0.0	19.7	27.7	14.3	38.3
60	75	0.21	0.0	18.2	23.5	14.0	44.2
Average		0.20	0.0	19.0	25.6	14.2	41.3
18	106	0.27	13.8	23.1	18.4	10.6	34.1
5C	106	0.22	19.4	26.5	22.2	9.9	21.9
Average		0.25	16.6	24.8	20.3	10.2	28.0
4A	150	0.27	39.5	20.9	14.8	8.0	16.7
58	150	0.29	41.3	21.6	13.3	9.1	14.7
Average	******	0.28	40.4	21.3	14.1	8.6	15.7

Summary of 12 hour Residue Size Fraction Gold Distribution

Sample Identification	Grind P80 um	Head ppm Au	+ 150	+ 106 - \$	+ 75 \$	+ 53 1	- 53 \$
38	75	0.20	0.0	16.7	25.5	12.3	45.5
6C	75	0.26	0.0	14.2	19.6	10.7	55.5
30	75	0.22	0.0	16.6	25.3	14.0	44.0
Average	*****	0.23	0.0	15.9	23.5	12.3	48.4
	106	0.23	17.8	26.3	22.6	9.4	23.9
88	106	0.30	13.6	21.0	18.5	8.9	38.0
2C	106	0.27	14.2	25.6	19.9	9.3	31.1
Average	*****	0.27	15.2	24.3	20.3	9.2	31.0
18	150	0.32	37.4	18.3	12.6	7.4	24.3
70	150	0.30	41.8	22.3	13.4	6.3	16.2
Average	******	0.31	39.6	20.3	13.0	6.9	20.3

Summary of 18 hour Residue Size Fraction Gold Distribution

Sample Identification	Grind P80	Head ppn Au	+ 150	+ 106	+ 75 \$	+ 53	- 53 1
8A	75	0.22	0.0	14.7	26.0	14.0	45.3
48	75	0.18	0.0	20.8	28.0	14.4	36.7
Average	24220	0.20	0.0	17.7	27.0	14.2	41.0
6A	106	0.30	13.6	26.8	16.5	9.8	33.
40	106	0.17	14.0	26.9	24.9	11.7	22.0
Aver age		0.23	13.8	26.8	20.7	10.7	28.
7 C	150	9.27	46.3	21.7	13.5	6.5	11.5
10	150	0.25	45.7	20.9	14.6	6.6	12.
Average		0.26	46.0	21.3	14.1	6.6	12.

Sheet 11

31-0ct-89

BILLITON NT TODO MEATHERED ORE BOTTLE ROLL CYANIDE LEACH AT 40% SOLIDS.

COMPOSITE BAT 1.0

Summary of Residue Size Fraction Gold Distribution

Leach	Time	Grind P80	Head ppa Au	+ 150 \$	+ 106 \$	+ 75 \$	+ 53 \$	- 53 1
18 Hour (:	2 tests)	150	0.26	46.0	21.3	14.1	6.6	12.1
12 Hour (150	0.31	39.6	20.3	13.0	6.9	20.3
8 Hour (2 tests)	150	0.28	40.4	21.3	14.1	8.6	15.7
Weighte	d Ave.		0.28	42.0	20.9	13.7	7.3	16.0
18 Hour (2	tests)	106	0.23	13.8	26.8	20.7	10.7	28.0
12 Hour (3	tests)	106	0.27	15.2	24.3	20.3	9.2	31.0
8 Hour (2	tests)	106	0.25	16.6	24.8	20.3	10.2	28.0
Weighted	î Ave.		0.25	15.2	25.2	20.4	9.9	29.3
18 Hour (2	tests)	75	0.20	0.0	17.7	27.0	14.2	41.0
12 Hour (3	tests)	75	0.23	0.0	15.9	23.5	12.3	48.4
8 Hour (2	tests)	75	0.20	0.0	19.0	25.6	14.2	41.3
Weighted	Ave.		0.21	0.0	17.3	25.1	13.4	44.2

BHT5725 Sheet 12 31-Oct-89
BILLITON HT 1000 MEATHERED ORE BOTTLE ROLL CYANIDE LEACH AT 404 SOLIDS.

COMPOSITE BUT 1.0 ;

Summary of L.S.& A. 8 - Hour Bottle Roll Leach Test Results

Sample Identification	Grind P80	Head (Assay	Grade Ground	Au L Calc'd	each Resul Residue	tis	L	each Parase	ters		Reagen Consumpt		Cù Lea Assay	co Results		Zn Lea Assay	ach Results	
• •	1286	Comp. ppm Au	Head ppn Au	Head ppn Au	Solids ppm Au	Extr'n	Time Hours	Pulp 1 Soliés	NaCK	pil	NaCH kg/t	CaØ kg/t	Head ppn	Extract g/t	ion L	Head ppm	Extract g/t	ion 1
3C	75	1.13	1.48	1.22	0.19	84.3	8	40	0.045	11.1	0.22	1.93	360	35.7	9.9		8.6	2.7
60	75	1.13	1.13	1.27	0.21	83.5	8	40	0.045	11.2	0.21	2.01	360	39.0	10.8	315	7.6	2.4
Average	******	1.13	1.30	1,24	0.20	83.9	8	40	0.045	11.2	0.22	1.97	360	37.3	10.4	315	8.1	2.6
18	106	1.13	1.17	1.24	0.27	77.9	8	40	0.043	11.2	0.22	2.01	360	35.8	9.9	315	7.1	2.3
5C	106	1.13	1.10	1.15	0.22	80.7	8	. 40	0.044	11.3	0.20	1.98	360	34.1	9.5	315	6.9	2.2
Average		1.13	1.14	1.19	0.25	79.3	8	40	0.044	11.3	0.21	2.00	360	34.9	9.7	315	7.0	2.2
48	150	1.13	1.12	1.20	0.27	77.6	8	. 40	0.044	11.3	0.19	2.03	360	34.1	9.5	315	6.5	2.1
58	150	1.13	1.16	1.21	0.29	76.5	8	40	0.044	11.3	0.17	1.92	360	33.9	9.4	315	7.0	2.2
Average		1.13	1.14	1.21	0.28	77.0	8	40	0.044	11.3	0.18	1.97	360	34.0	9.5	315	6.8	2.1

Summary of L.S.& A. 12 - Hour Bottle Roll Leach Yest Results

Sample Identification	Grand P80	Head :	Grade Ground	Au L Calc'd	each Resul Residue	ts	i	each Parage	ters		Reagen Consumpt		Cu Lea Assay	ch Results		In Lea Assay	ch Results	
		Comp.	Head ·	Head	Solids	Extr'n	Time	Pulp	. 1		NaCH	CaO	Head	Extract	ian	Head	Extract	ion
		ppe Au	ppa Au	ppe Au	ppe Au	1	Hours	* Solids	NaCH	pH	kg/t	kg/t	ppe	g/t	t	bbs	g/t	\$
38	75	1.13	1.13	1.29	0.20	84.5	12	40	0.046	10.9	0.25	1.94	360	38.9	10.8	315	6.9	2.2
6C	75	1.13	1.12	1.31	0.26	80.2	12	40	0.047	_ 11.0	0.24	2.12	360	38.8	10.8	315	7.1	2.2
30	75	1.13	1.19	1,30	0.22	83.6	12	40	0.047	11.1	0.23	2.13	360	37.2	10.3	315	6.3	2.0
Average		1.13	1.15	1.30	0.23	82.8	12	40	0.047	11.0	0.24	2.06	360	38.3	10.6	315	6.7	2.1
7A	106	1,13	1.14	1.23	0.23	81.8	12	40	0.045	11.0	0.25	1.88	360	37.3	10.4	315	6.4	2.0
88 ·	106	1.13	1.15	1.31	0.30	76.9	12	40	0.043	11.0	0.28	1.91	360	37.4	10.4	315	6.3	2.0
2 C	106	1.13	1.17	1.23	0.27	78.2	12	40	0.045	10.9	0.25	1.89	360	37.1	10.3	315	6.9	2.2
Average		1.13	1.15	1.26	0.27	79.0	12	40	0.044	11.0	0.26	1.89	360	37.3	10.4	315	6.5	2.1
16	150	1.13	1.13	1.27	0.32	75.1	12	40	0.061	11.3	0.04	2.29	360	37.2	10.3	315	6.4	2.0
rů	150	1.13	1.20	1.28	0.30	76.2	12	40	0.061	11,5	0.63	2.30	360	37.1	10.3	315	6.6	2.1
Average	******	1.13	1.16	1.27	0.31	75.6	12	40	0.061	11.3	0.03	2.30	360	37.1	10.3	315	6.5	2.1

Summary of L.S.& A. 18 - Hour Bottle Roll Leach Test Results

Sample Identification	Grind P80	Head Assay	Grade Ground	Au i Calc'd	each Resul Residue	ts	į	each Parame	ters		Reager		Cu Lea	nch Results	B	Zn Lea Assay	ich Results	
		Comp. ppm Au	Head ppin Au	Head ppn Au	Solids ppm Au	Extr'n	Time Hours	Pulp 4 Solids	NaCH	pil	HaCH kg/t	Ca0 kg/t	Head ppn	Extract g/t	ion t	Head ppn	Extract g/t	ion t
84	75	1.13	1.11	1.29	0.22	82.6	18	40	0.048	11.3	0.17	1.59	360	42.0	11.7	315	7.0	2.2
48	75	1.13	1.07	1.27	0.18	85.8	18	40	0.048	11.2	0.23	1.69	360	40.4	11.2	315	6.9	2.2
Average		1.13	1.09	1.28	0.20	84.2	18	40	0.048	11.3	0.20	1.64	360	41.2	11.4	315	7.0	2.2
6A	106	1.13	1.11	1.36	0.30	78.2	18	40	0.048	11.2	0.20	1.65	360	38.9	10.8	315	7.3	2.3
40	106	1.13	1.10	1.18	0.17	85.4	18	40	0.048	11.2	0.19	1.62	360	37.3	10.3	315	7.3	2.3
Average		1.13	1.10	1.27	0.23	81.8	18	40	0.048	11.2	0.19	1.64	360	38.1	10.6	315	7.3	2.3
70	150	1.13	1.00	1.23		77.9	18	40	0.049	11.2	0.17	1.57	360	38.7	10.7	315	7.4	2.3
10	150	1.13	1.18	1.23	0.25	79.4	18	40	0.049	11.2	0.19	1.63	360	35.9	10.0	315	8.0	2.5
Average		1.13	1.09	1.23	0.26	70.7	18	. 40	0.049	11.2	0.18	1.60	360	57.3	10.4	315	1.1	2.4

BMT5725

Sheet 13

31-0ct-89

BILLITON NT TOOD MEATHERED ORE BOTTLE ROLL CYANIDE LEACH AT 40% SOLIDS.

COMPOSITE BUT 1.0 !

Summary of L.S.& A. Bottle Roll Leach Test Results

Leach Time	Grind P80 um	Head Assay	Grade Ground	Au l Calc'd	.each Resul Residue	ts	l	each Param	eters		Reage Consump		Cu Lea Assay	ach Results	,	In Lea	nch Results	;
		Comp.	Head	Head	Solids	Extr'n	Time	Pulp	*		NaCH	CaO	Head	Extract	ion	Head	Extract	ion
		ppa Au	ppm Au	ppn Au	ppa Au	1	Hours	* Solids	MaCH	pH	kg/t	kg/t	bioa	g/t	*	bbe	g/t	*
18 Hour (2 tests)	150	1.13	1.09	1.23	0.26	78.7	18	40	0.049	11.2	0.18	1.60	360	37.3	iv.	315	1.1	2.4
12 Hour (2 tests)	150	1.13	1.16	1.27	0.31	75.6	12	40	0.061	11.3	0.03	2.30	360	37.1	10.3	315	6.5	2.1
8 Hour (2 tests)	150	1.13	1.14	1.21	0.28	77.0	8	40	0.044	11.3	0.18	1.97	360	34.0	9.5	315	6.8	2.1
Weighted Ave.		1.13	1.13	1.24	0.28	77.1	13	40	0.051	11.3	0.13	1.%	360	36.1	10.0	315	7.0	2.2
18 Hour (2 tests)	106	1.13	1.10	1.27	0.23	81.8	18	40	0.048	11.2	0.19	1.64	360	38.1	10.6	315	7.3	2.3
12 Hour (3 tests)	106	1.13	1.15	1.26	0.27	79.0	12	40	0.044	11.0	9.26	1.89	360	37.3	10.4	315	6.5	2.1
8 Hour (2 tests)	106	1.13	1.14	1.19	0.25	79.3	8	40	0.044	i1.3	0.25	2.00	360	34.9	9.7	315	7.0	2.2
Weighted Ave.	*****	1.13	1.13	1.24	0.25	79.9	13	40	0.045	11.1	0.23	1.85	360	36.8	10.2	315	6.9	2.2
18 Hour (2 tests)	75	1.13	1.09	1.28	0.20	84.2	18	40	0.048	11.3	0.20	1.64	360	41.2	11.4	315	7.0	2.2
12 Hour (3 tests)	75	1.13	1.15	1.30	0.23	82.8	12	40	0.047	11.0	0.24	2.06	360	38.3	19.6	315	6.7	2.1
8 Hour (2 tests)	75	1.13	1.30	1.24	0.20	83.9	8	40	0.045	11.2	0.22	1.97	360	37.3	10.4	315	8.1	2.6
Weighted Ave.	*****	1.13	1.17	1.28	0.21	83.5	13	40	0.047	11.1	0.22	1.92	360	38.9	10.8	315	7.2	2.3

8MT5725	Sheet Ca	lc				******	5 44858 5444	••													
Calculation sheet only						COMPOSI	TE BMT 1.0) {													
Sample mass	g	750.7	724.6	712.9	750.7	743.4	748.7	717.7	723.7	727.7	730.4	717.9	731.8	739.7	735.9	712.1	745.4	717	732.4	737. 7	719.4
Vessel + sample	g	1159.7	1132.4	1119.9	1157.5	1150	1155.6	1124.6	1131.7	1135.3	1136.7	1126.2	1140.2	1146.9	1142.4	1120.4	1150.7	1124.8	1139.9	1146.3	1127.9
In vessel at A	g	1126.4	1066.3	1078	1135.8	1122.2	1120.6	1076.5	1085.8	1091.2	1095.4	1079.8	1101.5	1107.9	1103.3	1067.4	1118	1075.3		1105.8	1078.5
	ug Au	642.048	608.328	582 .12	613.332	617.21	661.154	635.135	564.616	567.424	547.7	550.698	539.735	620.424	573.716	533.7	547.82	483.885	495.72	552.9	539.25
	a g Cu	20.2752	20.6397	21.56	22.716	20.1996	21.2914			18.5504	19.7172	19.4364	18.7255	19.9422	19.8594	17.0784	17.388	18.2801	17.6256	18.7986	18.3345
	ug Zn	3829.76	3584.79	3126.2	3634.56	3142.16	3473.96	3121.85	3583.14	3600.%	3067.12	2807.48	3194.35	3323.7	3199.57	3415.68	3465.8	2795.78	2864.16	3538.56	3235.5
	g NaCN	0.473088	0.467109	0.45276	0.488394	0.482546	0.537888			0.501952	0.43816	0.43192	0.451615		0.518551	0.491004	0.52546	0.258072	0.242352	0.508668	0.506895
	g CaO	0.05632	0.054315	0.0539	0.05679	0.05611	0.05603			0.05456	0.043816	0.043192	0.04406	0.044316	0.055165	0.05337	0.0539	0	0	0.044232	0.053925
Removed in A	9	51.5	56.9	49.8	50.3	51	52.7	53.7	52.8	48	50.2	50.6	49.9	53.2	52.9	52.5	50.6	51.1	50	53.3	52.9
	ug Au	29.355	31.864	25.892	27.162	28.05	31.093	31.683	27.456	24.%	25.1	25.806	24.451	29.792	27.508	26.25	24.7 9 4	22.995	22.5	26.65	26.45
	mg Cu	0.927	1.0811	0.9%	1.006	0.918	1.0013		0.9504	0.816	0.9036	0.9108	0.8483	0.9576	0.9522	0.84	0.80%	0.8687	8.0	0.9061	0.8993
	ug Zn	175.1	187.77	144.42	160.%	142.8	163.37	155.73	174.24	158.4	140.56	131.56	144.71	159.6	153.41	168	156.86	132.86	130	170.56	158.7
	g HaCH	0.02163	0.024467	0.020916		0.02193			0.024288	0.02206	0.02008	0.02024	0.020459	0.024472	0.024863	0.02415	0.023782	0.012264	0.011		0.024863
In unneal st D	g CaO	0.002575	0.002845	0.00249	0.002515	0.00255	0.002635		0.003168	0.0024	0.002008	0.002024	0.001996	0.002128	0.002645	0.002625	0.00253	0	0	0.002132	0.002645
In vessel at 8	g pa Ar	1125.5	1085.1 683.613	1068.4 737.1%	1124.2	1113.8	1119.7	1075.4	1085	1090.1	1094.9	1076.6	1097.4	1107.2	1102.5	1066.5	1117.2	1074.3	1100.8	1105.3	1078.1
	ug Au	709.065 24.761	24.9573	23.5048	719.488 25.8566	723.97	694.214	677.502	629.3	632.258	645.991	645.96	636.492	686.464	650.475	607.905	625.632	590.865	616.448	618.968	603.736
	ng Cu ug Zn	4389.45	4123.38	3846.24	4271.96	24.5036 3898.3	24.6334 3918.95	21.508 3656.36	22.785	22.8921 2024 24	24.0878	23.6852	23.0454	22.144	22.05	21.33	22.344	22.5693	22.016	22.106	21.562
	g-NaCH	0.528985	0.509997	0.40078	0.50589	0.512348	0.492668	0.451668	3906 0.4991	3924.36 0.512347	3722.66 0.525552	3660.44	3731.16	3653.76	3638.25	3839.4	3798.48	3545.19	3632.64	3758.02	3773.35
	g CaO	0.04502	0.032553	0.042736	0.044968	0.044552	0.472000	0.032262	0.0434	0.043604	0.043796	0.516768 0.043064	0.515778	0.509312		0.501255	0.525084	0.741267	0.759552	0.519491	
Removed in B	g vas	51.2	49	51.6	53.5	53.9	57.6	50.3	51.8	51.8	53.8	54.1	0.043896 53.2	0.033216 56.9	0.033075 56.2	0.053325 53.1	0.05586 52.6	0.053715 53.3	0.05504	0.033159	0.043124
negator III o	ug Au	32.256	30.87	35.604	34.24	35.035	35.712	31.689	30.044	30.044	31.742	32.46	30.856	35.278	33.158	30.267	29.456	29.315	53.6 30.016	52.3 29.288	55 70.0
	ag Cu	1.1264	1.127	1.1352	1.2305	1.1858	1.2672	1.006	1.0878	1.0878	1.1836	1.1902	1.1172	1.138	1.124	1.062	1.052	1.1193	1.072		30.8
	ug Zn	199.68	186.2	185.76	203.3	188.65	201.6	171.02	186.48	186.48	182.92	183.94	180.88	187.77	185.46	191.16	178.84	175.89	176.88	1.046 177.82	1.1 192.5
	g NaCN	0.024064	0.02303	0.02322	0.024075	0.024794	0.025344	0.021126	0.023828	0.024346	0.025824	0.025968	0.025004	0.026174	0.02529	0.024957	0.024722	0.036777	0.036984	0.024581	0.02475
	g CaO	0.002048	0.00147	0.002064	0.00214	0.002156	0.001728	0.001509	0.002072	0.002072	0.002152		0.002128	0.001707		0.002655		0.002665	0.00268	0.001569	0.0022
In vessel at C	g	1124.2	1084.7	1067.1	1121.9	1112.5	1118.1	1073.2	1084.3	1089.4	1093.3	1075.6	10%.1	1105.8	1101.3	1065.9	1116.2	1672.8	1099.1	1104.1	1076.6
	ug Au	708.246	705.055	714.957	729.235	745.375	715.584	686.848	639.737	620.958	677.846	666.872	646.699	696.654	660.78	607.563	636.234	632.952	659.46	629.337	624.428
	ang Cu	24.7324	26.0328	25.6104	26.9256	25.5875	24.5982	23.6104	23.8546	22.8774	25,1459	24.7388	25.2103	25.4334	24.2296	22.3839	23.4402	24.6744	25.2793	24.2902	23.6852
	ug In	6070.68	5098.09	4588.53	4936.36	4338.75	4248.78	4078.16	4770.92	4684.42	4373.2	4194.84	4713.23	4423.2	4184.94	4263.6	4911.28	4291.2	4506.31	4526.81	4198.74
	g NaCN	0.50589	0.488115	0.490866	0.527293	0.522875	0.491964	0.472208	0.466249	0.479336	0.491985	0.462508	0.493245	0.475494	0.473559	0.468996	0.491128	0.654408	0.670451	0.463722	0.452172
	g CaO	0.033726	0.032541	0.032013	0.033657	0.033375	0.033543	0.0321%	0.021686	0.032682	0.032799	0.032268	0.032883	0.022116	0.033039	0.031977	0.044648	0.042912	0.043964	0.033123	0.032298
Removed in C	g						55.9	54.9						55	52. 2					54.2	55.8
	ug Au						35.776	35.136		•				34.65	31.32					30.894	32.364
	ng Cu						1.2298	1.2078						1.265	1.1484					1.1924	1.2276
	ug In		•		-		212.42								198.36						217.62
	g NaCN						0.0245%							0.02365						0.022764	0.023436
	g CaO						0.001677								0.001566					0.001626	
In vessel at D	g							1072.2							1099.7					1103.7	
	ug Au							686.208							648.823					618.072	
	ag Cu							25.7328							24.1934					25.3851	
	ug Zn							43%.02							4838.68					4856.28	
	g NaCN						0.536256							0.52992						0.540813	
	g CaO						0.033516	0.021444						0.02208	0.032991					0.033111	0.032274
Residue	ug Au	143.6	151.5035	143.2	194.814	158.559	167.8	129.405	198.256	161.2515	163.852	217.6975	195.156	218.2815	126.1935	192.205	211.7765	227.729	222.314	199.833	181.9945
Calculated Head	ug Au	913.41	919.29	920.60	985.45	967.02	963.01	914.12	895.49	837.21	898.54	942.84	897.16	1002.48	867.00	856.28	902.26	912.99	934.29	904.74	884.81
Sample leached	g	750.7	724.6	712.9	750.7	743.4	748.7	717.7	723.7	72 7.7	730.4	717.9	731.8	739.7	735.9	712.1	745.4	717.0	732.4	737. 7	719.4

BMT 1.2 Sheets 1-13 Calc.

			-		•	*					- <u>-</u>		
BMT5727	Sheet 1	7-Dec-89											
BILLITON MT TODO NEAT	HERED ORE BOTTLE	ROLL CYANI	DE LEACH AT		i. ;	COMPOSITE	BMT 1.2 ;		4.5				
SUMMARY				40									
Test No. (% solids)	Units	30	60	38	6C	30	. 8A	48 :	18	5C	7A	. 88	
Nominal Grind 80% pass		75	75	75	75	75	75	75	106	106	106	106	1
Total leach time	hours	. 8	8	12	12	12	18~	18	. 8	8 .	12	12	
Extraction Au	4.								4 ***	4:30		. 7/	
at 3 hours	g/t	0.75	0.82 1.06	0.79 1.03	0.87 1.04	0.81 1.03	0. 8 6 1.11	0.78 1.00	0.53 0.66	0.70 0.91	0.71 0.92	0.76 1.03	0.
at 6 hours at 8 hours	g/t g/t	0.98 1.02	1.10	1.05	1.04	1.05	1.11	1.00	0.70	0.89	V.72	1.03	٧.
at 12 hours	g/t	1.02	1.10	1.07	1.09	1.05	1.14	1.03	0.70	V.03	1.03	1.10	0.
at 18 hours	g/t			••••			1.14	1.06					
at 3 hours	*	63.9	64.8	65.0	70.2	68.5	66.6	65.7	60.5	62.0	56.8	58.9	60
at 6 hours	*	83.7	83.4	84.4	83.9	87.4	86.5	84.3	74.5	79.6	74.2	79.4	78
at 8 hours	*	86.7	86.2						78.9	78.3			
at 12 hours	ŧ.			87.5	88.2	89.2	88.5	87.1			82.6	84.7	8
at 18 hours	4					•	89.2	88.9					
Calculated Head	DÓM ÁU	1.17	1.27	1.22	1.24	1.18	1.28	1.19	0.88 _	1.14	1.24	1.30	1.
Ground Head Assay 1	por Au	1.18	1.15	1.17	1.14	1.19	1.28	1.13	1.16	1.11	1.28	1.26	1
Ground Head Assay 2	ppm Au	1.05	1.16	1.19	1.12	1.18	1.24	1.29	1.12	1.04	1.14	1.28	1
Average Ground Head A		1.12	1.16	1.18	1.13	1.19	1.26	1.21	1.14	1.08	1.21	1.27	.1
Calculated residue g	rade pom Au	0.16	0.18	0.15	0.15	0.13	0.14	0.13	0.22	0.25	0.22	0.20	0
		-											
Extraction Cu at 3 hours	g/t	19	19	21	20	21	20	21	14	21	20	19	
at 6 hours	g/t g/t	22	22	24	23	24	22	19	17	25	24	24	
at 8 hours	g/t	23	23	•.		71	-	-	19	26			
at 12 hours	g/t		- :	26	25	26	26	26	1 - 1 - 1 - 1	1.194	26	26	
at 18 hours	g/t					1	27	27					
Assay Head	ppm Cu	280	(ave. of two	head spli	ts)								
Extraction Zn											·		
at 3 hours	.g/t	2.2	2.2	2.2	2.3	2.2	2.3	2.4	1.6	2.2	2.3	2.1	
at 6 hours	g/t	2.5	2.7	2.7	2.8	2.7	2.7	2.8	2.0	2.8	2.8	2.7	
at 8 hours	g/t	2.8	2.9						2.2	3.1			
at 12 hours	g/t			3.3	3.3	3.4	3.3	3.4			3.4	3.2	
at 18 hours	g/t						3.7	3.9					
Assay Head	ppm Zn	198	(ave. of two	head spli	ts)								
NaCH consumption												_	
at 3 hours	kg/t	0.08	0.17	0.03	0.13	0.09	0.11	0.07	0.15	0.09	0.08	0.09	0
at 6 hours	kg/t	0.08	0.18	0.13	0.14	0.10	0.13	0.12	0.16	0.11	0.10	0.12	0.
at 8 hours	kg/t	0.11	0.19	A 10	Λ 10	0.15	0.18	0.17	0.18	0.13	0.14	0.16	0.
at 12 hours	kg/t			0.18	0.18	U.13	0.16	0.16			V.19	A-10	v.
at 18 hours	kg/t						4.10						
								:					
CaO consumption												. 2	
at 3 hours	kg/t	1.61	1.54	1.59	1.46	1.57	1.58	1.57	1.32	1.48	1.49	1.53	1
at 6 hours	kg/t	1.60	1.54	1.59	1.47	1.55	1.56	1.57	1.31	1.47	1.48	1.53	1.
at 8 hours	kg/t	1.60	1.54		*	1.54	1 FA		1.31	1.48	1 40	1 64	. 4
at 12 hours	kg/t			1.59	1.47	1.56	1.59 1.58	1.58 1.58			1.49	1.54	1
at 18 hours	kg/t						1.36	1.36					

									•		-											
	BMT5727	Sheet 2		7-Dec-89								•	•									
	BILLITON MT TOOD WEATHERED				1 404 CO TO	ne i	COMPOSITO	BMT 1.2														
	DILLITOR III 1900 MENIBERED	CAC BOLIE	. NULL CIMILE	E LENUT H	1 404 DULI	Б.	COMPOSITION	ON! 1.2														
	tests conducted (date)		15/11	15/11	15/11	15/11	15/11	15/11	15/11	17/11	47/11	17/11	17/11	17/11	17/11	17/11	15/11	15/11	17/11	17/11	15/11	17/11
	Test No. (% solids)	Units	15/11	-	32	-	15/11	15/11	15/11	17/11	17/11	17/11	17/11	17/11	17/11	17/11	15/11	15/11	17/11	17/11	15/11	17/11
			3C	60		60	30	8A	48	18	5C	7A	.86	20	6A	40	4A	. 58 . 50	18	70	70	10
	Grind 80% passing	UR haven	75	75	75	75	75	75	75	106	106	106	106	106	106	106	150	150	150	150	150	150
	Total leach time	hours	8	8	12	12	12	18	18	8	8	12	12	12	18	18	8	8	12	12	18	18
											*****					******					******	
-	Vessel	g	409.2	406.5	408.2	407.5	408.5	408.6	407.0	407.5	407.7	407.9	406.8	406.6	408.2	408.8	406.9	407.8	407.7	406.7	405.2	404.9
	Sample mass	g	672.4	686.8	677.5	720.0	675.5	677.1	668.2	793.1	702.6	697.8	670.9	675.4	692.3	678.9	720.3	686.3	704.0	679.9	709.4	679.5
	Sitewater added	g	1009	1030	1016	1080	1013	1016	1002	1017	1054	1047	1006	1013	1038	1018	1080	1029	1056	1020	1064	1019
	Natural pH																					
	CaO added	g	1.12	1.10	1.12	1.10	1.10	1.11	1.10	1.09	1.09	1.09	1.09	1.07	1.09	1.10	1.11	1.10	1.10	1.09	1.10	1.08
	NaCN added	g	0.54	0.56	0.55	0.58	0.55	0.55	0.54	0.55	0.57	0.56	0.54	0.55	0.56	0.55	0.58	0.55	0.57	0.55	0.57	0.55
	Leach Time	hrs	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
	Gross off rolls	g	2089.7	2122.4	2101.2	2107.2	20 9 6.6	2101.5	2077.3	2102.6	2163.9	2152.8	2083.4	2094.8	2137.9	2105.4	2207.1	2122.7	2167.3	2106.1	2178.3	2103.1
	Pulp temperature	deg C	22	22	22	22	22	22	22	24	24	24	24	24	24	24	22	22	23	24	22	24
	Liquor sample A	pH	11.0	11.1	11.1	11.0	11.1	11.1	11.1	11.1	11.1	11.1	11.2	11.1	11.2	11.2	10.9	10.9	11.1	11.2	11.0	11.2
		ppie Au	0.50	0.55	0.53	0.64	0.54	0.57	0.52	0.47	0.47	0.47	0.51	. 0.47	0.49	0.48	0.48	0.49	0.43	0.45	0.41	^ 46
		pon Cu	13.0	13.0	14.0	15.0	14.0	13.0	14.0	12.0	14.0	13.0	13.0	13.0	12.0	13.0	14.0	13.0	12.0	12.0	11.0	12.0
		ppa Zn	1.5	1.5	1.5	1.7	1.5	1.5	1.6	1.4	1.5	1.5	1.4	1.4	1.4	1.5	1.6	1.6	1.5	1.5	1.6	1.6
		1 NaCN	0.048	0.043	0.052	0.050	0.048	0.047	0.049	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.047	0.049	0.048	0.048	0.041	0.048
		% CaO	0.004	0.004	0.004	0.005	0.004	0.004	0.005	0.005	0 .00 5	0.005	0.006	0.006	0.005	0.005	0.004	0.004	0.005	0.006	0.004	0.005
	Gross after sample	9	2038.9	2070.6	2046.7	2052.8	2042.3	2047.7	2023.5	2046.7	-2109.4	2098.5	2029.0	2040.5	2083.7	2051.2	2151.7	2067.7	2112.6	2051.9	2128.5	2049.0
	CaO added	ĝ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	000	0.00
	NaCN added	g	0.02	0.07	0.00	0.00	0.02	0.03	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.01	0.02	0.02	0.09	0.02
	Leach time	hrs	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
	Gross off rolls	g	2089.4	2122.8	2100.7	2106.7	20%.1	2101.0	2076.6	2102.3	2163.5	2152.4	2083.0	2094.5	2137.4	2105.0	2206.9	2122.3	2166.5	2105.7	2177.9	2102.7
	Pulp temperature	deg C	26	25	25	25	25	25	25	27	27	27	27	27	27	27	26	26	27	27	26	27
	Liquor sample 8	pH	11.0	11.0	11.1	11.0	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.2	10.8	10.9	11.1	11.2	11.0	11.1
		ppe Au	0.63	0.68	0.65	0.73	0.66	0.71	0.64	0.55	0.58	0.59	0.66	0.58	0.62	0.64	0.59	0.59	0.55	0.55	0.60	0.57
		ppm Cu	14	14	15	16	15	14	12	14	16	15	15	15	15	15	15	15	15	15	15	15
		ppm Zn	1.6	1.7	1.7	2.0	1.7	1.7	1.8	1.7	1.8	1.8	1.7	1.8	1.8	1.8	2.2	1.8	1.8	1.9	1.9	1.8
		1 NaCN	0.048	0.047	0.043	0.046	0.047	0.046	0.044	0.646	0.046	0.046	0.045	0.015	0.045	0.047	0.047	0.047	0.045	0.046	0.052	0.044
	O	% CaO	0.004	0.004	0.004	0.004	0.005	0.005	0.005	0.005	0.005	0.005	0.006	0.006	0.005 2082.9	0.005 2050.6	0.004 2151.8	0. 004 2070.3	0.005 2111.7	0.006 2051.2	0.005 2123.6	0.005 2048.4
	Gross after sample	g	2036.9	2070.2	2046.6	2054.0	2043.1	2047.0	2026.3 0.00	2046.7 0.60	2108.8 0.00	2098.0 0. 0 0	2028.3 0.00	2039.9 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	CaG added	9	0.00	0.00 0.03	0. 0 0 0.07	0.00 G.04	0.00 0.03	0.00 0.04	0.06	0.04	0.64	0.04	0.05	0.05	0.05	0.03	0.03	0.03	0.05	0.04	0.00	0.06
	NaCN added Leach time	y hrs	0.02	7.03	0.01 4	V.V -1	V.V3	۷.04	۷.00	2.04	7	۷.۷۰	۷.۷۵	V.VJ	V. V 3	6	2	2.93	6	6	6	۷.۷۵
	Gross off rolls		2089.5	2122.1	2100.5	2106.3	2095.9	2100.9	2076.9	2102.2	2163.2	2150.9	2082.8	2094.0	2137.2	2104.6	2206.9	2122.4	2166.5	2105.3	2176.9	2102.5
	Pulp temperature	g deg C	26	2122.1	26	26	26	26	26	28	28	26	26	26	26	26	26	26	26	26	26	26
	Liquor sample C	oby c	11.0	11.0	11.1	10.9	11.1	11.0	11.1	11.0	10.9	11.1	11.1	11.1	11.1	11.2	10.8	10.9	11.0	11.0	11.0	41.1
	CIQUO: SAMPIE C	DOM AU	0.62	0.67	0.65	0.73	0.64	0.69	0.63	0.55	0.54	0.63	0.67	0.60	0.61	0.65	0.60	0.58	0.54	0.57	0.61	0.61
		ppm Cu	14.0	14.0	16.0	17.0	16.0	16.0	16.0	15.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	15.0	16.0	16.0	17.0	16.0
		ppm Zn	1.7	1.8	2.0	2.2	2.1	2.0	2.1	1.7	1.9	2.1	2.0	2.2	2.0	2.1	1.8	1.8	2.1	2.2	2.2	2.2
		% NaCN	0.045	0.047	0.044	0.045	0.044	0.044	0.045	0.046	0.046	0.045	0.045	0.044	0.047	0.047	0.047	0.045	0.045	0.046	0.048	0.047
		% CaO	0.004	0.004	0.004	0.004	0.004	0.003	0.004	0.005	0.004	0.004	0.005	0.005	0.004	0.005	0.003	0.004	0.004	0.005	0.004	0.004
	Gross after sample	0	••••	••••	,	*****		2046.6	2021.0						2081.4	2046.2					2119.4	2046.3
	CaO added	g						0.00	0.00						0.00	0.00					0.00	0.00
	NaCN added	g						0.06	0.05						0.03	0.03					0.02	0.03
	Leach time	hrs						6	6						6	6					6	6
	Gross off rolls	g						2098.9	2075.1						2136.7	2103.5					2175.6	2101.2
	Pulp temperature	deg C						22	22						23	23					22	23
	Liquor sample D	pH						11.0	11.0						11.1	11.1					11.0	11.0
		pom Au						0.66	0.61					•	0.62	0.62					0.59	0.60
		ppm Cu						16.0	16.0						16.0	16.0					16.0	16.0
		ppa Zn						2.2	2.3						2.3	2.3					2.4	2.4
		1 NaCH						0.049	0.048						0.045	0.045					0.047	0.046
		% CaO						0.003	0.004						0.004	0.003					0.004	0.003
	Sample mass account																					
	Residue recovered (screened	l)g	668.9	682.6	676.7	717.7	673.1	669.8	665.7	675.3	700.2	6%.4	666.2	672.0	687.4	674.6	716.8	683.3	700.9	678.5	706.8	677.2
	Ground head to assay	g	133.9	98.1	110.2	118.6	114.1	112.0	115.9	115.0	123.4	104.3	104.5	106.0	117.1	126.9	113.3	123.8	117.7	121.4	127.5	111.9
	Calculated head to grind	g	802.8	780.7	786.9	836.3	787.2	781.8	781.6	790.3	823.6	800.7	770.7	778.0	804.5	801.5	830.1	807.1	818.6	799.9	B34.3	789.1
	Actual head to grind	g	806.3	784.9	787.7	838.6	789.6	789.1	784.1	793.1	826.0	802.1	775.4	781.4	809.4	805.8	833.6	810.1	821.7	801.3	836.9	79 1.4
	Unaccounted mass	1	0.43	0.54	0.10	0.27	0.30	0.93	0.32	0.35	0.29	0.17	0.61	0.44	0.61	0.53	0.42	0.37	0.38	0.17	0.31	0.29

BMT5727

Sheet 3

BILLITON MT TOOD MEATHERED ORE BOTTLE ROLL CYANIDE LEACH AT 40% SOLIDS.

7-Dec-89

COMPOSITE BHT 1.2 ;

Test No. 3C Hom. P80um 75 Leach hrs 8 + 150	Particle size	Mass g	Mass & Retained	Cum. Mass Passing	Assay ppm Au	Assay ppm Au	Ave. assay ppm Au	Contents ug Au	Distrib'i Au %
- 150 + 106									
- 106 + 75			0.0	100.0			-		1 1
- 106 + 75	- 150 + 106	50.5	5 7.5	92.5	0.47		0.47	23,74	22.0
- 75 + 53		90.5	13.5	78.9	0.41	0.30			
Calculated 668.9 100.0 0.16 105.2 10 Test No. 60 Non. P80:n 75 Leach hrs 8 + 150 0.0 100.0 - 150 + 106 42.9 6.3 93.7 0.49 0.49 21.02 1 - 166 + 75 91.5 13.4 80.3 0.38 0.41 0.40 36.14 3 - 75 + 53 73.6 10.8 69.5 0.31 0.31 22.02 1 - 53 474.6 69.5 0.09 0.08 0.09 40.34 3 Calculated 682.6 100.0 0.100.0 - 150 + 106 47.3 7.0 93.0 0.52 0.52 24.60 2 - 106 + 75 91.2 13.5 79.5 0.32 0.29 0.31 27.82 2 - 75 + 53 74.5 11.0 68.5 0.25 0.25 0.25 18.63 1 - 53 465.7 68.5 0.08 0.06 0.06 0.07 32.46 3 Calculated 676.7 100.0 0.100.0 - 150 + 106 60.8 8.5 91.5 0.38 0.38 23.10 2 - 106 + 75 102.7 14.3 77.2 0.29 0.28 0.29 29.7 2 - 75 + 53 74.9 10.4 66.8 0.26 0.26 19.47 11 - 150 + 106 60.8 8.5 91.5 0.38 0.38 23.10 2 - 106 + 75 102.7 14.3 77.2 0.29 0.28 0.29 29.7 2 - 75 + 53 74.9 10.4 66.8 0.26 0.26 19.47 11 - 150 + 106 60.8 8.5 91.5 0.38 0.38 23.10 2 - 106 + 75 102.7 14.3 77.2 0.29 0.28 0.29 29.7 2 - 75 + 53 74.9 10.4 66.8 0.26 0.26 19.47 11 - 150 + 106 60.8 8.5 91.5 0.38 0.38 23.10 2 - 106 + 75 102.7 14.3 77.2 0.29 0.28 0.29 29.7 2 - 75 + 53 74.9 10.4 66.8 0.26 0.26 19.47 11 - 150 + 106 40.8 8.5 91.5 0.38 0.38 23.10 2 - 106 + 75 91.3 10.4 66.8 0.26 0.26 19.47 11 - 150 + 106 44.9 6.7 93.3 0.44 0.44 19.76 2 - 150 + 106 44.9 6.7 93.3 0.44 0.44 19.76 2 - 150 + 106 44.9 6.7 93.3 0.44 0.44 19.76 2 - 150 + 106 44.9 6.7 93.3 0.44 0.44 19.76 2 - 150 + 106 44.9 6.7 93.3 0.44 0.44 19.76 2 - 150 + 106 44.9 6.7 93.3 0.44 0.44 19.76 2 - 150 + 106 44.9 6.7 93.3 0.44 0.44 19.76 2 - 150 + 106 44.9 6.7 93.3 0.44 0.44 19.76 2 - 150 + 106 45.5 69.1 0.19 0.19 13.38 11 - 53 465.1 69.1 0.04 0.04 0.06 0.05 23.26 25	- 75 + 53	73.3	11.0	68.0	0.27	100	0.27	19.79	18.0
Calculated 668.9 100.0 0.16 105.2 10 Test No. 60 Non. P80:n 75 Leach hrs 8 + 150 0.0 100.0 - 150 + 106 42.9 6.3 93.7 0.49 0.49 21.02 1 - 106 + 75 91.5 13.4 80.3 0.38 0.41 0.40 36.14 3 - 75 + 53 73.6 10.8 69.5 0.31 0.31 22.82 1 - 53 474.6 69.5 0.09 0.08 0.09 40.34 3 Calculated 682.6 100.0 0.100.0 - 150 + 106 47.3 7.0 93.0 0.52 0.52 24.60 2 - 106 + 75 91.2 13.5 79.5 0.32 0.29 0.31 27.82 2 - 75 + 53 74.5 11.0 68.5 0.25 0.25 0.25 18.63 1 - 53 465.7 68.5 0.08 0.06 0.07 32.46 3 Calculated 676.7 100.0 0.100.0 - 150 + 106 60.8 8.5 91.5 0.38 0.38 23.10 2 - 106 + 75 102.7 14.3 77.2 0.29 0.28 0.29 27.2 2 - 75 + 53 74.9 10.4 66.8 0.26 0.26 19.47 11 - 150 + 106 60.8 8.5 91.5 0.38 0.28 0.29 0.31 33.55 3 Calculated 717.7 100.0 0.15 105.4 100 est No. 30 Non. P80:n 75 Leach hrs 12	- 53	454.6	68.0		0.07	0.06	0.07	29.55	28.1
+ 150	Calculated	668.9	100.0					105.2	100.0
- 150 + 106	Test No.	60	Non. P80:m	75	Leach hrs	8			
- 106 + 75	+ 150	4723433355	0.0	100.0					
- 75 + 53	- 150 + 106	42.9	6.3	93.7	0.49		0.49	21.02	17.5
- 75 + 53		91.5	13.4	80.3	0.38	0.41	0.40	36.14	30.0
- 53	- 75 + 53	73.6	10.8	69.5	0.31		0.31	22.82	19.0
Calculated 682.6 100.0 0.18 120.3 10 Test No. 38 Nom. P80um 75 Leach hrs 12 + 150	- 53	474.6	69.5	•	0.09	0.08	0.09	40.34	
+ 150	Calculated	682.6	100.0				0.18	120.3	100.0
+ 150	Test No.	38				12			
- 150 + 106	+ 150						1		
- 106 + 75	- 150 + 106	47.3	7.0	93.0	0.52		0.52	24.60	23.8
Calculated 676.7 100.0 0.15 103.5 10		91.2	13.5	79.5	0.32	0.29	0.31	27.82	26.9
Calculated 676.7 100.0 0.15 103.5 10	- 75 + 53	74.5	11.0	68.5	0.25		0.25	18.63	18.0
Fest No. 6C Nom. P80um 75 Leach hrs 12 + 150	- 53	463.7	68.5	•	0.08	0.06	0.07	32.46	31.4
+ 150	Calculated	676.7	100.0				0.15	103.5	100.0
+ 150	Test Ho.				Leach hrs	12			
- 106 + 75	+ 150					********			
- 106 + 75		60.8	8.5	91.5	0.38		0.38	23.10	21.9
- 75 + 53		102.7	14.3	77.2	0.29	0.28	0.29	29.27	27.8
- 53 479.3 66.8 0.07 0.07 0.07 33.55 33 Calculated 717.7 100.0 0.15 105.4 100 Fest No. 3D Nom. P80um 75 Leach hrs 12 + 150 0.0 100.0 - 150 + 106 44.9 6.7 93.3 0.44 0.44 19.76 23 - 106 + 75 92.7 13.8 79.6 0.27 0.37 0.32 29.66 34 - 75 + 53 70.4 10.5 69.1 0.19 0.19 13.38 19 - 53 465.1 69.1 0.04 0.06 0.05 23.26 27									18.5
Fest No. 3D Nom. P80um 75 Leach hrs 12 + 150	- 53					0.07	0.07	33.55	31.8
+ 150	Calculated	717.7	100.0				0.15	105.4	100.0
+ 150	est No.	30	Non. P80um	75	Leach hrs	12			
- 150 + 106	+ 150		0.6	100.0					
- 106 + 75		44.9			0.44		0.44	19 76	23.0
- 75 + 53	· ·			79.6	0.27	0.37	0.32		
- 53 465.1 69.1 0.04 0.06 0.05 23.26 27				69.1	0.19	4147	0.19		
alculated 673.1 100.0 0.13 96.1 100				4711					
	alculated	673.1	100.0				0_13	86 1	100.0

BHT5727 Sheet 4 7-Dec-89
BILLITON MT 1000 MEATHERED ORE BUTTLE ROLL CYANIDE LEACH AT 40% SOLIDS.

! COMPOSITE BHT 1.2 !

Particle size um	Mass g	Retained	Passing	DOM: Au		Ave. assay ppm Au		Distrib'ı Au %
Test No.	8A			Leach hrs	18			
+ 150		0.0	100.0				•	
- 150 + 106	48.7	7.3	92.7	0.39		0.39	18.99	20.2
- 106 + 75	85.0	12.7	80.0	0.34	0.24	0.39 0.29	24.65	26.2
- 75 + 53	71.2	10.6	69.4	0.25		0.25	17.80	18.9
- 53	464.9	69.4		0.07	0.07	0.07	32.54	34.6
Calculated	669.8	100.0	********			0.14	94.0	100.0
Test No.	48	Non. P80un	75	Leach hrs	18			
+ 150		0.0	100.0			•		
	43.6					0.28	12.21	13.8
- 106 + 75	87.7	13.2	80.3	0.30	0.20	0.25		
- 75 + 53	71.0	10.7	69.6	0.24		0.24	17.04	19.3
- 53	463.4	69.6		0.08	0.08	0.08	37.07	. 42.0
Calculated	665.7	100.0				0.13	88.2	100.0
Test No.	18	Nom. P80um	106	Leach hrs	8			
÷ 150	62.0	9.2	90.8	0.42		0.42	26.04	17.6
- 150 + 106	84.8	12.6	78.3	0.42	0.44	0.43	36.46	24.7
- 106 + 75	89.2	13.2	65.1	0.36	0.30	0.43 0.33	29.44	19.9
- 75 + 53	58.3	8.6	56.4	0.24		0.24	13.99	9.5
- 53	381.0	56.4		0.10	0.12	0.11	41.91	28.3
Calculated	675.3	100.0				0.22	147.8	100.0
Test No.	5C	Nom. P80um	106	Leach hrs	8			
+ 150	73.0 91.8	10.4	89.6	0.61				25.7
- 150 + 106		13.1	76.5	0.39	0.39			20.7
- 106 + . 75		12.4	64.1	0.30	0.31	0.31		15.3
- 75 + 53	59.8	8.5	55.5	0.46			27.51	15.9
- 53	388.7	55.5		0.10	0.10	0.10	38.67	22.4
Calculated	700.2	100.0				0.25	173.2	100.0
Test No.	7A	Nom. P80um	106	Leach hrs	12			
+ 150	72.3	10:4	89.6	0.61		0.61	44.10	29.3
- 150 + 106	84.5	12.1	77.5	0.41	0.44	0.43	35.91	23.9
- 106 + 75	92.1	13.2	64.3	0.29 0.26	0.28	0.29	26.25	17.4
- 75 + 53	57.3	9.2	56.0	0.26		0.26	14.90	9.9
- 53	390.2	56.0		0.07	0.08	0.08	29.27	19.5
Calculated	696.4	100.0				0.22	150 A	100.0

BMT5727 Sheet 5 7-Dec-89
BILLITON MT TODD WEATHERED ORE BOTTLE ROLL CYANIDE LEACH AT 40% SOLIDS.

COMPOSITE BAT 1.2 !

Particle size um	Mass g	Mass % Retained	Cum. Mass Passing	Assay ppm Au	Assay ope Au	Ave. assay ppm Au	Contents ug Au	
Test No.				Leach hrs				
+ 150	54.5	8.2	91.8	0.42	·	0.42	22.89	17.2
- 150 + 106	81.3	12.2	79.6	0.44	0.43	0.44	35.37	26.6
- 106 + 75	94.8	14.2	65.4	0.31	0.31	0.31	29.39	22.1
- 75 + 53	58.6	8.8	56.6	0.23 0.09		0.23	13.48	10.1
- 53	377.0	56.6		0.09	0.08	0.09	32.05	24.1
Calculated	666.2	100.0				0.20	133.2	100.0
Test No.	2 C	Non. P80un	106	Leach hrs	12			
+ 150	61.0	9.1	90.9	0.38		0.38	23.18	19.4
- 150 + 106	79.5	11.8	79.1	0.41	0.37	0.39	31.01	25.9
- 106 + 75	90.8	13.5	65.6	0.41 0.28	0.29	0.29	25.88	21.6
- 75 + 53	57.8	8.6	57.0	0.22		0.22	12.72	10.6
- 53	382.9	57.0	•	0.07	0.07	0.07	26.80	22.4
Calculated	672.0	100.0			<u></u>	0.18	119.6	100.0
Test No.	6A	Nom. P80um	106	Leach hrs	18	-		-
+ 150	58.3	8.5	91.5	0.33 0.40		0.38	22.15	17.4
- 150 + 106	87.9	12.8	78.7	0.40	0.39	0.40	34.72	27.2
- 106 + 75	94.8	13.8	64.9	0.27	0.29	0.28	26.54	20.8
- 75 + 53				0.22		0.22 0.08	13.20	10.4
- 53	386.4	56.2		0.08	0.08	0.08	30.91	24.2
Calculated	687.4	100.0				0.19	127.5	100.0
Test No.	40	Non, P80um	106	Leach hrs	18			
+ 150	57.1	8.5	91.5	0.34	. : .	0.34	19.41	16.6
- 150 + 106	82.5	12.2	79.3	0.39	0.38	0.39	31.76	27.1
- 106 + 75	91.9	13.6	65.7	0.30	0.29	0.30	27.11	23.2
- 75 + 53	59.8	8.9	56.8	0.20		0.20	11.96	10.2
- 53	383.3	56.8		0.07	0.07	0.07	26.83	22.9
Calculated	674.6	100.0				0.17	117.1	100.0
Test No.	4 A	Non. P80un	150	Leach hrs	. 8			
+ 150	154.8	21.6	78.4	0.53	0.54	0.54	82.82	41.1
- 150 + 106		13.1		0.42		0.45	42.12	20.9
- 106 + 75	73.7		55.1	0.37		0.37	27.27	13.5
- 75 + 53	48.9	6.8	48.2	0.37		0.37	18.09	9.0
- 53	345.8	48.2		0.10	0.08	0.09	31.12	15.5
Calculated	716.8	100.0				0.28	201.4	100.0

BNT5727 Sheet 6 7-Dec-89 BILLITOW HT TODO WEATHERED ORE BOTTLE ROLL CYANIDE LEACH AT 40% SOLIDS.

COMPOSITE BHT 1.2

Particle size								
UR	g 	Retained	Passing	ppm Au	ppm Au	ppie Au	ug Au	Au %
Test No.		Non. P80un		Leach hrs	ð			•
+ 150	141.7	20.7	79.3	0.60	0.54	0.57	80.77	45.9
- 150 + 106	91.3	13.4	65.9	0.47	0.46	0.47	42.45	24.3
- 106 + 75	70.1	10.3	55.6	0.26 0.23 0.07		0.26	18.23	10.4
- 75 + 53	48.3	7.1	48.6	0.23		0.23	11.11	6.3
- 53	331.9	48.6		0.07	0.07	0.07	23.23	13.2
Calculated	683.3	100.0				0.26	175.8	100.0
Test No.	14	Non. P80un	150	Leach hrs	12			
+ 150	150.9	21.5	78.5	0.55	0.53	0.54	81.49	46.9
- 150 + 106	89.9 70.2	12.8	65.6	0.40 0.29	0.38	0.39	35.06	20.2
- 106 + 75		10.0	55.6	0.29		0.29		
- 75 + 53	46.8							6.5
- 53	343.1	49.0		0.08	0.07	0.08	25.73	14.8
Calculated	700.9	100.0				0.25	173.9	100.0
Test No.	70	Nom. P80um						
+ 150	146.9	21.7	78.3	9.53	0.56	0.55	80.06	49.7
- 150 + 106	85.8	12.6	65.7	0.41	0.41	0.41	35.18	21.8
- 106 + 75	68.4	10.1	55.6	0.27	0.07	0.17	11.63	7.2
- 75 + 53	46.7	6.9	48.7	0.24		0.24	11.21	7.0 14.4
- 53	330.7	48.7		0.07		0.07	23.15	14.4
Calculated	678.5	100.0				0.24	161.2	100.0
Test No.	7C	Non. P80ur	150	Leach hrs	18			
+ 150	153.4	21.7	78.3	0.50	0.52	0.51	78.23	46.9
- 150 + 106	95.0	13.4	64.9	0.42	0.39	0.41	38.48	23.1
- 106 + 75	69.4	9.8 6.5	55.0	0.28		0.28	19.43	11.6
- 75 + 53	45.8	6.5	48.6			0.22	10.08	6.0
- 53		48.6			0.06			12.3
Calculated		100.0						100.0
Test No.	1D							
+ 150	143.5		78.8		0.48			
- 150 + 106	86.2	12.7	66.1	0.36	0.36	0.36	31.03	18.2
- 106 + 75	66.2	9.8	56.3	0.49 0.28		0.49	32.44	19.0
- 75 + 53	46.7	6.9	49.4	0.28		0.28	13.08	1.7
- 53	334.6	49.4		0.07		0.07	23.42	13.8
Calculated	677.2					0.25	170.3	100.0

BILLITON MT TOOD MEATHEREE COMPOSITE BMT 1.2 ;	Sheet 7 ORE BOTTLE R	7-Dec-89 GLL CYANIDE LI	EACH AT 401 P80=75um	SOLIDS.		P80=106um		1	780=150um	
ANALYSIS Test No. (% solids)	Units :	Ave.	Max	Min	Ave.	Max	Min	Ave.	Max	Min
Nominal Grind 80% passing	UM :	75	75	75 :	106	106	106	150	150	150
Total leach time	hours !	12.6	18.0	8.0	12.6	18.0	6.0	12.7	18.0	8.0
Extraction Au	10013	12.0	10.0	1 0.0	12.0	10.0	0.0 1	12.1	10.0	0.0
at 3 hours	g/t	0.81	0.87	0.75	0.70	0.76	0.53	0.68	0.73	0.61
at 6 hours	g/t	1.04	1.11	0.73	0.91	1.03	0.66	0.90	0.73	0.86
at 8 hours	g/t	1.06	1.10	1.02	0.79	0.89	0.70	0.97	0.98	0.95
at 12 hours	g/t ;	1.08	1.14	1.03	1.03	1.10	0.98	0.95	1.00	0.89
at 18 hours	g/t	1.10	1.14	1.06	1.03	1.10	1.06	1.02	1.03	1.01
	9/L									
at 3 hours		66.4	70.2	63.9	59.4	62.0 80.1	56.8	56.0	60.7	49.5
at 6 hours	•	84.8	87.4	83.4	77.6		74.2	73.8	76.4	69.5
at 8 hours	3	86.4	86.7	86.2	78.6	78.9	78.3	78.3	78.8	77.8
at 12 hours	1	88.1	89.2	87.1	83.5	85.4	80.1	78.8	79.8	77.8
at 18 hours	*	89.0	89.2	88.9	85.7	86.2	85.2	80.8	81.1	80.4
Calculated Head	ppie Au	1.22	1.28	1.17	.17	1.30	0.88	1.22	1.28	1.13
Ground Head Assay 1	ppm Au	1.18	1.28	1.13	1.16	1.28	1.05	1.14	1.20	1.05
Ground Head Assay 2	pom Au	1.18	1.29	1.05	1.15	1.28	1.04	1.19	1.30	1.11
Average Ground Head Assay	ppm Au	1.18	1.26	1.12	1.16	1.27	1.08	1.16	1.21	1.10
Calculated residue grade	ppn Au	0.15	0.18	0.13	0.20	0.25	0.17	0.25	0.28	0.24
Extraction Cu							` ¦ .	1		
at 3 hours	g/t :	20	21	19	19	21	14	18	21	16
at 6 hours	g/t ¦	22	24	19	23	25	. 17	23	24	23
at 8 hours	g/t ;	23	23	23	23	26	19	25	26	25
at 12 hours	g/t	26	26	25	26	26	26	26	27	26
at 18 hours	g/t	27	27	27	27	28	27	27	27	27
Assay Head	ppm Cu			!		.*				
Extraction Zn	i			i						
at 3 hours	g/t ;	2.3	2.4	2.2	2.1	2.3	1.6	2.3	2.4	2.2
at 6 hours	g/t ¦	2.7	2.8	2.5	2.7	2.8	2.0	3.0	3.4	2.8
at 8 hours	g/t ¦	2.9	2.9	2.8	2.6	3.1	2.2	3.0	3.0	3.0
at 12 hours	g/t ¦	3.3	3.4	3.3	3.4	3.6	3.2	3.5	3.6	3.4
at 18 hours	g/t	3.8	3.9	3.7	3.9	3.9	3.9	4.0	4.0	4.0
Assay Head	ppm Zn									
MaCM consumption										
at 3 hours	kg/t	0.10	0.17	0.03	0.10	0.15	0.08	0.10	0.15	0.07
at 6 hours	kg/t	0.13	0.18	0.08	0.12	0.16	0.10	0.11	0.14	0.07
at 8 hours	kg/t	0.15	0.19	0.11	0.16	0.18	0.13	0.11	0.11	0.11
at 12 hours	kg/t	0.17	0.18	0.15	0.14	0.18	0.10	0.15	0.16	0.13
at 18 hours	kg/t	0.16	0.16	0.16	0.15	0.17	0.14	0.16	0.17	0.15
CaO consumption										
at 3 hours	kg/t	1.56	1.61	1.46	1.48	1.55	1.32	1.50	1.54	1.48
at 6 hours	kg/t	1.55	1.60	1.47	1.48	1.54	1.31	1.50	1.54	1.47
at 8 hours	kg/t	1.57	1.60	1.54	1.40	1.48	1.31	1.51	1.54	1.49
at 12 hours	kg/t	1.56	1.59	1.47	1.52	1.54	1.49	1.50	1.52	1.48
at 18 hours	kg/t	1.58	1.58	1.58	1.53	1.56	1.50	1.51	1.53	1.48
Actual grind passing nomina	ted un (\$)	79.4	80.3	77.2	78.4	79.6	76.5	78.6	79.3	78.3

LLITON HT TODD WEATHERE	ORE BOTTLE	ROLL CYAN	IDE LEACH	AT 40% SOL	ios.	COMPOSI	TE BMT 1.
mary of 8 hour Residue	Size Fractio	on Assays					
Sample Identification	Grind P80	Head ppn Au	+ 150 ppm Au	† 106 ppm Au	+ 75 ppm Au	+ 53 ppm Au	- 53 ppm Au
3C	75	0.16	0.00	0.47	0.36	0.27	0.0
60	75	0.18	0.00	0.49	0.40		0.0
Average		0.17					
18	106	0.22	0.42	0.43	0.33	0.24	0.1
5C	106	0.25	0.61	0.39	0.31	0.46	0.1
Average	*****	0.23	0.52	0.41	0.32		
44	150	0.28	0.54	0.45	0.37	0.37	0.0
58	150	0.26	0.57				0.0
Average		0.27	0.55	0.46	0.32	0.30	
mary of 12 hour Residue	Size Fracti	on Assays				-	
Sample Identification	Grind P80	Head ppn Au	+ 150 ppm Au	+ 106 ppm Au	+ 75 ppm Au	+ 53 ppm Au	- 53 ppm Au
38	75	0.15	0.00	0.52	0.31	0.25	0.0
60	75	0.15	0.00	0.38	0.29	0.26	0.0
30 	75 	0.13	0.00	0.44	0.32	0.19	0.0
Average		0.14	0.00	0.45	0.30	0.23	0.0
7 A	106	0.22	0.61	0.43	0.29	0.26	0.08
88	106	0.20	0.42	0.44	0.31	0.23	0.0
2C	106	0.18	0.38	0.39	0.29	0.22	0.07
Äverage		0.20	0.47	0.42	0.29	0.24	0.08
14	150	0.25	0.54	0.39	0.29	0.24	0.08
70	150	0.24	0.55	0.41	0.17	0.24	0.07
Average		0.24	0.54	0.40	0.23	0.24	0.07
Section 1				•	, ,		
mary of 18 hour Residue	Size Fractio	n Assays					
Sample Identification	Grind P80 UM	Head ppn Au	+ 150 ppm Au	† 106 ppm Au	+ 75 ppm Au	+ 53 ppm Au	- 53 ppm Au
8A:	75	0.14	0.00	0.39	0.29	0.25	0.07
48	75	0.13	0.00	0.28	0.25	0.24	0.08
Average		0.14	0.00	0.34	0.27	0.25	0.08
6 A	106	0.19	0.38	0.40	0.28	0.22	0.08
40	106	0.17	0.34	0.39	0.30	0.20	0.07
Average	*****	0.18	0.36	0.39	0.29	0.21	0.08
7 C	150	0.24	0.51	0.41	0.28	0.22	0.06
10	150	0.25	0.49	0.36	0.49	0.28	0.05
and the second second							

0.24

0.50

0.38

0.07

0.25

BMT5727

Sheet 9

7-Dec-89

BILLITON HT TODO MEATHERED ORE BOTTLE ROLL CYANIDE LEACH AT 40% SOLIDS.

COMPOSITE BMT 1.2

Summary of Residue Size Fraction Assays

Leach	Time	Grind P80	Head ppn Au	† 150 ppm Au	+ 106 ppm Au	+ 75 ppm Au	+ 53 ppm Au	- 53 ppm Au
18 Hour (2	tests)	150	0.24	0.50	0.38	0.39	0.25	0.07
12 Hour (2		150	0.24	0.54	0.40	0.23	0.24	0.07
8 Hour (2	tests)	150	0.27	0.55	0.46	0.32	0.30	0.08
Heighted	Ave.		0.25	0.53	0.41	0.31	0.26	0.07
18 Hour (2	tests)	106	0.18	0.36	0.39	0.29	0.21	0.08
12 Hour (3	tests)	106	0.20	0.47	0.42	0.29	0.24	0.08
8 Hour (2	•	106	0.23	0.52	0.41	0.32	0.35	0.11
Weighted			0.20	0.45	0.41	0.30	0.26	0.08
18 Hour (2	tests)	75	0.14	0.00	0.34	0.27	0.25	0.08
12 Hour (3	tests)	75	0.14	0.00	0.45	0.30	0.23	0.06
8 Hour (2	tests)	75	0.17	0.00	0.48	0.38	0.29	0.08
Weighted	Ave.		0.15	0.00	0.42	0.31	0.25	0.07

tification C D age B C age	Size Fractio Grind P80 UB 75 75 106 106 150 150 Size Fractio Grind P80 Um 75 75	Head ppm Au 0.16 0.18 0.17 0.22 0.25 0.23 0.28 0.26 0.27	+ 150 \$ 0.0 0.0 0.0 17.6 25.7 21.7 41.1 45.9	23.0	+ 75 \$ 30.5 30.0 30.3 19.9 15.3 17.6 13.5 10.4 12.0 + 75 \$ 34.5	+ 53 18.8 19.0 18.9 9.5 15.9 12.7 9.0 6.3 7.7 + 53 \$	- 53 \$ 28. 33.: 30.: 28. 22 25 15.: 13.2 14.3 31.4 31.8 27.0
C D age B C age A B age mour Residue	75 75 75 106 106 150 150 Size Fractio	0.16 0.18 0.17 0.22 0.25 0.23 0.28 0.26 0.27 Head ppm Au 0.15 0.15 0.13	0.0 0.0 0.0 17.6 25.7 21.7 41.1 45.9 43.5 tribution + 150 2	22.6 17.5 20.0 24.7 20.7 22.7 20.9 24.2 22.5 + 106 \$21.9 23.8 21.9 23.0	30.5 30.0 30.3 19.9 15.3 17.6 13.5 10.4 12.0	18.8 19.0 18.9 9.5 15.9 12.7 9.0 6.3 7.7	28. 33. 30. 28. 22. 25. 15. 13. 2 14. 3 31. 4 31. 8 27.0
D age B C age A B age nour Residue	75 106 106 150 150 150 Grind P80 Um	0.18 0.17 0.22 0.25 0.23 0.28 0.26 0.27 On Gold Dis	0.0 17.6 25.7 21.7 41.1 45.9 43.5 tribution 0.0 0.0 0.0	17.5 20.0 24.7 20.7 22.7 20.9 24.2 22.5 + 106 \$ 23.8 21.9 23.0	30.0 30.3 19.9 15.3 17.6 13.5 10.4 12.0 + 75 \$	19.0 18.9 9.5 15.9 12.7 9.0 6.3 7.7 + 53 \$ 18.0 18.5 15.5	33 30 28 22 25 15 14 31 31 31 27
age B C age A B age mour Residue	106 106 150 150 150 Size Fractio	0.17 0.22 0.25 0.23 0.28 0.26 0.27 Head ppm Au 0.15 0.15 0.13	0.0 17.6 25.7 21.7 41.1 45.9 43.5 tribution + 150 2 0.0 0.6 0.0	20.0 24.7 20.7 22.7 20.9 24.2 22.5 + 106 \$ 23.8 21.9 23.0	30.3 19.9 15.3 17.6 13.5 10.4 12.0 + 75 \$	18.9 9.5 15.9 12.7 9.0 6.3 7.7 + 53 \$ 18.0 18.5 15.5	30.1 28 22.4 25.4 15.1 14.3 14.3 31.4 31.8 27.0
B C age A B age mour Residue	150 150 150 Size Fractio	0.22 0.25 0.23 0.28 0.26 0.27 on Gold Dis Head ppm Au 0.15 0.13	17.6 25.7 21.7 41.1 45.9 43.5 tribution + 150 2 0.0 0.0	24.7 20.7 22.7 20.9 24.2 22.5 + 106 \$ 23.8 21.9 23.0	19.9 15.3 17.6 13.5 10.4 12.0 + 75 \$	9.5 15.9 12.7 9.0 6.3 7.7 + 53 \$	28 22 25 15 143 143 31 31 31 27
Cage A B age mour Residue	150 150 150 Size Fractio	0.25 0.23 0.28 0.26 0.27 on Gold Dis Head ppm Au 0.15 0.15 0.13	25.7 21.7 41.1 45.9 43.5 tribution + 150 2 0.0 0.6 0.0	20.7 22.7 20.9 24.2 22.5 + 106 \$ 23.8 21.9 23.0	15.3 17.6 13.5 10.4 12.0 + 75 \$ 26.9 27.8 34.5	15.9 12.7 9.0 6.3 7.7 + 53 \$ 18.0 18.5 15.5	25.4 25.4 15.1 13.2 14.3 31.4 31.8 27.0
age A B age mour Residue	150 150 	0.23 0.28 0.26 0.27 on Gold Dis Head ppm Au 0.15 0.15	21.7 41.1 45.9 43.5 tribution + 150 \$ 6.0 0.6 0.0	22.7 20.9 24.2 22.5 + 106 \$ 23.8 21.9 23.0	17.6 13.5 10.4 12.0 + 75 \$ 26.9 27.8 34.5	12.7 9.0 6.3 7.7 + 53 \$ 18.0 18.5 15.5	25.4 15.1 13.2 14.3 - 53 \$ 31.4 31.8 27.0
A B age mour Residue	150 Size Fractio Grind P80 um	0.23 0.28 0.26 0.27 on Gold Dis Head ppm Au 0.15 0.15	21.7 41.1 45.9 43.5 tribution + 150 2 0.0 0.6 0.0	22.7 20.9 24.2 22.5 + 106 \$ 23.8 21.9 23.0	17.6 13.5 10.4 12.0 + 75 \$ 26.9 27.8 34.5	12.7 9.0 6.3 7.7 4 53 \$ 18.0 18.5 15.5	25.4 15.1 13.2 14.3 - 53 \$ 31.4 31.8 27.0
B age nour Residue	150 Size Fractio Grind P80 um	0.26 0.27 on Gold Dis Head ppm Au 0.15 0.15	45.9 43.5 tribution + 150 \$ 0.0 0.6	24.2 22.5 + 106 \$ 23.8 21.9 23.0	10.4 12.0 + 75 \$ 26.9 27.8 34.5	6.3 7.7 + 53 \$ 18.0 18.5 15.5	13.2 14.3 - 53 \$ 31.4 31.8 27.0
B age nour Residue	150 Size Fractio Grind P80 um	0.26 0.27 on Gold Dis Head ppm Au 0.15 0.15	45.9 43.5 tribution + 150 \$ 0.0 0.6	24.2 22.5 + 106 \$ 23.8 21.9 23.0	10.4 12.0 + 75 \$ 26.9 27.8 34.5	6.3 7.7 + 53 \$ 18.0 18.5 15.5	13.2 14.3 - 53 \$ 31.4 31.8 27.0
our Residue	Grind P80 um 75 75 75	Head ppm Au 0.15 0.15 0.13	+ 150 \$ 6.0 0.0 0.0	+ 106 \$ 23.8 21.9 23.0	+ 75 \$ 26.9 27.8 34.5	18.0 18.5 15.5	- 53 \$ 31.4 31.8 27.0
dification	Grind P80 um 75 75 75	Head ppm Au 0.15 0.15 0.13	+ 150 \$ 0.0 0.0 0.0	23.8 21.9 23.0	26.9 27.8 34.5	18.0 18.5 15.5	31.4 31.8 27.0
)	75 75 75	0.15 0.15 0.13	0.0 0.0 0.0	23.8 21.9 23.0	26.9 27.8 34.5	18.0 18.5 15.5	31.4 31.8 27.0
)	75 75	0.15 0.13	0.0	21.9 23.0	27.8 34.5	18.5 15.5	31.8 27.0
)	75	0.13	0.0	23.0	34.5	15.5	27.0
1 9 8		0.14	.0.0				
			V.V.	22.9	29.7	17.3	30.1
1	106	0.22	29.3	23.9	17.4	9.9	19.5
<u> </u>	106	0.20	17.2	26.6	22.1	10.1	24.1
; 	106	0.18	19.4	25.9	21.6	10.6	22.4
ge		0.20	22.0	25.5	20.4	10.2	22.0
, I	150	0.25	46.9	20.2	11.7	6.5	14.8
	150	0.24	49.7	21.8	7.2	7.0	14.4
ge		0.24	48.3	21.0	9.5	6.7	14.6
our Residue	Size Fractio	n Gold Dist	tribution				
ification	Grind P80	Head	+ 150	+ 106	+ 75	+ 53	- 53
	u n	ppm Au	1	:3 			<u> </u>
	75	0.14	0.0	20.2	26.2	18.9	34.6
	75	0.13	0.0	13.8	24.8	19.3	42.0
ge .		0.14	0.0	17.0	25.5	19.1	38.3
	106	0.19	17.4	27.2	20.8	10.4	24.2
	106	0.17	16.6	27.1	23.2	10.2	22.9
 ge		0.18	17.0	27.2	22.0	10.3	23.6
	154			1.5			
1.							12.3 13.8
		V.LJ	71.0	10.1	47.V		10.0
	ification	75 75 75 106 106 106 106 150	75 0.14 75 0.13 76 0.19 106 0.19 106 0.17 109 0.18	ym ppm Au \$ 75 0.14 0.0 75 0.13 0.0 9e 0.14 0.0 106 0.19 17.4 106 0.17 16.6 150 0.24 46.9	ification Grind P80 Head + 150 + 106 um ppm Au	ification Grind P80 Head + 150 + 106 + 75 um ppm Au	ification Grind P80 Head + 150 + 106 + 75 + 53 um ppm Au

A FIG E

Summary of Residue Size Fraction Gold Distribution

Leach Time	Grind P80 um	Head ppm Au	+ 150 *	+ 106 *	+ 75 \$	+ 53 •	- 53 1
18 Hour (2 tests)	150	0.24	44.1	20.6	15.3	6.9	13.0
12 Hour (2 tests)	150	0.24	48.3	21.0	9.5	6.7	14.6
8 Hour (2 tests)	150	0.27	43.5	22.5	12.0	1.7	14.3
Heighted Ave.		0.25	45.3	21.4	12.3	7.1	14.0
18 Hour (2 tests)	106	0.18	17.0	27.2	22.0	10.3	23.6
12 Hour (3 tests)	106	0.20	22.0	25.5	20.4	10.2	22.0
8 Hour (2 tests)	106	0.23	21.7	22.7	17.6	12.7	25.4
Heighted Ave.		0.20	20.5	25.1	20.0	10.9	23.4
18 Hour (2 tests)	75	0.14	0.0	17.0	25.5	19.1	38.3
12 Hour (3 tests)	75	0.14	0.0	22.9	29.7	17.3	30.1
8 Hour (2 tests)	75	0.17	0.0	20.0	30.3	18.9	30.8
Weighted Ave.	*****	0.15	0.0	20.4	28.7	18.3	32.6

BNT5727 Sheet 12 7-Dec-89
BILLITON HT TODD MEATHERED ORE BOTFLE ROLL CYANIDE LEACH AT 40¢ SOLIDS.

COMPOSITE BHT 1.2 !

Summary of L.S.& A. 8 - Hour Bottle Roll Leach Test Results

ample Identification	Grind P80	Head Assay	Grade Ground	Au l Calc'd	each Resul Residue	ts		each Parane	ters		Reager Consumpl	4	Cu l.ea Assay	ch Results		Zn Lea Assay	ich Results	
	UM.	Comp. ppm Au	Head ppm Au	Head ppe Au	Solids ppm Au	Extr'n	Time Hours	Pulp % Solids	t HaCH	pH	NaCH kg/t	CaO kg/t	Head ppn	Extraction g/t	n t	Head ppe	Extract g/t	ion 1
3C	75	1.12	1.12	1.17	0.16	86.7	8	40	0,045	11.0	0.11	1.60	280	23.1	8.2	198	2.8	1
60	75	1.12	1.16	1.27	0.18	86.2	8	40	0.047	11.0	0.19	1.54	280	23.0	8.2	198	2.9	i,
Average		1.12	1.14	1.22	0.17	86.4	8	40	0.046	11.0	0.15	1.57	280	23.0	8.2	198	2.9	1
18	106	1.12	1.14	0.88	0.22	78.9	8	40	0.046	11.0	0.18	1.31	280	18.9	6.7	198	2.2	1.
5C	106	1.12	1.08	1.14	0.25	78.3	8	40	0.046	10.9	0.13	1.48	280	26.3	9.4	198	3.1	1.
Average		1.12	1.11	1.01	0.23	78.6	8	40	0.046	11.0	0.16	1.40	280	22.6	8.1	198	2.6	1.
40	150	1.12	1.17	1.26	0.28	77.8	8	40	0.047	10.8	0.11	1.49	280	26.2	9.4	198	3.0	1.
58	150	1.12	1.20	1.21	0.26	78.8	8	40	0.045	10.9	0.11	1.54	280	24.7	8.8	198	3.0	1.
Average		1.12	1.18	1.24	0.27	78.3	8	40	0.046	10.9	0.11	1.51	280	25.4	9.1	198	3.0	1

Summary of L.S.& A. 12 - Hour Bottle Roll Leach Test Results

Sample Identification	Grind P80	Head Assay	Grade Ground	Au L Calc'd	each Resul Residue	ts		each Parame	ters		Reager		Cu Lea Assay	nch Results		Zn Lea Assay	ach Result.s	
		Comp.	Head	Head	Solids	Extr'n	Time	Pulp			MaCH	CaO	Head	Extract	ion	Head	Extract	ion
	********	ppe Au	ppii Au	ppm Au	ppie Au	1	Hours	\$ Solids	MaCH	pH	kg/t	kg/t	ppm	g/t	t	ppe	g/t	1
38	75	1.12	1.18	1.22	0.15	87.5	12	40	0.044	11.1	0.18	1.59	280	26.3	9.4	198	3.3	1.6
· 6C	75	1.12	1.13	1.24	0.15	86.2	12	40	0.045	10.9	0.18	1.47	280	25.4	9.1	198	3.3	1.6
30	75	1.12	1.19	1.18	0.13	89.2	12	40	0.044	11.1	0.15	1.56	280	26.3	9.4	198	3.4	. 1
Average		1.12	1.17	1.21	0.14	88.3	12	40	0.044	11.0	0.17	1.54	290	26.0	9.3	198	3.3	1.7
7A	106	1.12	1.21	1.24	0.22	82.6	12	40	0.045	11.1	0.14	1.49	280	26.1	9.3	198	3.4	1.7
88 ·	106	1.12	1.27	1.30	0.20	84.7	12	40	0.045	11.1	0.16	1.54	280	26.2	9.4	198	3.2	1.6
2C	106	1.12	1.08	1.16	0.18	84.7	12	40	0.044	11.1	0.18	1.50	280	26.2	9.4	198	3.6	1.8
Average		1.12	1.19	1.23	0.20	84.0	12	40	0.045	11.1	0.16	1.51	280	26.2	9.4	198	3.4	1.7
1A ·	150	1.12	1.21	1.13	0.25	78.2	12	40	0.045	11.0	0.16	1.49	280	26.1	9.3	198	3.4	1.7
70	150	1.12	1.10	1.17	0.24	79.8	12	. 40	0.046	11.0	0.13	1.52	280	26.1	9.3	198	3.6	1.8
Average		1.12	1.15	1.15	0.24	79.0	12	40	0.046	11.0	0.15	1.51	280	26.1	9.3	198	3.5	1.8

Summary of L.S.& A. 18 - Hour Bottle Poll Leach Test Results

mple Identification	Grind P80 um	Head Assay	Grade Ground	Au L Calc'd	each Resul Residue	ts	ι	each Parame	ters		Reagen Consumpt		Cu Lea Assay	ch Results		In Lea	ich Results	
		Coup. pou Au	Head ppm Au	Head pps: Au	Solids ppm Au	Extr'n	Time Hours	Pulp % Solids	t NaCH	pif	HaCH kg/t	CaO kg/t	Head ppn	Extraction g/t	on t	Head ope	Extract g/t	ion %
.8A	75	1.12	1.26	1.28	0.14	89.2	18	40	0.049	11.0	0.16	1.58	290	27.4	9.8	198	3.7	1.
48	75	1.12	1.21	1.19	0.13	88.9	18	- 40	0.348	11.0	0.16	1.58	_ 280	27.3	9.8	198	3.9	2.
Ave: 8.38		1.12	1.24	1.24	8.14	89.0	18	40	0.049	11.0	0.16	1.58	280	27.3	9.8	198	3.8	l.
6A	106	1.12	1.19	1.25	0.19	85.2	18	40	0.045	11.1	0.17	1,50	280	27.4	9.8	198	3.9	1.
40	106	: 12	1.13	1.25	0.17	86.2	18	40	0.045	11.1	0.14	1.56	280	27.6	9.8	198	3.9	2.
Average		1.12	1.16	1.25	0.18	85.7	18	40	0.045	51.1	0.15	1.53	280	27.5	9.8	. 198	3.9	2.
7C	150	1.12	1.19	1.24	0.24	81.1	18	40	0.647	12.0	0.15	1.48	280	27.2	9.7	198	4.0	2.
1D	150	1.12	1.12	1.28	0.25	80.4	18	40	0.046	11.0	0.17	1.53	280	27.4	9.8	198	4,0	2.
Average		1.12	1.15	1.26	0.24	80.8	18	40	0.047	11.0	9.16	1.53	290	73.3	7.8	196	4.0	2.

8MT5727

Sheet 13

7-0ec-89

BILLITON MT TOOD MEATHERED ORE BOTTLE ROLL CYANIDE LEACH AT 40% SOLIDS.

! COMPOSITE BMT 1.2

Summary of L.S.& A. Bottle Roll Leach Test Results

Leach Time	Grind P80	Head Assay	Grade Ground	Au L Calc'd	each Resul Residue	ts	L	each Parame	eters		Reager Consumpt		Ou Lea Assay	ich Results		Zn Lea Assay	ch Results	
		Comp.	Head	Head	Solids	Extr'n	Time	Pulp	*		NaCN	CaO	Head	Extract	ion	Head	Extract	ion
		ppm Au	ppm Au	ppm Au	ppm Au	t	Hours	* Solids	Nach	pH	kg/t	kg/t	ppa	g/t	\$	ppm	g/t	\$
18 Hour (2 tests)	150	1.12	1.15	1.26	0.24	80.8	18	40	0.047	11.0	0.16	1.51	280	27.3	9.8	198	4.0	2.0
12 Hour (2 tests)	150	1.12	1.15	1.15	0.24	79.0	12	40	0.046	11.0	0.15	1.51	280	26.1	9.3	198	3.5	1.8
8 Hour (2 tests)	150	1.12	1.18	1.24	0.27	78.3	8	40	0.046	10.9	0.11	1.51	280	25.4	9.1	198	3.0	1.5
Weighted Ave.	******	1.12	1.16	1.22	0.25	79.3	13	40	0.046	11.0	0.14	1.51	280	26.3	9.4	198	3.5	1.8
18 Hour (2 tests)	106	1.12	1.16	1.25	0.18	85.7	18	40	0.045	11.1	0.15	1.53	280	27.5	9.8	198	3.9	2.0
12 Hour (3 tests)	106	1.12	1.19	1.23	0.20	84.0	12	40	0.045	11.1	0.16	1.51	280	26.2	9.4	198	3.4	1.7
8 Hour (2 tests)	106	1.12	1.11	1.01	0.23	78.6	8	40	0.046	11.0	0.16	1.40	280	22.6	8.1	198	2.6	1.3
Weighted Ave.		1.12	1.16	1.17	0.20	83.0	13	40	0.045	11.1	0.16	1.48	280	25.5	9.1	198	3.3	1.7
18 Hour (2 tests)	75	1.12	1.24	1.24	0.14	89.0	18	40	0.049	11.0	0.16	1.58	280	27.3	9.8	198	3.8	1.9
12 Hour (3 tests)	75	1.12	1.17	1.21	0.14	88.3	12	40	0.044	11.0	0.17	1.54	280	26.0	9.3	198	3.3	1.7
8 Hour (2 tests)	75	1.12	1.14	1.22	0.17	86.4	8	40	0.046	11.0	0.15	1.57	280	23.0	8.2	198	2.9	1.4
Weighted Ave.		1.12	1.18	1.22	0.15	88.0	13	40	0.046	11.0	0.16	1.56	280	25.5	9.1	198	3.3	1.7

Calculation sheet only	•					; COMPOSIT	E OMT 1.2	;													
Sample mass	g	672.4	686.8	677.5	/20	675.5	677.1	668.2	793.1	702.6	697.8	670.9	675.4	692.3	678.9	720.3	686.3	704	679.9	709.4	679.5
Vessel + sample	g	1081.6	1093.3	1085.7	1127.5	1064	1065.7	1075.2	1200.6	1110.3	1105.7	1077.7	1082	1100.5	1087.7	1127.2	1094.1	1111.7	1086.6	1114.6	1084.4
in vessel at A	g	1008.1	1029.1	1015.5	979.7	1012.6	1015.8	1002.1	902	1053.6	1047.1	1005.7	1012.8	1037.4	1017.7	1079.9	1028.6	1055.6	1019.5	1063.7	1018.7
	ug Au	504.05	566.005	538.215	627.008	546.804	579.006	521.092	423.94	495.192	492.137	512.907	476.016	508.326	488.4%	518.352	504.014	453.908	458.775	436.117	468.602
	mg Cu	13.1 05 3	13.3783	14.217	14.6955	14.1764	13.2054	14.0294	10.824	14.7504	13.6123	13.0741	13.1664	12.4488	13.2301	15.1186	13.3718	12.6672	12.234	11.7007	12.2244
	ug Zn	1512.15	1543.65	1523.25	1665.49	1518.9	1523.7	1673.34	1262.8	1580.4	1570.65	1407.98	1417.92	1452.36	1526.55	1727.84	1645.76	1583.4	1529.25	1701.92	
	g NaCN	0.483888	0.442513	0.52806	0.48985	0.486048	0.477426	0.491029	0.43296	0.505728	v.502608	0.482736	0.486144	0.497952	0.488496	0.507553	0.504014	0.506688	0.48936	0.436117	0.488976
	g CaO	0.040324	0.041164	0.04962	0.048985	0.040504	0.040632	0.050105	0.0451	0.05268	0.052355	0.060342	0.060768	0.05187	0.050825	0.043196	0.041144	0.05278	0.06117	0.042548	0.050935
Removed in A	g	50.8	51.8	54.5	54.4	54.3	53.8	53.8	55.9	54.5	54.3	54.4	54.3	54.2	54.2	55.4	55	54.7	54.2	49.8	54.1
	ug Au	25.4	28.49	28.88 5	34.816	29.322	30.666	27.976	26.273	25.615	25.521	27.744	25.521	26.558	26.016	26.592	26.95	23.521	24.39	20.418	24.886
-	mg Cu	0.6604	0.6734	0.763	0.816	0:7602	0.6994	0.7532	0.67 08	0.763	0.7059	0.7072	0.7059	0.6504	0.7046	0.7756	0.715	0.6564	0.6504	0.5478	0.6492
	ug Zn	76.2	77.7	81.75	92.48	81.45	80.7	86. 0 8	78.26	81.75	81.45	76.16	76.02	75.88	81.3	88.64	86	82.05	81.3	79.68	8 6. 5 6
	g NaCN	0.024384	0.022274	0.02834	0.0272	0.026064	0.025286	0.026362	0.026832	0.02616	0.026064	0.026112	0.026064	0.026016	0.026016	0.026038	0.02695	C. 26256	0.026016	0.020418	0.025968
	g CaO	0.002032	0.002072	0.00218	0.00272	0.002172	0.002152	0.00269	0.002795	0.002725	0.002715	0.003264	0.003258	0.00271	0.00271	0.002216	0.0022	0.002735	0.003252	0.001992	
In vessel at B	9	1007.8	1029.5	1015	979.2	1012.1	1015.3	1001.4	901.7	1053.2	1046.7	1005.3	1012.5	1036.9	1017.3	1079.7	1028.2	1054.8	1019.1	1063.3	1018.3
	ug Au	634.914	700.06	669.9	714.816	667.986	720.863	640.8%	495.935	610.856	617.553	663.498	587.25	642.878	651.072	637.023	606.638	580.14	560.505	637.98	580.431
	mg Cu	14.1092	14.413	15.225	15.6672	15.1815	14.2142	12.0168	12.6238	16.8512	15.7005	15.0795	15.1875	15.5535	15.2595	16.1955	15.42	15.822	15 .29 65	15.9495	15.2745
	ug Zn	1612.48	1750.15	1725.5	1958.4	1720.57	1726.01	1802.52	1532.89	1895.76	1884.06	1709.01	1822.5	1866.42	1831.14	2375.34	1850.76	1898.64	1936.29	2020.27	1832. 94
	g NaCN	0.483744	0.483865	0.43645	0.450432	0.475687	0.467038	0.440616	0.414782	0.484472	0.481482	0.452385	0.455625	0.466605	0.478131	0.507459	0.483254	0.47466	0.468786	0.552916	0.448052
	g CaD	0.040312	0.04118	0.0406	0.039168	0.050605	0.050765	0.05007	0.045085	0.05266	0.052335	0.060318	0.06075	0.051845	0.050865	0.043188	0.041128	0.05274	0.061146	0.053165	0.050915
Removed in B	g	52.5	52.6	54.1	52.7	53	54	50.3	55.6	54.7	54.4	54.7	54.6	54.5	54.4	55.1	52	54.8	54.5	54.3	54.3
	ug Au	33.075	35.768	35.706	38.471	34.98	38.34	32.192	30.58	31.726	32.096	36.102	31.668	33.79	34.816	32.509	30.68	30.14	29.975	32.58	30.951
	mg Cu	0.735	0.7364	0.8115	0.8432	0.795	0.756	0.6036	0.7784	0.8752	0.816	0.8205	0.819	0.8175	0.816	0.8265	0.78	0.822	0.8175	0.8145	0.8145
	ug Zn	84	89.42	91.97	105.4	90.1	91.8	90.54	94.52	98.46	97.32	92.99	98.28	98.1	97.92	121.22	93.6	98.64	103.55	103.17	97.74
	g NaCN	0.0252	0.024722	0.023263	0.024242	0.02491	0.02484	0.022132	0.025576	0.025162	0.025024	0.024615	0.02457	0.024525	0.025568	0.025897	0.02444	0.02466	0.02507	0.028236	0.023892
	g CaO	0.0021	0.002104	0.002164	0.002108	0.00265	0.0027	0.002515	0.00278	0.002735	0.00272	0.003282	0.003276	0.002725	0.00272	0.002204	0.00208	0.00274	0.00327	0.002715	0.002715
In vessel at C	g	1007.9	1028.8	1014.8	978.8	1011.9	1015.2	1001.7	901.6	1052.9	1045.2	1005.1	1012	1036.7	1016.9	1079.7	1028.3	1054.8	1018.7	1062.3	1018.1
	ug Au	624.898	689.296	659.62	714.524	647.616	700.488	631.071	495.88	568.566	658.476	673.417	607.2	632.387	660.985	647.82	596.414	569.592	590.659	648.003	621.041
	ang Cu	14.1106	14.4032	16.2368	16.6396	16.1904	16.2432	16.0272	13.524	16.8464	16.7232	16.0816	16.192	16.5872	16.2704	17.2752	15.4245	16.8768	16.2992	18.0591	16.2 896
	ug Zn	1713.43	1851.84	2029.6	2153.36	2124.99	2030.4	2103.57	1532.72	2000.51	2194.92	2010.2	2226.4	2073.4	2135.49	1943.46	1850.94	2215.08	2241.14	2337.06	2239.82
	g MaCN	0.453555	0.483536	0.446512	0.44046	0.445236	0.446688	0.450765	0.414736	0.484334	0.47034	0.452295	0.44528	1.487249	0.477943	0.507459	0.462735	0.47466	0.468602	0.509904	0.478507
	g CaO	0.040316	0.041152	0.040592	0.039152	0.040476	0.030456	0.040068	0.04508	0.042116	0.041808	0. 05 0255	0.0506	0.041468	0.050645	0.032391	0.041132	0.042192	0.050935	0.042492	0.040724
Removed in C	g						54.3	55.9						55.8	58.4					57.5	56.2
	ug Au						37.467	35.217						34.038	37.96					35.075	34.282
	mg Cu						0.8688	0.8944						0.8928	0.9344					0.9775	0.8992
	ug Zn						108.6	117.39						111.6	122.64					126.5	123.64
	g NaCN						0.023892	0.025155						0.026226	0.027448					0.0276	0.026414
	g CaO						0.001629	0.002236						0.002232	0.00292					0.0023	0.002248
In vessel at D	g						1013.2	999.9						1036.2	1015.8					1061	1016.8
	ug Au						668.712	609.939						642.444	629.796					625.99	610.08
	mg Cu						16.2112	15.9984						16.5792	16.2528					16.976	16.2688
	ug Zn						2229.04	2299.77						2383.26	2336.34					2546.4	2440.32
	g NaCN						0.496468	0.479952				_	ı		0.45711					0.49867	0.467728
	g CaO					-	0.030396	0.039996						0.041448	G.030474					0.04244	0.030504
Residue	ug Au	105.2	120.3205	103.5	105.3985	86.051	94.0	88.245	147.842	173.2145	150.427	133.1665	119.582	127.5305	117.078	201.422	175.7910	173.8695	161.2235	166.809	170.283
Calculated Head	ug Au	783.58	873.87	827.71	893.21	797.97	869.17	793. 57	700.58	799.12	866.52	870.43	783.97	864.36	845.67	908.34	829.84	797.12	796.25	880.87	870.48
Sample leached		672.4	686.8	677.5	720.0	675.5	677.1	668.2	793.1	702.6	697.8	670.9	675.4	692.3	678.9	720.3	686.3	704.0	679.9	709.4	679.5
Southte rearrier	9	012.4	000.0	011.3	144.0	013.3	011.1	*****	. 74.7	, VL. 0	V/1.0	\$1V.J	VIJ.4	474.0	J.U.)	.27.0		. 47.9	3,,,,		

-

4	~	•-							4				
BHT5727	Sheet Ca	ic				1 0000000	P 047 4 0						
Calculation sheet only					100	; curresti	E BHT 1.2	į .					
Sample mass	g	672.4	686.8	677.5	720	675.5	677.1	668.2	793.1	702.6	697.8	670.9	
Vessel + sample	g	1081.6	1093.3	1085.7	1127.5	1084	1085.7	1075.2	1200.6	1110.3	1105.7	1077.7	
In vessel at A	g	1008.1	1029.1	1015.5	979.7	1012.6	1015.8	1002.1	902	1053.6	1047.1	1005.7	
111 100001 40 11	ug Au	504.05	566.005	538.215	627.008	546.804	579.006	521.092	423.94	495.192	492.137	512.907	. 4
	ang Cu	13.1053	13.3783	14.217	14.6955	14.1764	13.2054	14.0294	10.824	14.7504	13.6123	13.0741	1
	ug Zn	1512.15	1543.65	1523.25	1665.49	1518.9	1523.7	1603.36	1262.8	1580.4	1570.65	1407.98	1
	g NaCH	0.483888	0.442513	0.52806		0.486048		0.491029	0.43296	0.505728	0.502608	0.482736	0.
	g CaO	0.040324	0.041164	0.04962	0.048985	0.040504	0.040632	0.050105	0.0451	0.05268	0.052355	0.060342	-
Removed in A	g vao	50.8	51.8	54.5	54.4	54.3	53.8	53.8	55.9	54.5	54.3	54.4	•
UCMOACO TIL N	ug Au	25.4	28.49	28.885	34.816	29.322	30.666	27.976	26.273	25.615	25.521	27.744	
	ang Cu	0.6604	0.6734	0.763	0.816	0:7602	0.6994	0.7532	0.6708	0.763	0.7059	0.7072	
	-	76.2	77.7	81.75	92.48	81.45	80.7	86.08	78.26	81.75	81.45	76.16	
	ug Zn	0.024384	0.022274	0.02834	0.0272	0.026064		0.026362	0.026832-			0.026112	۸
	g NaCN					0.002172		0.00269		0.002725	0.002715	0.003264	
To seemed at 0	g CaO	0.002032	0.002072	0.00218		1012.1		1001.4	901.7	1053.2	1046.7	1005.3	٧.
In vessel at B	g 4	1007.8	1029.5	1015	979.2	667.986	1015.3			610.856	617.553	663.498	
-	ug Au	634.914	700.06	669.9	714.816		720.863	640.896	495.935				
	mg Cu	14.1092	14.413	15.225	15.6672	15.1815	14.2142		12.6238	16.8512	15.7005	15.0795	. 4
	ug Zn	1612.48	1750.15	1725.5	1958.4	1720.57	1726.01	1802.52	1532.89	1895.76	1884.06	1709.01	
	g NaCN	0.483744	0.483865	0.43645	0.450432	0.475687	1875 C. C. C. C. C.	0.440616	0.414782	0.484472		0.452385	0.
	g CaO	0.040312	0.04118	0.0406		0.050605	0.050765	0.05007		0.05266	0.052335	0.060318	q
Removed in B	g	52.5	52.6	54.1	52.7	53	. 54	50.3	55.6		54.4	54.7	
	ug Au	33.075	35.768	35.706	38.471	34.98	38.34	32.192	30.58	31.726	32.0%	36.102	
	mg Cu	0.735	0.7364	0.8115	0.8432	0.795	0.756	0.6036	0.7784	0.8752	0.816	0.8205	
	ug In	84	89.42	91.97	105.4	90.1	91.8	90.54	94.52	98.46	97.92	92.99	
	g NaCN	0.0252	0.024722	0.023263	0.024242	0.02491	0.02484	0.022132	0.025576	0.025162	0.025024	0.024615	0
	g CaO	0.0021	0.002104	0.002164	0.002108	0.00265	0.0027	0.002515	0.00278	0.002735	0.00272	0.003282	0.
In vessel at C	g	1007.9	1026.8	1014.8	978.8	1011.9	1015.2	1001.7	901.6	1052.9	1045.2	1005.1	
	ug Au	624.898	689.2%	659.62	714.524	647.616	700.488	631.071	495.88	568.566	658.476	673.417	
	ang Cu	14.1106	14.4032	16.2368	16.6396	16.1904	16.2432	16.0272	13.524	16.8464	16.7232	16.0816	
	ug Zn	1713.43	1851.84	2029.6	2153.36	2124.99	2030.4	2103.57	1532.72	2000.51	2194.92	2010.2	
	g NaCN	0.453555	0.483536	0.446512	0.44046	0.445236	0.446688	0.450765	0.414736	0.484334	0.47034	0.452295	0
	g CaO	0.040316	0.041152	0.040592	0.039152	0.040476	0.030456	0.040068	0.04508	0.042116	0.041808	0.050255	
Removed in C	g			1			54.3	55.9					
	ug Au			*			37.467	35.217					
	mg Cu						0.8688	0.8944					
	ug Zn						108.6	117.39					
	g NaCN						0.023892	0.025155					
	g CaO						0.001629	0.002236					
In vessel at D	g						1013.2	999.9					
, MI 150002 WV V	ug Au						668.712	609.939					
	ag Cu						16.2112	15.9984					
	ug Zn						2229,04	2299.77					
	g NaCN							0.479952					
	g CaO							0.039996					•
Residue	ug Au	105.2	120.3205	103.5	105.3965	86.051	94.0	88.245	147.842	173.2145	150.427	133.1665	1
			A++ A-				0 <i>6</i> 0 17	جز جراد	786 PA	700.10	0// 55	- 67a 47	
Calculated Head	ug Au	783.58	873.87	627.71	893.21	797.97	869.17	793.57	700.58	799.12	866.52	870.43	
Sample leached	g	672.4	686.8	677.5	720.0	675.5	677.1	668.2	793.1	702.6	697.8	670.9	

sheet 1
WEATHERED ORE PERCUSSION DRILL SAMPLE FOR COMPOSITE BMT 0.6

north	drill hole number	from	to	·m	grade g/t	core	e wt. of sample received gms	sample wt. to comp. gms
10000	BP116	7	8	1.0	0.28		2790	505
		- 8	9	1.0	0.71		2410	537
		9	10	1.0	0.52		2220	507
		10	11	1.0	1.17		1590	487
	•	11	12	1.0	0.42	0.62	2450	494
10040	BP137	3	4	1.0	0.69		19290	528
		4	5	1.0	0.75		21200	514
		6	7 .	1.0	0.57		13020	520
		7	8	1.0	0.70		11580	536
		. 8	9	1.0	0.90		15440	490
		.9	10	1.0	0.66		20320	538
		10	11	1.0	0.51		13910	473
		11	12	1.0	0.28		18690	493
		12	13	1.0	1.07	0.68	14080	509
10050	BP130	2	3	1.0	0.56		20300	502
		3	4	1.0	1.04		1870	489
		4	5	1.0	1.36		9810	483
		5	6	1.0	0.51		12430	513
		6	7	1.0	1.39		10260	541
		7	8	1.0	0.43		13590	503
		.8	9	1.0	0.14		1255	534
	* * *	9	10	1.0	0.58		11880	
		10	11	1.0	0.26		13950	520
		11	1.2	1.0	0.23	0.65	12450	517
10070	BP121	.2	3	1.0	0.81		1210	510
		3	4	1.0	0.91		15250	493
		4	5	1.0	0.69		14300	530
		5	6	1.0	0.26	~	18550	494
		6	7	1.0	0.56		18360	493
		7	8	1.0	0.15		23340	506
		8	9	1.0	0.72		18940	531
		9	10	1.0	0.26		17000	529
		10	11	1.0	0.87	0.52	16730	492

sheet 2
WEATHERED ORE PERCUSSION DRILL SAMPLE FOR COMPOSITE BMT 0.6

north	drill hole number	from	to	m	grade g/t	average core grade g/t	wt. of sample received gms	sample wt. to comp. gms
10100	BP111	4	5	1.0	0.48		6410	511
		5	6	1.0	1.26		5860	525
		6	.7	1.0	0.74		7060	483
		7	8	1.0	0.32		5730	502
		8	9	1.0	0.58		5060	713
		9	10	1.0	0.78		6230	:0
		10	11	1.0	1.42		5250	530
4		11	12	1.0	0.87		7490	505
* .		12	13	1.0	0.45		4770	519
		13	14	1.0	0.25		6550	494
		14	15	1.0	0.11	0.66	2310	511
10135	BP163	9	10	1.0	0.26		10290	514
		10	11	1.0	1.78		10400	530
		11	12	1.0	0.13		13900	518
		12	13	1.0	0.31		14010	511
		13	14	1.0	0.72		11000	490
		14	15	1.0	0.40	e +	10750	491
		15	16	1.0	0.82		17040	528
A STATE OF STATE		16	17	1.0	0.13		14170	543
		17	18	1.0	1.43		13550	509
		18	19	1.0	0.16	0.61	16150	525
10170	BP172	8	9	1.0	0.61		10130	536
		9	10	1.0	0.65	•	7890	508
		10	11	1.0	0.82		9300	521
	* a	11	12	1.0	0.45		14000	507
		12	13	1.0	0.74		5590	509
		13	14	1.0	0.69		4610	539
		14	15	1.0	0.55		5860	488
		15	16	1.0	1.64		3440	519
		16	17	1.0	0.07		6350	538
		17	18	1.0	0.63	0.69	3120	501

sheet 3
WEATHERED ORE PERCUSSION DRILL SAMPLE FOR COMPOSITE BMT 0.8

north	drill hole number	from	to	m	grade g/t	average core grade g/t	wt. of sample received gms	wt. to
10000	BP115	16	17	1.0	0.70		7180	503
10000	DETIO	17	18	1.0	0.76		8030	510
- *		18	19	1.0	0.69		9050	492
		19	20	1.0	1.79		8510	496
		20	21	1.0	0.45	0.88	9600	535
10025	BP152	6	7	1.0	0.24	0	11800	530
-,,		7	8	1.0	0.35		14830	495
		-8	9	1.0	2.36		15100	510
		9	10	1.0	0.88		14950	525
		10	11	1.0	0.30		19270	543
		11	12	1.0	0.83		14100	505
		12	13	1.0	0.89		13560	501
•		13	14	1.0	1.42		16700	502
		14	15	1.0	0.26	0.84	14130	526
10040	BP125	4	5	1.0	1.40		13600	529
		5	6	1.0	0.49		3850	498
		6 7	7	1.0	0.11	•	9450	487
		7	8	1.0	0.81		6650	532
		· 8	9	1.0	0.99	Te f	5150	494
		9	10	1.0	0.66		7550	499
		10	11	1.0	1.01	0.78	8800	534
10050	BP118	17	18	1.0	0.80		5900	528
		18	19	1.0	1.50		3650	503
		19	20	1.0	0.77	· ·	7900	507
		20	21	1.0	1.82		6100	534
		21	22	1.0	0.57		4200	584
		22	23	1.0	0.81		1600	524
		23	24	1.0	0.35		6330	536
* •		24	25	1.0	0.41		9620	538
		25	26	1.0	0.52	0.84	8000	482

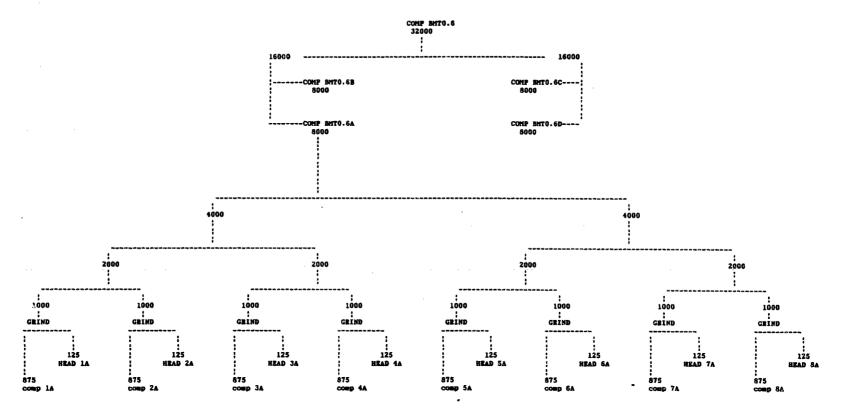
sheet 4
WEATHERED ORE PERCUSSION DRILL SAMPLE FOR COMPOSITE BMT 0.8

north	drill hole number	from	to	m	grade g/t	average core grade g/t	wt. of sample received gms	
10070	BP129	7	8	1.0	0.80		8780	477
		8	9	1.0	0.10		7450	472
<i>i</i>		. 9	10	1.0	0.47		1260	509
		10	11	1.0	1.66		7420	497
		11	12	1.0	0.75		7200	541
		12	13	1.0	0.68		11960	522
		13	14	1.0	0.92		9450	521
		.14	15	1.0	0.09		9470	524
		15	16	1.0	0.14		15300	493
		16	17	1.0	1.47		9500	531
		17	18	1.0	1.49		10500	517
		18	19	1.0	0.43		9350	533
		19	20	0.0	0.94	0.76	6250	545
10100	BP120	4	5	1.0	0.68	"	12500	538
		5	6	1.0	1.64		5950	541
v		6	7	1.0	0.32		11100	536
		7	8	1.0	0.38		8350	503
		8	9	1.0	1.46		7900	514
		9	10	1.0	0.48		11860	525
		10	11	1.0	0.49		10000	528
		11	12	1.0	0.81	to the second	7950	529
		12	13	1.0	0.64		7850	499
		13	14	1.0	0.28		10000	500
		14	15	1.0	2.25		5600	546
		15	16	1.0	0.53		11050	543
		16	17	1.0	0.56		11400	532
		17	18	1.0	0.83	5	9720	533
		18	19	1.0	0.77	0.81	12120	528
10170	BP171	2	3	1.0	0.84		14800	500
101.0		3	4	1.0	0.27		1100	486
		4	5	1.0	1.30		6100	523
		5	6	0.0	0.81		7530	484
	*	6	7	1.0	1.49		8000	479
		7	8	1.0	0.86		5620	499
1		8	9	1.0	1.00	* * *	5460	534
		9	10	1.0	1.95		6030	538
		10	11	1 - 0	0.26		7780	492
		11	12	1.0	0.38	0.92	5750	508

sheet 5 WEATHERED ORE PERCUSSION DRILL SAMPLE FOR COMPOSITE BMT $1.0\,$

north	drill hole number	from	to	m	grade g/t	core grade	-	wt. to
10000	BP124	3	4	1.0	0.95	-	19930	768
		4	5	1.0	1.79		7650	769
		5	6	1.0	1.05		9300	800
		6	7	1.0	1.01		7620	782
		7	8	1.0	0.30	1.02	5250	793
10040	BP136	5	6	1.0	0.44		20430	769
		6	7	1.0	1.95		15760	799
		7	8	1.0	0.75		18190	774
		8	9	1.0	1.73		23870	794
		9	10	1.0	1.35	•	24900	796
		10	11	1.0	0.38		24100	783
		11	12	1.0	0.27		25850	784
		12	13	1.0	0.82		17280	793
		13	14	1.0	1.87	1.06	24670	782
10050	BP122	4	5	1.0	1.06		7260	793
		5	6	1.0	2.13		17760	775
		6	7	1.0	3.51	•	15450	798
		7	8	1.0	0.46		16100	795
		8	9 .	1,0	0.92	a isang sa	17930	777
		9	10	1.0	0.10		21260	778
		10	11	1.0	0.46		17360	784
		11	12	1.0	0.16		17100	795
		12	13	1.0	1.02		22260	792
÷		13	14	1.0	0.14		21310	778
		14	15	1.0	1.35	1.03	18790	794
10070	BP149	ì	.2	1.0	1.18		sample	
		2	3	1.0	1.05	*	not	
		3	4	1.0	0.96		supplied	
		4	5	1.0	1.44			
		5	6	1.0	3.27			
		6	7	1.0	0.39			
		7	8	1.0	0.26			
		o	ā	1.0	0.34	1.11		

sheet 6
WEATHERED ORE PERCUSSION DRILL SAMPLE FOR COMPOSITE BMT 1.0


north	drill hole number	from	to	n	grade g/t	average core grade g/t	wt. of sample received gms	sample wt. to comp. gms
10100	BP120	21	22	1.0	0.32		13500	793
-0-0	21 100	22	23	1.0	0.16		12820	789
		23	24	1.0	1.60		6700	788
		24	25	0.0	1.52		10350	766
		25	26	1.0	0.76		11330	781
		26	27	1.0	0.68		11020	788
		27	28	1.0	1.89		6230	763
		28	29	1.0	1.40	1.04	6160	777
10135	BP159	5	6	1.0	1.85		13130	789
10100		6	7	1.0	2.36	*	13850	790
		7	.8	1.0	3.15		14890	773
		8	9	1.0	0.24		14590	788
		9	10	1.0	0.67		15410	789
		10	11	1.0	0.51		15410	779
		11	12	1.0	0.71		15850	770
		12	13	1.0	0.48		17820	793
		13	14	1.0	0.33		17720	781
		14	15	1.0	.67		18270	797
		15	16	1.0	J.24	1.02	21280	787
10170	BP133	7	8	1.0	0.56	Talan yanan s	sample	
		8	9	1.0	1.64		not	
		9	10	1.0	0.86		supplied	
		10	11	1.0	1.02			
	•	11	12	1.0	0.15			
		12	13	0.0	1.63			
3 The St.		13	14	0.0	1.11	1.00		

sheet 7
WEATHERED ORE PERCUSSION DRILL SAMPLE FOR COMPOSITE BMT 1.2

north	drill hole number	from	to	an .	grade g/t	average core grade g/t	the state of the s	sample wt. to comp. gms
10000	BP143	3	4	1.0	0.51		1160	593
		4	5	1.0	0.43		5060	588
		5	6	1.0	0.55		7610	583
		6	7	1.0	1.80		8700	628
		. 7	8	1.0	1.26		6350	630
		8	9	1.0	0.65		8740	603
		9	10	1.0	2.46		7520	588
		10	11	1.0	0.45		8150	619
		11	12	1.0	3.20		6460	626
		12	13	1.0	1.04	1.24	12510	578
10040	BP123	5	- 6	1.0	2.10		12500	632
		6	7	1.0	0.55		25600-	589
		7	8	1.0	1.60		15470	583
	-	8	9	1.0	2.01	* *	14610	610
		9	10	1.0	0.51		18100	636
		10	11	1.0	0.69	1.24	11060	615
10050	BP145	6	7	1.0	1.17		6710	591
		7	8	1.0	1.30		5310	637
		8	9	1.0	0.66		7450	623
		9	10	1.0	1.14		1100	650
		10	11	1.0	0.57		6100	584
		11	12	1.0	1.75		6400	623
		12	13	1.0	1.57		5910	617
	•	13	14	1.0	2.83		5000	603
		14	15	1.0	0.61		5200	614
		15	16	1.0	0.15		6400	580
		16	17	1.0	1.52	1.21	5520	640

sheet 8
WEATHERED ORE PERCUSSION DRILL SAMPLE FOR COMPOSITE BMT 1.2

north	drill hole number	from	to	ni	grade g/t	average core grade g/t	wt. of sample received gms	wt. to
10070	BP119	23	24	1.0	1.31		6940	614
		24	25	1.0	1.96	14.	12250	622
		25	26	1.0	0.80		10150	595
		26	. 27	1.0	0.25		14300	622
		27	28	1.0	0.31		9310	573
	*	28	29	1.0	2.93	i.	10100	617
		29	30	1.0	$\substack{1.25\\1.88}$		8860	618 626
		30 31	31 32	$\frac{1.0}{1.0}$	0.56		11950 11670	625
		31 32	33	1.0	0.20		11100	617
		33	34	1.0	1.95		8700	610
		34	35	1.0	0.55	1.16	7400	634
•	-	••					-	
10100	BP128	2	3	1.0	0.89		26400	615
10100	21110	3	4	1.0	0.95		15500	648
1		4	5	1.0	2.32		3840	610
strili — i	-	5	6	1.0	0.74	· · · · · · · · · · · · · · · · · · ·	4060	606
		6	7	1.0	1.44		11160	619
		7	8	1.0	0.62		3950	582
		8	9	1.0	1.47		3420	618
		9	- 10	1.0	2.27		11200	603
		10	11	1.0	1.38		4250	595
	•	11	12	1.0	0.77	1.29	4250	610
10170	BP169	5	6	1.0	1.35		3700	640
10110	DITOU	6	7	1.0	0.46	4.	5610	623
		7	8	1.0	0.94		4950	616
		8	9	1.0	0.79		5270	638
		9	10	1.0	1.85		5450	649
		10	11	1.0	0.25		11100	607
		11	12	1.0	1.14		11350	625
		12	13	1.0	2.27		11050	639
		13	14	1.0	1.03		7360	639
		14	15	1.0	3.21		10100	636
		15	16	1.0	0.50		10300	642
		16	17	1.0	0.36		10110	605
		17	18	1.0	1.05		5120	588
		18	19	1.0	1.80	1 00	11650	628
		19	20	1.0	1.33	1.22	3410	606

sheet 5 LEACH TEST PROGRAM

	COMPOST	TE BMTO.6	A TEST	PROCEAM	!	COMPOS	ITE BHTO.	B TEST	PROGRAM	l	COMPOS	ITE BATO. 6	C TEST	PROGRAM	l	COMPOS	TE BHTO.6	D TEST	PEOGRAM
comp sub sample	wt.	test	GRIND P86	LEACH TIME hrs	comp sub sample	wt.	test	GRIND P80 um	LEACH TIME hrs	comp sub sample	wt.	test	GRIND P80 UM	LEACH TIME hra	comp sub sample	wt.	test	GRIND P80	LEACH TIME hrs
1A	875	LEACH	150	12	18	875	LEACH	106	8	10	875	RESERVE			1D	875	LEACH	150	18
2A	875	ASSAY			28	875	RESERVE			2C	875	LEACH	106	12	2D	875	RESERVE		
ЗА	875	RESERVE			3B	875	LEACH	75	12	3C	875	LRACH	75	8	3 D	875	LEACH	75	12
44	875	LEACH	150	8	48	875	LEACH	75	18	4C	875	ASSAY			4D	875	LEACH	106	18
5A	875	RESERVE			5 B	875	LBACH	150	8	5C	875	LEACH	106	8	5D	875	RESERVE		
6A	875	LEACH	106	18	6В	875	ASSAY			6C	875	LEACH	75	12	6 D	875	LEACH	75	8
7A	875	LEACH	106	12	7B	875	RESERVE			7c	875	LEACH	150	18	7Đ	875	LEACH	150	12
8A	875	LEACH	75	18	88	875	LEACH	106	12	8C	875	RESERVE			8D	875	ASSAY		
					<u> </u>					1					l .				

SAMPLE GRIND PREPARATION Each charge ground @ 50% solids.

LEACH CONDITIONS FOR EACH TEST Cyanide (NaCN) concentration : 0.05 : 0.01 Lime (CaO) concentration : 40.0 Pulp density (% solids) Pulp temperature (degree C) :mobient

Reserve Samples Used: Grinding Study 3A, 2B, 1C, 2D Environmental Leach Test 8C

SAMPLING FOR EACH LEACH TEST Erad assays to be pulverized prior to duplicate fire assay. Head sample 2A & 4C to be assayed for Cu.Pb.Zn.As.As.Fe.& s. Liquor sample to be taken @ 3,6,12,18,24,32 hours. Each liquor sample to be assayed for NaCN, CaO, pH, Au, Cu, Zn. final liquor for each sample to be assayed for soluble S. Residue solids to be screened on 150,106,75,53 um and fractions fire assayed for Au. Duplicate fire assays required on residue sized fractions if sufficient sample. Record pulp temperature of each test. Take indivual head sample from ground pulp; duplicate assay for Au only.

sheet 6

	COMPOSI	TE BHTO.	A TEST	PROGRAM	.	COMPOS	ITE BMTO.	B TEST	PROGRAM	j	COMPOS	ITE BMTO.8	C TEST	PROGRAM	j	COMPOS	ITE BMTO.	D test I	Proces
comp sub sample	wt.	test	GRIND P80 um	LEACH TIME hrs	comp sub sample	wt.	test	GRIND P80	LEACH TIME hrs	comp sub sample	wt.	test	GRIND P80	LEACH TIME hrs	comp sub sample	wt.	test	GRIND P80	LEACH TIME hrs
la	875	LEACH	150	12 .	18	875	LEACH	j 06	8	1C	875	RESERVE			1D	875	LEACH	150	18
2A	875	ASSAY			28	875	RESERVE			2C	875	LEACH	106	12	2D	875	RESERVE		
3A	875	reserve			32	875	LEACH	75	12	3C	875	LEACH	75	8	3p	875	LEACH	75	12
4.4	875	LEACH	150	8	4B	875	LEACH	75	i 3	4C	875	ASSAY			4D	875	LEACH	106	18
5A	875	RESERVE			5 B	875	LEACH	150	8	5C	875	LEACH	106	· 8	5D	875	RESERVE		
6A	875	LEACH	106	18	6B	875	ASSAY			6C	875	LEACH	75	12	6D	875	LEACH	75	8
7A	875	LEACH	106	12	7B	875	RESERVE			7C	875	LEACH	150	18	7D	875	LEACH	150	12
84	875	LEACH	75	18	8 B	875	LEACH	106	12	8C	875	RESERVE			8D	875	ASSAY		

SAMPLE GRIND PREPARATION
Each charge ground @ 50% solids.

LEACH CONDITIONS FOR EACH TEST
Cyanide (NaCN) concentration : 0.05
Lime (CaO) concentration : 0.01
Pulp density (% solids) : 40.0
Pulp temperature (degree C) : ambient

Reserve Samples Used: Grinding Study 5A, 7B, 1C Environmental Leach Test 2B SAMPLING FOR EACH LEACH TEST
Head assays to be pulverized prior to duplicate fire assay.
Head sample 2A & 4C to be assayed for Cu,Pb,Zn,As,Ag,Fe,& s.
Liquor sample to be taken \$ 3,6,12,18,24,32 hours.
Each liquor sample to be assayed for NaCK,CaO,pH,Au,Cu,Zn.
Final liquor for each sample to be assayed for soluble 5.
Residue solids to be screened on 150,106,75,53 um
and fractions fire assays for Au.
Duplicate fire assays required on residue sized fractions if sufficient sample.
Record pulp temperature of each test.
Take indivual head sample from ground pulp;duplicate assay for Au only.

sheet 7 LEACH TEST PROGRAM

	COMPOS	TE BMT1.0	A TEST	PROGRAM		COMPOS	TE BMT1.0	B TEST	PROGRAM	1	COMPOS	ITE BHT1.0	C TEST	PROGRAM		COMPOS	ITE BMT1.0	D TEST	PROGRAM
comp aub sample	wt.	test	GRIND P80 um	LEACH TIME hrs	comp sub sample	wt.	test	GRIND P8C	LEACH TIME hrs	comp sub sample	wt.	test	GRIND P80	LEACH TIME hrs	comp sub sample	wt.	test	GRIND P80	LEACH TIME hrs
1A	875	LEACH	150	12	1B	875	LEACH	106	8	1 C	875	RESERVE			1D	875	LEACH	150	18
2A	875	ASSAY			2B	875	RESERVE			2C	875	LEACH	106	12	2D	875	RESERVE		
36	875	reserve			3B	875	LEACH	75	12	3C	875	LEACH	75	8	3D	875	LEACH	75	12
44	875	LEACH	150	8	4B	875	LEACH	75	18	4C	875	ASSAY		-	4D	875	LEACH	106	18
5A	875	reserve			5 B	875	LRACH	150	8	5C	875	LEACH	106	8	5D	875	RESERVE		
6A	875	LEACH	106	18	6B	875	ASSAY			6C	875	LEACH	75	12	6D	875	LEACH	75	8
7A	875	LEACH	106	12	7B	875	RESERVE			7C	875	LEACH	150	18	7D	875	LEACH	150	12
84	875	LEACH	75	18	88	875	LEACH	106	12	8C	875	RESERVE			8D	875	ASSAY		

SAMPLE GRIND PREPARATION
Each charge ground @ 50% solids.

LEACH CONDITIONS FOR EACH TEST

Cyanide (NaCN) concentration : 0.05

Lime (CaO) concentration : 0.01

Pulp density (% solids) : 40.0

Pulp temperature (degree C) : ambient

SAMPLING FOR EACH LEACH TEST
Head assays to be pulverized prior to duplicate fire assay.
Head sample 2A & 4C to be assayed for Cu,Pb,Zn,As,Ag,Fe,& s.
Liquor sample to be taken 0 3,6,12,18,24,32 hours.
Each liquor sample to be assayed for NaCN,CaO,pH,Au,Cu,Zn.
Final liquor for each sample to be assayed for soluble S.
Residue solids to be screened on 150,106,75,53 um
and fractions fire assays required on residue sized fractions if sufficient sample.
Record pulp temperature of each test.
Take indivual head sample from ground pulp;duplicate assay for Au only.

Reserve Samples Used: Grinding Study 3A, 7B, 1C Environmental Leach Test 5A

sheet 8 LEACH TEST PROGRAM

	COMPOSI	TB BHT1.2	A TEST	PROGRA:1	j	COMPOS	TE BMT1.2	B TEST	PROGRAM	ļ	COMPOS	ITE BMT1.2	C TEST	PROGRAM	J	COMPOS	ITE BMT1.2	D TEST	PROGRAM
comp sub sample	wt.	test	GRIND P80	LEACH TIME hrs	comp sub sample	wt.	test	GRIND P80 um	LEACH TIME hrs	semble anp comb	wt.	test	GRIND P80 Um	LEACH TIME hrs	comp sub sample	wt.	test	GRIND P80 um	LEACH TIME hrs
1A	875	LEACH	150	12	1B	875	LEACH	106	8	10	875	RESERVE			1D	875	LEACH	150	18
2A	875	ASSAY			28	875	RESERVE			2C	875	LEACH	106	12	2D	875	RESERVE		
ЗА	875	RESERVE			3B	875	LEACH	75	12	3¢	875	LEACH	75	8	3D	875	LEACH	75	12
4.	875	LEACH	150	8	4B	875	LEACH	75	18	4C	875	ASSAY			4D	875	LEACH	106	18
5A	875	RESERVE	•		5B	875	LEACH	150	8	5C	875	LEACH	106	8	5D	875	RESERVE		
6A	875	LEACH	106	18	6B	875	ASSAY			6C	875	LEACH	75	12	6D	875	LEACH	75	8
7A	875	Leach	106	12	73	875	RESERVE			7C	875	LEACH	150	18	70	875	LEACH	150	12
84	875	LEACH	75	18	88	875	LBACH	106	12	8C	875	RESERVE			8D	875	ASSAY		
										1									

SAMPLE GRIND PREPARATION
Each charge ground # 50% solids.

LEACH CONDITIONS FOR EACH TEST

Cyanide (NaCN) concentration : 0.05

Lime (CaO) concentration : 0.01

Pulp density (% solids) : 40.0

Pulp temperature (degree C) : ambient

Reserve Samples Used: Grinding Study 3A, 7B, 1C Environmental Leach Test 2B, 2D SAMPLING FOR EACH LEACH TEST
Head assays to be pulverized prior to duplicate fire assay.
Head sample 2A & 4C to be assayed for Cu,Pb,Zn,As,Ag,Pe,& s.
Liquor sample to be taken @ 3,6,12,18,24,32 hours.
Each liquor sample to be assayed for NaCN.CaO,pH,Au,Cu,Zn.
Final liquor for each sample to be assayed for soluble S.
Residue solids to be screened on 150,106,75,53 um
and fractions fire assayed for Au.
Duplicate fire assays required on residue sized fractions if sufficient sample.
Record pulp temperature of each test.
Take indivual head sample from ground pulp;duplicate assay for Au only.

LAURIE SMITH & ASSOCIATES PTY, LTD.
Incorporated in Western Australia
CONSULTING METALLURGISTS
Managing Director L.I. Smith, AWASM. (Metallurgy), MAUS.I.M.M.

16 BRODRICK STREET KARRINYUP 6018 WESTERN AUSTRALIA PHONE: (09) 447 5879 LAB: (09) 244 1423 FAX: (09) 447 8412

METALLURGICAL INVESTIGATIONS for BILLITON AUSTRALIA GOLD PTY LTD

"CYANIDE LEACH TESTS
on
MT TODD LOW GRADE PRIMARY ORE"
Composite BMT PO.8
6 December 1989
08.4955

TABLE OF CONTENTS

1.	INTRODUCTION
2.	DIAMOND DRILL CORE SAMPLES RECEIVED
3.	WATER FOR TESTWORK
4.	QUALIFICATIONS
5.	SAMPLE PREPARATION
6.	HEAD ASSAYS AND ANALYSES
7.	GRINDING OF THE COMPOSITE SAMPLE
8.	SAMPLING OF GROUND PRODUCT
9.	LEACHING TESTS
10.	PREPARATION OF RESIDUE SAMPLES
11.	CALCULATION AND RESULTS
12.	DISCUSSION

FIGURES

TABLES

INDIVIDUAL TEST CONDITIONS AND RESULT SUMMARIES
APPENDIX

BMT5748

Laurie Smith & Associates Pty. Ltd. Consulting Metallurgists, Perth, WA

METALLURGICAL INVESTIGATIONS for BILLITON AUSTRALIA GOLD PTY LTD

"CYANIDE LEACH TESTS

MT TODD LOW GRADE PRIMARY ORE"
Composite BMT PO.8
6 December, 1989

- 1. Introduction
 A program of testwork (on a composite sample crushed to all pass 2mm) was drawn up by W.R. Lethlean & Associates to establish:-
 - (a) the repeatability of gold assays on a number of sub-samples of the composite
 - (b) the reproducibility of cyanide leach extractions on triplicate and quadruplicate tests
 - (c) the optimum grind level for cyanide leaching
 - (d) the optimum cyanide leach time
 - (e) the cyanide and alkali consumption over a range of grind levels and leaching times.

A log of 74 samples was provided together with specific instructions regarding sample preparation, sample compositing, and sample splitting. Instructions were also received regarding assays and tests to be conducted on specific riffle splits and the conditions for the tests.

2. Diamond Drill Core Samples Received
A total of 73 half-core samples, representing 8 drill holes, was received. The samples were in labelled calico bags inside polyweave bags. The intersection 217-218m of drill hole BD027 was missing.

The mass of each sample received is shown in Appendix 1, sheets 1 and 2.

3. Water for Testwork
Sufficient Billiton sitewater from earlier consignments was available for this test program.

4. Qualifications

- (i) No responsibility will be accepted for the data provided in this report except insofar as they apply to the samples tested.
- (ii) Billiton sitewater was used in all testwork except the time versus grind studies.
- (iii) All gold assays on liquor were determined by solvent extraction followed by AAS. Results are reported on a w/w basis. All copper and zinc assays on liquor were determined by AAS and reported on a w/v basis. Total sulphur was determined on composite leach liquors by classical gravimetric analysis.
- (iv) All solids samples were assayed by the fire method followed by gravimetric finish except where grades were very low e.g., residues. In this instance, the prill from cupellation was dissolved in aqua regia and the gold determined by AAS after solvent extraction. Duplicate determinations were conducted on all samples except leach residues size fractions of mass generally less than 60g, where the total mass available was assayed.

All head samples were pulverised prior to assay and all residue fractions coarser than 75um were pulverised except where the total sample available was taken for assay (a limited number of -106um +75um fractions). Head samples were assayed for sulphur by a gravimetric method. Head samples were assayed for Fe, Cu, Zn, As, Pb and Ag by acid digestion followed by AAS.

5. Sample Preparation
Each sample of core was weighed and jaw-crushed at a nominal 4mm closed side setting. The sample was then roll-crushed to a nominal 2mm and riffle-split to provide a sub-sample of approximately 2000g to make up individual "hole composites". Some samples as received were already at or below this quantity and, in these cases, the total available quantity was used. The same applied to samples which were initially slightly above 2000g, but less than 2000g after crushing due to inevitable minor losses.

The breakage pattern of the core samples was different to that of the previously tested primary ore composite insofar as the particles did not exhibit a slabby character.

The actual sample masses used for compositing are also shown in Appendix 1, sheets 1 and 2.

Each hole composite was mixed in a urethane-lined mixer and assay portions of approximately 500g riffled out for duplicate gold assays.

Assay results were:-

Hole No.	ppm Au	ppm Au	Ave. ppm Au
BD057	0.56	0.60	0.58
BD069	0.71	0.75	0.73
BD001	1.02	1.06	1.04
BD076	0.70	0.75	0.73
BD035	0.92	0.91	0 - 92
BD009	0.78	0.79	0.79
BD027	1.61	1.62	1.62
BD065	0.77	0.76	0.77

To ensure good agreement between the duplicate assays, all of each hole composite head sample was pulverized prior to sub-sampling. The pulverized reject portions were returned to LS&A for preliminary leach tests to determine reagent needs and CN-soluble Cu. Hole composite BDO27 was excluded from the main composite. The approximate mass of the remaining hole composites was:-

)

Hole Composite	Mass (kg
BD057	20
BD069	18
BD001	22
BD076	14
BD035	20
BD009	22
BD065	18

Each hole composite was riffle-split into halves, and one half was taken into the main composite. The other half was bagged for future reference.

The composite sample weighing 63.5kg was mixed and riffle-split according to the flow chart shown as Appendix 2 to provide, initially, four sub-samples A, B, C and D. Each of the four sub-samples was then riffle-split to provide 16 working samples for action detailed in Appendix 3. The working samples were labelled A1 to A16, etc.

6. Head Assays and Analyses
Throughout this report assays on solids and liquors are stated as ppm or % on a w/w basis except for Cu and Zn and S assays on liquors which are on a w/v basis. Extractions are stated as g/t (grams per tonne).

Two working samples from each of the sub-composites A, B, C and D were submitted for gold assay and the total of each sample was pulverised prior to taking duplicate assay portion. Two of the eight samples were analysed for further elements.

Sample	Au ppm	Au ppm	Au Ave ppm	Cu ppm	Zn ppm	Ag ppm	Pb ppm	As ppm	Fe %	S %
2 A	0.69	0.72	0.70	290	205	<0.5	35	90	5.87	0.98
10A	0.74	0.75	0.74							
2 B	0.73	0.81	0.77							
10B	0.75	0.72	0.74							
2 C	0.73	0.71	0.72						•	
10C	0.71	0.75	0.73	300	195	<0.5	35	65	6.54	0.96
2 D	0.75	0.81	0.78							
10D	0.76	0.78	0.77							

The analysis of the previously supplied sitewater was as follows:-

TDS	<10ppm
Na	1.5ppm
Са	0.8ppm
Mg	0.4ppm
C1	<1 ppm
S04	<i ppm<="" td=""></i>
рH	6.8

7. Grinding of the Composite Sample

Four working portions of the composite were each rod-mill-ground for 15, 25, 35 and 45 minutes and the mill product wet-screened on 38um square mesh, followed by dry screening of the oversize on a nest of screens. The data were graphed and curves drawn to show the production rate of particular sizes. This information is shown in Figures 1 and 2. From Figure 2, the required grinding time to produce 80% passing the nominated size was determined.

Laboratory Rod Mill
Urethane lined with eight 5mm high x 5mm wide lifters
Inside diameter (between plates) 195 mm
Inside length 315mm
Rods (stainless steel) 22 off 19mm x 302mm
6 off 12mm x 302mm
Mass 16.3kg
Mill speed (refer to discussion) 67-72 rpm

Grinding times, determined at a mill speed of 72 rpm, were established at 15.5, 22.5, 31.25, 39.5 and 47 minutes to achieve P80 values of 150, 106, 75, 53 and 38um. Test grinding was conducted in Perth tapwater at 50% solids. Grinding for leach tests was conducted in Billiton site water at 50% solids.

The tests were conducted in batches wherein all the same nominal P80 grinds were within each batch. The rod load was accurately weighed prior to grinding each batch and weighed again at the completion of grinding each batch. The rod wear data, together with that determined on other BMT samples and on a Pine Creek sample, are shown in Table 1.

8. Sampling of Ground Product
Prior to leaching, a sample of the ground solids pulp was taken
for a duplicate gold assay.

The pulp was passed through a pulp splitter with the object of taking a one-eighth split for duplicate gold assay. The sample was filtered, dried, weighed and pulverised for duplicate gold assay. The assays are shown in Table 2.

The remaining pulp (generally regardless of the grind size) would not settle overnight to higher than 40% solids and leaching was required at 40% solids. In addition, the supernatent liquor was turbid and the surplus liquor could not be removed without taking some solids.

Two courses of action were available:

- 1. Filter the pulp and then repulp to 50% solids or
- 2. Add lime after grinding to assist the settling and provide a clear supernatent liquor.

The course of adding a weighed quantity (1.20g) of technical grade calcium hydroxide to the pulp after sampling was adopted and resulted in a settled pulp approaching 55% solids.

9. Leaching Tests

After sampling the ground material and the addition of the calcium hydroxide, the pulp was transferred to nominal 5-litre polythene wide-necked jars, 170mm diameter x 170mm parallel shell length, and the pulp adjusted to 40% solids by decant of supernatent liquor. The decanted liquor from each grind was weighed and the CaO determined by titration. The quantity of CaO added to each leach test was then determined as the difference between that added for settling and the quantity removed in the decant. The quantity of CaO added for settling was determined from the preliminary grinding tests.

The standard procedure is to cap the leach vessels with a screw cap with a 26mm diameter hole in the centre. With the Billiton pulp samples, the cap was necessary to retain the pulp in the vessel and, in the preliminary CaO requirement tests, it was found that pulp would film onto the cap, be taken overhead of the hole and flow out of the hole. This problem was overcome by fitting a tube through the hole to act as a deflector. The hole was still retained at 26mm diameter.

The criteria set for the leach tests were:

NaCN concentration 0.050%
CaO concentration 0.010%
Pulp solids by weight 40%
Temperature ambient

The initial NaCN addition was made to ensure that there was no deficiency in NaCN concentration within the first three hours. It was planned to make additions at any stage of testing to maintain the concentration of 0.050%. The consumption was, however, lower than indicated by the preliminary leach tests on pulverised samples and, without NaCN addition, the leach terminal concentrations were generally of the order of 0.05-0.06% NaCN. The same starting addition, in terms of kg NaCN/tonne, was maintained for all tests. The mass of solids taken to the leach tests was calculated as the difference between the mass taken to grinding and the mass of ground sample split out for assay.

The leach vessels were roll-agitated at a speed of 42 rpm and the liquor sampled at 3, 6, 12, 18, 24 and 32 hours as called upon by the test program. Batch size varied from four to ten tests.

The gross mass of the vessel and pulp was recorded prior to placing on the rolls and the gross mass again recorded when the vessel was removed from the rolls for liquor sampling. The pH of each pulp was recorded and the temperature of the pulp in one vessel only was determined at each time of sampling.

Settling of the pulp was quick and the liquor sample was removed with a pipette and filtered. The vessels were again weighed and Billiton sitewater added to return the gross mass to that recorded when they were removed from the rolls. This procedure maintained the leach pulp at 40% solids throughout the test and also provided the mass of liquor sample removed for assay and test.

The cyanide concentration was determined by silver nitrate titration of a 10ml portion of the liquor using approximately 0.5g potassium iodide as indicator. After adding about 1ml excess of silver nitrate, the available CaO was determined by titration with oxalic acid using phenolphthalein indicator. The remainder of the liquor sample was assayed for gold, copper and zinc.

At the termination of the 32-hour tests for each grindsize (24-hour for P80=38um), the pulp was filtered to recover all the of liquor to permit determination of total soluble sulphur in addition to gold, copper, zinc, NaCN and CaO. The filter cake was repulped with Perth tapwater and wet-screened on a 38um screen. The undersize was flocculated, washed twice by decantation and finally filtered, dried and weighed. The oversize was transferred to a tray, dried and weighed.

All test details are shown on sheet 2 of the accompanying tables.

10. Preparation of Residue Samples

The plus 38um material from the wet screening described above was dry-screened on a nest of screens and the size fractions weighed and bagged for assay. The minus 38um material recovered from dry screening was combined with the minus 38um from wet screening and the material passed through an 800um screen, mixed by rolling and bagged for assay.

All residue fractions coarser than 75um were pulverised prior to assay except where the total sample available was taken for assay.

The sizings assays and gold distributions for the residues are shown on sheets 3 and 4 of the accompanying tables for four batches of tests and on sheet 3 only for the batch of P80=38um.

During screening, it was noted that pegging or blinding of the screen cloth was exceptionally high. After a program of test sieving and result evaluation a procedure involving cleaning of the screen cloth was adopted after screening for 10 minutes, and screening then continued for a further 10 minutes.

11. Calculations and Results

The leach extractions were calculated based on the mass of liquor in the leach vessel at the time of testing and this mass was determined by subtracting the mass of the vessel and the mass of the sample taken to leach from the gross mass at the time of testing. Allowance was made for the gold, copper and zinc contained in samples that were removed. The same procedure was used to calculate the reagent consumptions. A typical calculation sheet is shown as Table 3.

All significant results are shown for each of the P80 batches on sheet 1 of the attached tables. These tables are not numbered but are identified by nominal P80 and Sheet No.

Sheet 1
Summary
Sheet 2
Bench test data
Sheet 3 & 4
Leach residue gold assays and distribution
Sheet 5
Sheet 6
Summary of Summary sheet Ave., Max., Min.
Summary of residue size fraction assays and gold distribution.

The exception is the nominal P80=38um where:-

Sheet 1
Summary
Sheet 2
Bench test data
Sheet 3
Leach residue gold assays and distribution
Sheet 4
Summary of residue size fraction assays and gold distribution
Sheet 5
Analysis of Summary sheet Ave., Max., Min.

The data are arranged in the following order:

P80	=	38	microns	24-	hous	r lea	ach	
P80	=	53	microns	18,	24	and	32-hour	leach
P80	=	75	microns	18,	24	and	32-hour	leach
P80	=	106	microns	18,	24	and	32-hour	leach
P80	=	150	microns	18.	24	and	32-hour	leach

12. Discussion

Discussion is confined to those matters only relating to the reproducibility of the testwork and to those matters which were observed at bench scale and may be of value in design considerations.

An overall summary of averages of test conditions and results is shown in Table 4.

P80 achieved by Grinding
The following percentage passing the nominated particle size was achieved:

P80 Objective	um	150	106	75	53	38
24-hour Test Actuals	%		76.6 76.6 75.7 75.6	79.7 72.0	78.8 78.8 77.8 79.8	75.3 72.7 67.8 71.0
32-hour Test Actuals	*	65.3 65.1 63.1	75.4 /6.5 76.7			
18-hour Test Actuals	*	70.4 67.0 66.5	76.9 78.4 77.3	77.8 73.0 76.3	78.3 79.0 76.0	

The test grinds to establish the grinding times to achieve the nominated P80 were conducted prior to grinding 110kg of Billiton composite BMT P2 for equipment sizing tests and 20kg of Pine Greek ore for rod wear determination. It appears that wear on the mill drive occurred and slippage resulted in a decrease in grinding mill speed from 72 rpm to about 67 rpm. The actual grinding of the various batches of the BMT P0.8 sample was programmed between batches of the BMT P2 grinding. As a result, this BMT P0.8 sample was ground at a lower-than-tested speed resulting in coarser than nominated products.

The finest and coarsest of each test for each nominated P80 has been graphed and shown as Figure 3-7. The tests most heavily influenced by the slower grinding speed were the P80=38um and the P80=150um.

Although it was noticed after the second batch of tests were sized that the grinds were coarser than nominated, it was considered that this was due partially, at least, to a test screen blinding problem which was pronounced with this sample.

Comparison of Head Assays and Calculated Test Heads
These data are presented in Table 1. The averages for the total
program are:-

Split Head Assay 0.74ppm Au Ground Head Assay 0.77ppm Au Calculated Head 0.83ppm Au

The comparison of the ground head and calculated head for each level of grind is also shown in Table 1.

The test calculated head is derived from a number of assays, the number depending upon the duration of the test and the fineness of the grind. The shortest leach time and finest grind involves the minimum number of product assays and the longest leach time and coarsest grind involves the maximum number of assays.

For example:

			Liquor Assays	Residue Assays
P80=53um,	18-hour	1 éach	4	7
P80=150um,			6	11

Preparation of the residue - i.e., washing, screening, weighing, etc. - invariably results in some loss of material. This loss has been accounted for and shown at the foot of sheet 2 of the tables. The average loss for 44 tests was 0.75%. The gold content of the residue has been calculated from the residue mass accounted for and the weighted assay of the residue. This content has been added to the total account of gold in liquors and the total divided by the mass of sample taken to the leach to arrive at the calculated head.

If the residue mass had been used as the divisor to calculate the head, the result would have been <u>slightly</u> higher again.

Considering that 70%-80% of the gold accounted for is in liquor, it is most likely that the liquor assay has a small bias. The contract laboratory used for assays periodically checks the AAS determination against the fire assay on evaporated liquors.

Comparison of Liquor Extractions
These data are presented in Table 5 (gold) and Table 6 (copper) showing, for each level of grind, the average, maximum and minimum extraction at each time of testing. The pattern is relatively consistent.

Comparison of Cyanide Consumptions
These data are presented in Table 7 showing for each level of grind the average, maximum and minimum consumption at each time of testing.

The relatively low cyanide consumptions recorded for this primary low grade sample prompted a further test on sub-sample 11D ground to P80=75um using mild steel rods and leached for 24 hours with liquor tests at 3, 6, 12, 18 and 24 hours. The CaO and NaCN consumptions at 12 and 24 hours are compared with one only of the four tests at the same grind using stainless steel rods. The results are shown in Tables 9 and 10 and summarised as:

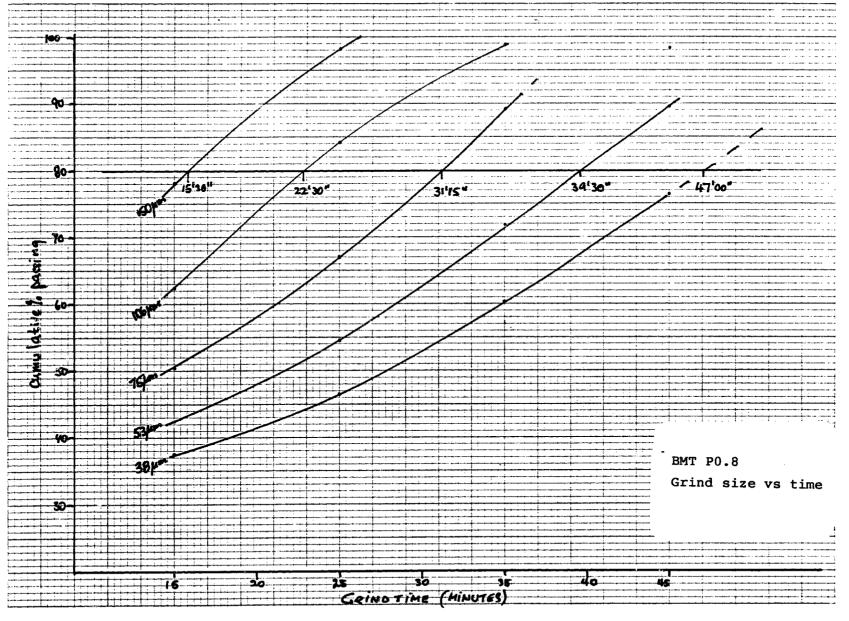
		SS Rods	MS Rods
CaO Consumption kg/t	12-hr	0.92	1.07
	24-hr	0.93	1.14
NaCN Consumption kg/t	12-hr	0.20	0.49
,	24-hr	0.25	0.57

Total Sulphur Assays on Leach Liquor
Total sulphur was determined on composites of terminal leach
liquors from three of the test batches. All liquors were from
40% solids pulps.

Liquo. Composite	ppm Total S
	~
P80=150um, 3x32hr	47
P80= 75um, 4x24hr	46
P80= 38um, 4x24hr	63

Cyanide-soluble Copper in Hole Composites
The pulverised reserve from the assay of each Hole Composite made up was leached for 24 hours with an initial addition of NaCN equivalent to 1.08kg NaCN/t. The reagent concentrations were checked at 12 hours and NaCN added to adjust the concentration of 0.05%. Some difficulty was experienced obtaining clear liquor filtrates at a pH of about 10 (not uncommon with some pulverised samples).

The extraction of copper was calculated as a percentage of the assay head. The results are shown in Table 8.


The weighted Cu extraction of the pulverised samples making up composite BMT P0.8 was 101g Cu/t and is to be compared with the 24-hour extraction from the P80=150um, 24-hour leach of 47g/t and the P80=38um, 24-hour leach of 81g/t.

Anomalous Assays
Two minus 38um residue fractions returned very high assays.

Test 7A P80=106um 24 hour leach Test 16D P80=150um 24 hour leach

Repeat assays confirmed the high grade of one of these fractions. It appears that these two fractions must have been contaminated at the wet screening operation.

The results of these two tests have been omitted from all averages.

SCREEN APERTURE (µm)

T T G C XE O

FIGURE

FIGURE

FIGURE

Nominal P80 = 150um Actual P80 Highest Lowest Range of 10 tests

SCREEN APERTURE (um)

230um

182um

8MT5736 BILLITON MT TODO COMPARISON OF GRINDING ROD WEAR

Composite Ore Sample Type				Feed F80	Product actual pass		Product actual	Product PBO non.	1/(P80)^.5 - 1/(F80)^.5 (E)	Rod Cl Start	arge Finish	Rod Wear	Rod Wear	Factor	Rod Near
00-410	.,,,,	2	Time hours	UM	nom. um \$	•	P80 um	Un	(4)	g	g	g	g/kg	g/(E#kg)	g/hour
ONT 1	Primary	35.662	17.63	1630	101	(1)		101	0.0747	16271.0	16214.0	57.0	1.60	21	3.2
8MT 2	Primary	19.898	11.00	1630		• /		75	0.0907	16183.5	16139.1	44.4	2.23	25	4.0
BMT 2	Primary	9.610	5.50	1630				75	0.0907	16139.1	16121.3	17.8	1.85	20	3.24
BMT 2	Primary	9.872	5.50	1630				75	0.0907	16121.3	16098.9	22.4	2.27	25	4.07
BMT 2	Primary	9.555	5.50	1630				75	0.0907	16098.9	16074.9	24.0	2.51	28	4.36
BMT 2	Primary									16074.9	16041.9	33.0			
										16021.8	15987.8	34.0			
	total	29.568	16.50	1630				75	0.0907			67.0	2.27	25	4.06
BMT 2	Primary	29.504	16.50	1630				75	0.0907	15964.8	15928.7	56.1	1.90	21	3.40
Pine Creek		10.000	5.24	1550			70	75	0.0901	15920.5	15895.1	25.4	2.54	28	4.85
Pine Creek		10.000	5.24	1550	83.8	(2)	70	75	0.0901	15895.1	15866.7	28.4	2.84	. 32	5.42
BMT P 0.8	Primary L	10.073	6.21	1600	75.2	(3)		75	0.0905	16041.9	16021.8	20.1	2.00	22	3.24
BMT P 0.8	Primary L	10.129	6.58	1600	78.4	(3)		53	0.1124	15866.7	15845.5	21.2	2.09	19	3.22
8.0 9 TMB	Primary L	4.039	3.13	1600		(3)		38	0.1372						
		10.090	3.75	1600	76.6	(3)		106	0.0721						
	total	14.129	6.88						0.0907	15845.5	15820.5	25.0	1.77	20	3.63
8MT P 0.8	Primary L	10.126	2.58	1600	66.3	(3)		150	0.0566	15820.5	15811.3	9.2	0.91	16	3.57
BMT 0.6	Weathered	5.476	1.62	820	80.8	(3)		75	0.0005						
		5.535	0.92	820	81.3	(3)		106	0.0622						
		4.773	0.47	820	78.3	(3)		150	0.0467						
	total	15.784	3.01						0.0639	10287.2	10274.1	13.1	0.83	13	4.35
BMT 0.8	Weathered	4.113	1.25	820	82.7	(3)		75	0.0805						
		4.088	0.64	820	78.8	(3)		106	0.0622	10024.5	10020.6	3.9			
		3.516	0.35	820	81.0	(3)		150	0.0467	10020.4	10017.3	3.1			
	total	11.717	2.24						0.0640			7.0	0.60	9	3.13
BMT 1.0	Weathered	6.833	2.00	820	79.4	(3)		75	0.0805						
includes		6.816	1.24	820	80.8			106	0.0622						
definitio		5.937	0.63	820	80.5			150	0.0467						
	total	19.586	3.87						0.0639	10273.6	10263.7	9.9	0.51	8	2.56
BMT 1.2	Neathered	5.580	1.75	820	79.4	(3)		75	0.0005						
	· -	5.593	0.92	820	78.4			106	0.0622						
		4.895	0.53	820	78.6	- 2 2		150	0.0467						
	total	16.068	3.20						0.0639	10017.3	10006.8	10.5	9.65	10	3.28

⁽¹⁾ weighted nominated of 43 tests.

⁽²⁾ sizing on last two kg of Pine Creek.(3) average from test residues.(4) calculated from the nominal P80 and F80

0.83

BMT5749 5-Dec BILLITON MT TODD LOW GRADE PRIMARY ORE BNT 0.8 COMPARISON OF ASSAY HEAD, GROUND HEAD & TEST CALCULATED HEAD. All assays are pom Au

0.72 0.74 0.73 0.77 0.78 0.78

omposite	, As	Assay Head		Assay Head		Assay Head		Gre	rund Hea	d	Test Calculated Head	- 11	Composite	A	isay Hea	d	1	Grou	nd Hea	ıd	Test Calculated Hea
plit	Ho.1	No.2	Ave.	Ho.1	No.2	Ave.	! !	- 11	Split	No.1	No.2	Ave.	; No	.1	No.2	Ave.	; ;				
1 AG				. 0.86	0.77	0.82	. 0.88		1 8				; 0	.81	0.81	0.81	. 0.82				
2 AH	0.69	0.72	0.71	i					2 BH	0.73	0.81	0.77	i				i				
3 A	ĺ			0.80	0.86	0.83	0.81	ij	38				0	74	0.71	0.73	0.81				
4 A				0.76	0.76	0.76	0.84	1	48				; 0.	79	0.77	0.78	0.84				
5 AG				1			-	-	5.8				0	76	0.77	0.77	0.83				
6 A	!			0.73	0.74	0.74	0.86	- 11	6 8G				!				;				
7 A	!			0.71	0.72	0.72	1.31	-	78				; 0	74	0.74	0.74	0.82				
8 A				0.69	0.70	0,70	0.79	H	88				; 0.	75	0.80	0.78	0.84				
9 A	;			0.94	0.73	0.84	0.78	- 11	98				; 0.	74	0.74	0.74	0.79				
10 AH	0.74	0.75	0.75	:			1	1	10 BH	0.75	0.72	0.74	i				;				
11 A	}			0.74	0.84	0.79	0.85	- 11	11 B				; 0.	75	0.70	0.73	0.81				
12 A	!			0.80	0.80	0.80	0.86	- ; ;	12 8				0.	78	0.74	0.76	0.83				
13 A	}			0.83	0.95	0.89	0.94	- 11	13 B				; 0.	69	0.76	0.73	0.83				
14 A				0.75	0.76	0.76	0.81	- ; ;	14 B				¦ 0.	78	0.75	0.77	.88.0				
15 A	;			0.75	0.78	0.77	18.0	-::	15 8				¦ 0.	77	0.79	0.78	0.87				
16 A				0.69	0.76	0.73	. 0.85	11	16 B :				; 0.	77	0.76	0.77	. 0.84				

0.74 0.77 0.75 0.76 0.76 0.76

0.84 (1)

Composite ¦	Assay Head			Ground Head		d	Test Calculated Head		Composite :	Assay Head			Ground Head			Pest Calculated Hear	
Split	No.1	No.2	Ave.	No.1	Mo.2	Ave.	: :	- !!	Split	No.1	No.2	Ave.	No.1	Ho.2	Ave.	: :	
1 CR				¦			;	!!	10				0.76	0.74	0.75	0.83	
2 C#	0.73	0.71	0.72				1	- 11	2 DH	0.75	0.81	0.78				•	
3 C				0.78	0.74	0.76	0.82	- 11	30				0.72	0.76	0.74	0.79	
4 C				0.79	0.79	0.79	0.86	- !!	40				0.70	0.74	0.72	, 0.78	
5 06 1				1 1			!	- ! !	50				0.79	0.75	0.77	0.83	
6 C ;				0.70	0.68	0.69	0.81	- !!	6 D				0.76	0.76	0.76	0.79	
7 C ;				0.86	0.76	0.81	0.85	- ;;	7 DR ;				:			!	
8 C ;				0.78	0.73	0.76	0.88	- ;;	8 DR ;				ļ			! !	
9 C				0.70	0.71	0.71	0.77	- !!	9-0-	-			1.02	0.73	0.88	0.83	
10 CH ;	0.71	0.75	0.73	:			!	- !;	10 DH	0.76	0.78	0.77	:			;	
11 C				0.79	0.80	0.80	0.85	- ::	11 OH ;				ł			:	
12 CR ;				!			1	!!	12 D ;				0.77	0.80	0.79	0.84	
13 C ;				0.80	0.75	0.78	0.84	- !!	13 DR ;				i			:	
14 C ;				0.78	0.76	0.77	0.83	::	14 D				0.77	0.76	0.77	0.86	
15 CR ;				;			:	- ;;	15 DR ;				:			•	
16 CR ;				i			i	!!	16 D				0.76	0.74	0.75	1.12	
verage	0.72	0.73	0.73	0.78	0.75	0.76	0.83		Average	0.76	0.80	0.78	0.78	0.75	0.77	0.82 (1)	

Average 'Split' Head Assay 0.74 Average Ground Head Assay 0.77 Average Calculated Head Assay 0.83

For each level of grind

P80	¦ A	ssay He	ad	;	Gro	und Hea	d	Test Calculated Hear			
	No.1	No.2	Ave.	:	No.1	No.2	Ave.	;	;		
150				:	0.77	0.77	0.77	: :	0.83		
106	1			i	0.74	0.74	0.74	İ	0.81	- 1	
75	1			i	0.79	0.77	0.78	İ	0.84	į	
53	!			1	0.81	0.78	0.80	1	0.84	- 1	
38	İ			į	0.71	0.74	0.72	i	0.83	į	
					0.77	0.76	0.77		0.83	-	

G = used for grind studies.

H = split taken for pulverising and duplicate Au assay.

R = reserve split.

H = test using wild steel rods.

Note: 7 Reserves remaining at 5 Movember, 1989.

(1) high test calculated heads omnitted from average.

BMT5734 Calculation sheet only	Sheet Cald					COMPOSIT	E BMT P O	.8 ¦			
Mominated Grind P80 : 10	6um					·		•			
Sample mass	g	861.1	838.1	844.9	852.4	843.4	859.8	847.6	897.1	843.7	831.8
Vessel + sample	g	1268.0	1245.8	1252.7	1258.2	1251.1	1266.3	1256.1	1304.7	1251.9	1239.8
In vessel at A (3 hours)	g	1289.3	1257.0	1266.4	1278.0	1264,2	1288.7	1269.8	1345.0	1265.5	1246.3
	ug Au	515.72	465.09	455.90		505.68	489.71	469.83	470.75	518.86	473.59
	ang Cu	25.79	27.65	26.59		27.81	27.06	26.67	25.55	24,04	26.17
	ug Zn	1418.2	1382.7	1393.0		1390.6	1804.2	1396.8	1345.0	1392.1	1246.3
	g HaCN	0.9412	0.9428	0.9118		0.9355	0.9408	0.9270	0.9819	0.9365	0.9098
	g CaO	0.0903	0.0880	0.0886		0.1011					
Removed in A (3 hours)	-						0.0902	0.0889	0.0942	0.0886	0.0997
werened til u (n lines)	g An	51.4	51.4	51.8		51.2	49.4	51.4	51.0	51.3	51.7
	ug Au	20.56	19.02	18.65		20.48	18.77	19.02	17.85	21.03	19.65
	mg Cu	1.03	1.13	1.09		1.13	1.04	1.08	0.97	0.97	1.09
	ug Zn	56.5	56.5	57.0		56.3	69.2	56.5	51.0	56.4	51.7
	g HaCN	0.0375	0.0386	0.0373		0.0379	0.0361	0.0375	0.0372	0.0380	0.0377
	g CaO	0.0036	0.0036	0.0036		0.0041	0.0035	0.0036	0.0036	0.0036	0.0041
In vessel at B (6 hours)	g	1288.7	1255.9	1265.2	1276.9	1263.0	1287.6	1268.9	1343.8	1264.2	1244.7
	ug Au	541.25	464.68	468.12	472,45	505.20	515.04	469.49	483.77	493.04	472.99
	mg Cu	29.64	31.40	30.36	30.65	31.58	32.19	30.45	29.56	29.08	29.87
	ug Zn	1675.3	1632,7	1771.3	1915.4	1768.2	2188.9	1649.6	1746.9	1643.5	1618.1
	g NaCN	0.8634	0.8540	0.8477	0.8683	0.8588	0.8884	0.8629	0.9003	0.8597	0.7842
	g CaO	0.0644	0.0754	0.0759	0.0894	0.0884	0.1030	0.0761	0.0941	0.0759	0.0871
Removed in B (6 hours)	g	51.9	51.4	51.3	51.2	51.2	51.0	51.2	51.1	50.9	50.8
	ug Au	21.80	19.02	18.98	18.94	20.48	20.40	18.94	18.40	19.85	19.30
	ng Cu	1.19	1.28	1.23	1.23	1.28	1.28	1.23	1.12	1.17	1.22
	ug Zn	67.5	66.8	71.8	76.8	71.7	86.7	66.6	66.4	66.2	66.0
	g NaCN	0.0348	0.0350	0.0344	0.0348	0.0348	0.0352	0.0348			
	g CaO	0.0026	0.0031	0.0031	0.0036	0.0036			0.0342	0.0346	0.0320
In vessel at C (12 hours)	g	1287.4	1254.1	1263.7			0.0041	0.0031	0.0036	0.0031	0.0036
THE ACCRET OF C / IT ISON 2)	-				1275.7	1260.3	1285.5	1267.8	1342.4	1263.0	1242.6
	ug Au	540.71	464.02	467.57	459.25	491.52	501.35	456.41	483.26	479.94	484.61
	ng Cu	38.62	37.62	37.91	38.27	39.07	38.57	38.03	36.24	35.36	37.28
	ug Zn	1931.1	2006.6	2148.3	2423.8	2520.6	2699.6	2155.3	2147.8	2147.1	1988.2
	g NaCH	0.8111	0.7775	0.7835	0.7782	0.7814	0.7970	0.7860	0.8189	0.7704	0.7331
	g CaO	0.0515	0.0627	0.0632	0.0638	0.0630	0.0771	0.0634	0.0671	0.0632	0.0746
Removed in C (12 hours)	9	59.5	57.2	58.6	60.4	60.9	60.8	57.2	56.6	57.8	57.8
	ug Au	24.99	21.16	21.68	21.74	23.75	23.71	20.59	20.38	21.%	22.54
	ang Cu	1.79	1.72	1.76	1.81	1.89	1.82	1.72	1.53	1.62	1.73
	ug Zn	89.3	91.5	99.6	114.8	121.8	127.7	97.2	90.6	98.3	92.5
	g NaCH	0.0375	0.0355	0.0363	0.0368	0.0378	0.0377	0.0355	0.0345	0.0353	0.0341
	g CaO	0.0024	0.0029	0.0029	0.0030	0.0030	0.0036	0.0029	0.0028	0.0029	0.0035
In vessel at 0 (18 hours)	g · ·	1286.3	1252.7	1262.9	1275.4	1259.6	1284.6	1269.4	1341.7	1262.0	1241.6
•	ug Au	514.52	450.97	442.01	446.39	478.65	500.99	456.98	469.60	454.32	
	ing Cu	41.16	41.34	40.41	40.81	42.83	42.39	40.62	40.25	39.12	471.81
	ug Zn	2186.7	2505.4	2778.4	2550.8	2393.2	2954.6				39.73
	g NaCN	0.7203	0.7015					2284.9	2280.9	2397.8	2110.7
				0.7072	0.7142	0.6928	0.7065	0.6982	0.7379	0.6815	0.6208
Commend in D (16 house)	g CaO	0.0515	0.0501	0.0631	0.0638	0.0504	0.0642	9.0635	0.0537	0.0631	0.0497
Removed in D (18 hours)	g				56.9	57.9	57.5	57.6	57.8	59.2	57.4
	ug Au				19.92	22.00	22.43	20.74	20.23	21.31	21.81
	ing Cu				1.82	1.97	1.90	1.84	1.73	1.84	1.84
	ug Zn				113.8	110.0	132.3	103.7	98.3	112.5	97.6
	g NaCN				0.0319	0.0318	0.0316	0.0317	0.0318	0.0320	0.0287
	g CaO				0.0028	0.0023	0.0029	0.0029	0.0023	0.0030	0.0023
In vessel at E (24 hours)	ŝ				1274.7	1258.6	1283.8	1268.7	1340.1	1260.8	1240.3
	ug Au				433.40	453.10	475.01	431.36	469.04	441.28	458.91
	ng Cu				44.61	45.31	43.65	43.14	41.54	41.61	40.93
	ug Zn				2804.3	2517.2	3209.5	2664.3	2546.2	2395.5	2232.5
	q HaCN				0.6628	0.6419	0.6676	0.6597	0.6969	0.6556	0.5829
	g CaO				0.0382	0.0378	0.0385	0.0254	0.0402		
Removed in E (24 hours)	g				V.VJQL	V.03/0	V. 9363	V.V234		0.0252	0.0372
1000100 20 C (24 10013)	ug Au								49.3	51.3	\$5.5
	-								17.26	17.95	20.54
	ng Cu								1.53	1.69	1.83
	ug Zn								93.7	97.5	99.9
•	g NaCN								0.0256	0.0267	0.6261
	g CaG								0.0015	0.0010	0.0017
In vessur at F (32 hours)	g								1339.6	1260.1	1239.6
	ug Au								442.07	441.04	421.46
	mg Cu								44.21	42.84	43.39
	ug Zn								2679.2	2646.2	2603.2
	g NaCN								0.6162	0.57%	0.5206
	g CaO								6.0268	0.0252	0.0246
	•								4EUG	A-ATT	*-4640
Residue	ug Au	158.6	149.0	156.2	599.6	145.4	160.0	161.4	179 4	166 4	147 3
	-3	200.0		1-0.5	J.7.0	47,7	100.4	7.402	172.4	160.4	167.7
Calculated Head	ug Au	740.48	659.22	657.53	1113.33	65.25	720,34	(T) er	TRO 49	387 EP	(01 *
Sample leached	g nu	861.1	838.1	844.9	852.4			672.62	708.62	703.55	693.00
	-	WI.I	000.1	011 .7	9.36.9	843.4	859.8	847.6	877.1	843. 7	831.8

COMPOSITE P 0.8															
SUMMARY OF ALL TESTS															
	Matural pH Units	of grou	nd pulp												fotal or
Grind P80	AUT (2)	23	53	53	53	75	75	75	106	106	106	150	150	150	Average
Actual grind passing nomin	ated um (%)	74.7	77.8	78.8	78.3	75.7	74.4	75.7	77.5	76.0	76.2	68.0	66.1	64.5	
Number of tests conducted		4	3	4	3	3	4	3	3	4	3	3	4	3	44
Number of tests excluded for		0								1			1		2
Leach times	hours	24	18	24	32	10	24	32	18	24	32	18	24	32	
Terminal liquor	pH % NaCH	11.0 0.048	11.3 0.057	11.1 0.050	11.3 0.047	11.2 0.055	11.1 0.053	11.0 0.047	11.2 0.056	11.1 0.052	10.9 0.045	11.0 0.056	10.9 0.050	10.6	,
	1 CaO	0.005	0.004	0.005	0.005	0.004	0.004	0.003	0.004	6.003	0.032	0.004	0.004	0.047	
Consumptions	HaCH kg/t	0.34	0.22	0.29	0.30	0.26	0.25	0.31	0.24	0.26	0.34	0.24	0.29	0.32	
	CaO kg/t	0.91	0.93	0.92	1.21	0.91	0.93	0.92	0.88	0.90	0.89	0.97	0.94	0.97	
					(1)										
Averages															
Assay Head (8 splits)	ppis Au	0.74													0.74
Ground Head		0.72	0.84	0.78	0.78	0.80	0.77	0.78	0.73	0.75	0.74	0.78	0.76	0.78	0.77
Carculated Head		0.83	0.87	0.83	0.83	0.84	0.83	0.84	0.81	0.81	0.82	0.86	0.80	0.84	0.83
Liquor extraction (Au)															
at 3 hours	Au g/t	0.64	0.68	0.62	0.63	0.61	0.59	0.60	0.56	0.57	0.57	0.49	0.47	0.46	
at 6 hours	Au g/t	0.67	0.72	0.66	0.65	0.61	0.62	0.63	0.60	0.61	0.59	0.53	0.51	0.53	
at 12 hours	Au g/t	0.68	0.73	0.69	0.69	0.63	0.64	0.65	0.62	0.61	0.61	0.57	0.54	0.55	
at 18 hours	Au g/t	0.69	0.72	0.70	0.70	0.64	0.64	0.65	0.63	0.64	0.61	0.57	0.54	0.56	
at 24 hours	Au g/t	0.68		0.69	0.70		0.65	0.65		0.63	0.63		0.55	0.56	
at 32 hours	Au g/t				0.70			0.66			0.62			0.58	
Of Calculated Head															
at 3 hours	Au 1	17.6	78.1	74.8	75.7	72.5	71.4	71.5	69.8	79.6	69.5	56.9	58.5	54.7	
at 6 hours	Au 1	80.3	82.9	79.5	78.1	72.9	74.6	74.8	74.4	74.5	71.6	61.6	63.3	62.2	
at 12 hours	AU \$	81.6	84.3	82.5	83.3	75.1	76.6	76.4	77.2	75.4	74.3	66.4	67.1	65.1	
at 18 hours	AU &	83.1	83.9	83.6	84.4	75.8	76.4	76.4	77.4	78.1	74.9	66.3	67.2	66.0	
at 32 hours	Au % Au &	82.4		82.4	84.8 84.1		77.7	77.0 77.8		77.5	76.7 76.2		67.9	66.4 68.2	
											70.2			90.2	
Total residue	pps Au	0.15	0.15	0.15	0.13	0.21	0.19	0.19	0.18	0.18	0.20	0.29	0.26	0.27	
Residue fraction grade															
+ 150um	ppm Au								0.20	0.19	0.25	0.32	6.31	0.33	
† 106us † 75um	ppe Au		A 50						0.25	0.25	0.26	0.38	0.38	0.37	
+ 53un	ppa Au ppa Au	0.23	0.22 0.21	0.22 C.21	0.21 0.20	0.26 0.26	0.23 0.24	0.24 0.25	0.26 0.25	0.26 0.24	0.26 0.26	0.34 0.30	0.33 9.28	0.33 0.28	
7 38us	ppe Au	0.20	0.17	0.18	0.17	0.23	0.22	0.22	0.23	0.21	0.22	0.30	0.28	0.23	
- 38um	ppe Au	0.12	0.12	0.12	0.10	0.17	0.15	0.15	0.11	0.11	0.12	0.22	0.12	0.15	
Danidus Essekias diskla															
Residue fraction dist'n + 150um	Au 3								6.9	7.9	8.9	35.1	41.1	42.9	
106um	Au 1								21.4	22.7	22.1	18.4	19.3	17.1	
75un	Au \$		11.2	9.9	10.8	30.4	31.5	30.7	23.0	23.0	21.9	11.6	11.9	11.6	
53um	Au 1	18.0	20.6	20.0	22.3	15.9	14.9	18.1	14.1	13.4	13.9	7.3	7.6	7.3	
70	AU \$	22.3	15.3	16.5	17.8	8.9	8.4	9.3	9.1	8.9	8.4	4.3	5.6	4.7	
38m	Au t	59.7	53.0	53.7	49.0	44.8	45.2	41.9	25.5	24.2	24.9	23.3	14.6	16.3	
iquor extraction (Cu)															
at 3 hours	Cu g/t	40	32	31	33	31	31	33	31	32	29	29	28	26	
at 6 hours	Cu g/t	51	38	37	40	36	38	39	37	38	36	33	33	31	
at 12 hours at 18 hours	Cug/t Cug/t	65 75	47 53	46 52	51 58	47 53	46 55	48 55	46 53	46 54	45 51	40 46	49	37	
at 24 hours	Cug/t	80	33	56	30 65	33	33 60	33 60	33	34 59	51 55	70	45 49	42 45	
at 32 hours	Cug/t	-			70			63		2,	59		47	S1	
iquor extraction (In)															
at 3 hours	In g/t	2.8	1.8	1.8	1.8	1.9	1.6	1.8	1.6	1.8	1.5	2.1	1.5	1.6	
at 6 hours	in g/t	2.3	2.2	2.2	2.3	2.4	2.2	2.1	2.1	2.3	2.0	3.6	2.0	2.0	
at 12 hours	In g/t	3.9	2.6	2.6	2.7	4.8	2.7	2.6	2.5	3.0	2.6	2.5	2.5	2.4	
at 18 hours at 24 hours	In g/t In g/t	4.1 . 4.7	3.7	2.9 3.2	3.0	3.9	3.1 3.7	3.0 3.2	3.2	3.3 3.7	2.9 3.2	4.2	2.9 5.0	2.6 3.2	
	an ort			3.7	3.2		3 1	5.7		5.6	4.7		• 8	. 7	

⁽¹⁾ one test had double CaD addition in error.

8MIS750 5-Dec
BILLITON MT 1900 LOM GRADE PRIMARY ORE BMT PO.8
COMPARISON OF LIGHUM EXTRACTIONS.
All extractions are expressed as g Au/t.

			Grind	PB0	150				Grind	P80							75				Crind		53		dwn		Crind	P80	38		
each Time	-	3	6	12	18	24	37	3	6	12													18	24	32	3	6	12	18	24	•
lit 1					0.61														*****				*****	.4+***							-
2		A 40	A 51	A 55	0.56	A EE																									
							0.50																								
5																															
6 :										0.68 0.58		0.60																			
8										0.56			0.60																		
9														0.60	0.58	0.60	0.61														
10 11														0.61	0.65	0.66	0.66	0.67													
12																	0.66														
13																						0.79									
14 : 15 :																						V.68									
16																										0.66	0.69	0.70	0.70	0.73	
1																				0.65	0.67	0.70	0.68								
3	-																			0.63	0.65	0.68	0.68	0.67							
4																				9.61	6.64	0.69	0.71	0.70	0.71						
5		0.48	0.50	0.58	0.55																										
7		0.48	0.53	0.55	0.56	0.56																						_			
		0.42	0.53	0.55	0.54	0.56	0.56																								
9 : 10 :	_							0.55	0.58	0.60	9.61																				
11	-							0.60	0.62	0.63	0.64	0.64																			
12								0.61	0.61	0.62	0.61	0.62	0.64													0 48	A 47	0.67	A 40	6 47	
13 14														0.61	0.64	0.65	0.66									V.03	V.0/	V.0/	V.07	V.01	
15														0.61	0.64	0.65	0.66														
15														0.60	0.62	0.64	0.64	0.64	0.64												
1 2																															
3																	0.62	0.63													
41														0.61	0.62	0.64	0.64														
5																										0.63	0.64	0.66	9.68	0.66	
7	C																					0.71									
8		A 4E		A 52	0.51	A 57														9.64	Ų. PU	0.71	0.74	V.12							
10		V.43	V.40	V. 32	V.J1	V.J2																									
		0.47	0.52	0.55	0.58	0.56	0.58																								
12 13	-							0.57	0.62	0.63	0.66	0.65																			
14										0.63			0.63																		
15																															
16 ·																										0.66	0.67	0.68	0.69	0.68	
2																															
3	-									0.58 0.60																					
4:								V.54	V.J0	V.00	4.37			0.60	0.62	0.63	0.64	0.63	0.64												
6														0.58	0.57	0.61	0.61	0.62													
7																															
,																				0.61	9.64	9.69	0.69	0.69							
10																															
11 12																				0.66	0.67	6.71	0.71	0.74	0.70						
13																															
		0.48	0.53	0.55	0.56																										
15 16		0.48	0.54	0.57	0.56	0.55																									
		A 47	A 52			A 55	6.57	A 57	A 4A	A 41	0 42	n 67	6 62	0 40	8 42	8 44	0 44	465	0.66	0.44	0.44	9.70	0.71	0.69	0.70	0.65	0.67	0.4	0.69	4.69	-
rage (gus		0.51	0.55	0.58	0.61	0.56	0.58	0.61	0.65	0.68	9.68	0.65	9.64	0.61	0.65	9.66	0.66	9.46	0.69	8.75	0.74	6.71	0.80	0.74	0.71	6.66	9.69	0.70	0.70	9.73	
ieus		g.42	V.48	V.32	v.31	V.32	V,36	v.32	V.30	V.36	T.37	v.60	v.50	7.31	V,.30	7.00	4/47	V.14E		7.01	4.07			714			-107		-,		
rages our		0.47						0.57						0.60						0.54						0.65					
iour Van			0.52	A 24					0.60	0.61					0.62	0.64					1.6	, m	1				0.67	9.68			
Hour Hour				0.56	0.56					4.01	0.62					v.91	9.64					4.7	9.71						4.69		
Hour						0.55						0.62						0.65						0.69						1.67	
hour							0.57						0.62						1.66	٠.					9.70	1					

BMIS751 S-Dec
BILLITON HT 1000 LOW CTOE PRIMARY ONE BMT PO.3
COMPARISON OF COPPER EXTRACTIONS.
All extractions are expressed as g Cu/t.

				150	******			Grind (Grind		75		••••		Crind		53 				Prind	P80 	38	
h Tise	3	6	12	18	24	32	3	6	12	18	24	32	3	6	12	18	24	32	3	6	12	16	24	32	3	6	12	18	24
t 14		33	40	46																									
3 A		34 29		46 39	50 43																								
5 A 6 A							30	36	47	52																			
7 A 8 A							31	37 34	46	53	59 52	57																	
9 A 10 A													31	37	46	53													
11 A 12 A													31 34		47 49		61 61	64											
13 A 14 A																			31 31	37 37	46 46	53 51	55						
15 A 16 A																			33	39	46		59	64	39	50	63	75	80
1 B 2 B																			32	39	48	53			-	-		-	
3 B 4 B																			30 33	36 40	44 54	51 64	56 71	79					
5 B 6 B	30	34	42	46																-			-						
7 8 8 8	28	34 33	41 38	46 44	51 48	54																			-				
9 8 10 8							33	39	48	54																			
11 8 12 8							33 28	39 36	49 44	56 51	61 56	59																	
13 B 14 B													31	36	46	51									40	51	67	75	Ðį
15 B 16 B													30 31	39 37	49	56	60 57	61											
1 C 2 C																	•												
3 C 4 C													31 30	37 36	48 47	54 55	57							, 1					
5 C 6 C													-											•	40	Si	67	*	86
7 C 8 C															٠				31 31	39 37	46 44	52 52	56		•		_		-
9 C 10 C	27	31	38	43	47															•	-	-							
11 C 12 C	26	32	37	43	46	52																							
13 C 14 C							31 31	39 37	48 48		58 56	41																	
15 C 16 C								•		_	-	-																	
10																									40	Si	65	74	8i
3 D 4 D								37 37			58																		
5 Đ							71	u,	~				33 33	39 40	49 49			64											
7 D 8 D													30	~	41		of.												
9 D 10 O																			33	39	46	54	59						
11 D 12 D																			34		Si	57	"	48					
13 D 14 D	28	33	40	45															-	*		si.	-						
15 D 16 D	27	31	38	43	46				•																				
 ge	 27	 32	 39		47	 51	31	37	47	53	57	 59	 32	38	48	55	60	63	32	•		54	4	70		 51	"	75	81
	30 24	34 29	42 35	46 39	51 43	54 48	33 28	39 34	49 43	56 49	61 52	61 57	34 30	40 34	49	56 51	61 57	4	34	@ %	54 44	SI SI	71 55	79 64	## 37	51 51	67 63	75 74	ii ii
ges	A**						71						-						,,		٠.								
† †	27	32					31	37	47				Ø	35	_				32	39	_				#	51			
ur Ur			39	44	_				47	53	_				#	55					#	54					4	75	
UF UF					47	51					57	59					60	63					60	70					2

BMT5752 5-0ec SILLITON HT TODD LOW GRADE PRIMARY GRE BHT PO.8 COMPARISON OF CYCHIEF CONSIDERIORS All consumptions are expressed as kg NaCH/t (MaCM determined using silver mitrate with KI indicator. Grind P80 Grind PBO 38 Grind P80 Grind P80 75 Grind P80 150 106 32 32 3 6 3 6 12 18 24 32 3 6 12 18 24 32 3 6 12 18 24 32 3 6 12 18 24 Leach Time 1 A 0.09 0.14 0.20 0.22 Split 3 A 0.12 0.17 0.22 0.25 0.30 4 A 0.12 0.17 0.22 0.21 0.25 0.30 0.11 0.16 0.18 0.24 6 A 0.12 0.13 0.20 0.23 0.25 0.10 0.15 0.20 0.25 0.26 0.32 7 A 8 A 0.09 0.09 0.19 6.24 9 A 0.08 0.17 0.19 0.26 0.27 11 A 0.18 0.22 0.21 0.28 0.26 0.32 12 A 0.10 0.13 0.20 0.21 13 A 0.19 0.25 0.29 0.34 0.35 14 A 15 A 0.09 0.10 0.20 0.21 0.27 0.29 0.14 0.18 0.23 0.31 0.32 0.09 0.12 0.19 0.22 18 0.11 0.09 0.19 0.22 0.29 0.09 0.13 0.22 0.27 0.29 0.34 4 8 5 8 0.11 0.14 0.21 0.25 7 B 0.12 0.15 0.20 0.24 0.27 B B 0.12 0.17 0.22 0.26 0.27 0.31 0.08 0.14 0.19 0.24 16 R 0.09 0.13 0.18 0.25 0.27 0.09 0.13 0.20 0.26 0.25 0.31 11 B 12 8 0.14 0.18 0.23 0.32 0.34 13 8 14 B 0.11 0.19 0.24 9.28 0.08 0.14 0.20 0.22 0.22 15 B 16 B 0.08 0.15 0.19 0.22 0.25 0.29 2 C 0.11 0.19 0.19 0.24 0.25 0.13 0.21 0.24 0.26 3 C 5 C 6 C 0.13 0.19 0.24 6.30 0.31 0.10 0.11 0.18 0.23 0.11 0.10 0.18 0.23 0.27 8 C 9 C 0.11 0.10 0.23 0.29 0.30 11 C 0.14 0.18 0.23 0.24 0.27 0.35 12 C 13 C 0.10 0.12 0.19 0.25 0.26 0.10 0.20 0.22 0.32 0.33 0.37 14 C 15 C 6 15 0 19 0 24 6 32 0 36 1 D 20 0.11 0.14 0.19 0.25 0.26 0.12 0.15 0.18 0.23 40 0.13 0.21 0.20 0.24 0.23 0.31 0.12 0.27 0.23 0.26 0.26 5 D 7 D 8 D 0.09 0.08 0.18 0.22 0.27 10 D 11 D 0.09 0.12 0.25 0.27 0.25 0.28 13 D 14 0 0.12 0.14 0.22 0.25 16 D 0.12 0.16 0.22 0.23 0.29 0.12 0.15 0.22 0.24 0.28 0.32 0.10 0.15 0.19 0.25 0.27 0.33 0.11 0.18 0.21 0.25 0.25 0.31 0.11 0.12 0.21 0.24 0.28 0.30 0.14 0.19 0.24 0.31 0.35 0.14 0.19 0.24 0.31 0.35 0.16 0.35 0.17 0.20 0.22 0.32 0.33 0.37 0.18 0.27 0.24 0.28 0.27 0.32 0.19 0.25 0.29 0.34 0.35 0.34 0.15 0.19 0.24 0.32 0.36 0.09 0.10 0.20 0.21 0.25 0.20 0.30 0.12 0.18 0.23 0.35 0.31 0.08 0.19 0.24 0.28 0.27 0.24 0.28 0.27 0.28 0.19 0.25 0.29 0.40 0.15 0.19 0.24 0.35 0.36 0.39 0.31 Average Maximum Hinima 9.11 9.12 9.21 9.24 9.28 9.39 0.11 0.18 0.21 0.25 0.25 0.14 0.19 0.24 0.31 0.12 0.15 0.22 0.24 0.28 0.10 0.15 0.19 0.25 0.27 Averages 3 Hour 6 Hour 12 Hour 18 Hour 32 hour

BILLITON MT TODO PRIMARY L	.ON GRADE (BMT P	0.8) BOTTL	E ROLL C	YANIDE LEA	ACH OF PUL	VERISED H	IOLE COMPO	OSITES.		
	-		!	(1) Weight	ted averag	e of hole	es making	composite	BMT PO.8	
Hole Composite	Units	80057	BD069	8D001	80076	BD035	BD009	8D027	80065	
Vessel	g	123.0	131.5	132.3	135.1	123.6	124.2	131.2	135.9	
Dry pulverised sample	g	250.0	250.0	250.0	250.0	250.0	250.0	250.0	250.0	
Distilled water added	g	375	375	375	375	375	375	375	375	
Pulp solids	, i	40	40	40	40	40	40	40	40	
Natural pH		8.3	8.6	8.6	8.4	8.0	8.3	8.3	8.3	
CaD added	g	0.188	0.188	0.188	0.188	0.188	0.188	0.188	0.188	
pH check at 3 hours	•	8.9	9.6	9.4	9.2	8.7	9.0	9.0	9.0	
CaO added	g	0.075	0.053	0.060	0.075	0.075	0.075	0.075	0.075	
pH check at 5 hours	-	9.7	10.1	10.0	10.1	9.6	10.2	10.0	10.1	
CaO added	g	0.113	0.075	0.075	0.075	0.113	0.075	0.075	0.075	
NaCN added	g	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	
Leach time	hrs	12	12	12	12	12	12	12	12	
Gross off rolls	9	741.7	755.7	756.3	756.6	744.0	744.4	754.7	756.8	
Pulp pH		9.8	10.0	9.8	10.0	9.8	9.9	9.8	9.8	
sneak sample taken										
Pulps settled poorly yield					ant added	to sampl	es to obt	ain clear	filtrates.	
Surplus filtrates and und					0 ATE	0.000	A AAA	0.075	A A7r	
CaO added to sample	g 1	0.075	0.075	0.075	0.075	0.000	0.000	0.0/5	0.075	
8035 & 809 tested for CaO (•	Manad								
8027, 8065, 8057, 8069, 80 8057, 8069, 801 & 8076 only										
8D35, 8D9, 8D27, 8D65 % Nac		Я								
0003, 007, 0027, 0003 9 nat	* NaCN	0.025	0.039	0.031	0.037	0.025	0.025	0.025	0.025	
	\$ CaO	0.002	0.002	0.002	0.002	0.023	0.002	0.023	0.002	
Gross after sample	g	719.8	728.6	731.0	736.6	722.5	723.0	734.1	737.5	
CaO added to vessel	g	0.188	0.188	0.188	0.188	0.263	0.263	0.188	0.188	
NaCN added	g	0.16	0.11	0.14	0.12	0.16	0.16	0.16	0.16	
Leach time	hrs	12	12	12	12	12	12	12	12	
Gross off rolls	g	719.2	727.2	730.9	735.5	718.9	722.0	733.6	737.0	
Sample	3	BD57	BD69	8D1	8076	BD35	809	BD27	B065	
,	Hq	10.8	10.7	10.8	11.0	10.7	10.6	10.7	10.9	
liquor samples clear	ppm Au	0.36	0.45	0.65	0.46	0.60	0.49	0.96	0.50	
at higher pH)	ppm Cu	122	37	56	81	46	63	190	91	
	% NaCN	0.055	0.057	0.038	0.050	0.053	0.051	0.026	0.049	
	PpH	10.2	nd	nd	10.5	9.9	nd	10.1	10.3	
	\$ Ca0	0.005	0.004	0.004	0.005	0.004	0.004	0.004	0.006	
Residue recovered	g	247.8	247.7	246.8	247.4	246.8	247.7	246.4	248.4	
(not assayed)										
Residue colour		1/grey	1/grey	l/grey	d/grey	l/grey	1/grey	d/grey	d/grey	
arade of sneak sample allow	ed at 50% of as:	sayed liqo	ur grade							
	A/A	A E1	A /E	0.04	0.44	A 05	A 7A	1 70	A 70	
extraction at 24 hours	Au g/t	0.51 174	0.65 53	0.94	0.66	0.85	0.70 an	1.39	0.72	141
(of Assay Head)	Cu g/t Cu %	76	30 30	81 32	117 23	66 21	90 26	276 25	131 Average (1) 29 Average (1)	101
(UI HSSay Reau)	ou 1	70	JV	32	.23	21	20	23	27 HVClaye (1)	34
onsumptions at 24 hours	CaO kg/t	2.48	2.25	2.28	2.33	2.49	2.34	2.34	2.31 Average (1)	2.36
,	MaCM kg/t	0.94	0.59	1.08	0.83	0.97	0.99	1.33	1.01 Average (1)	0.94
NaCN consumed/g Cu dissol	ved ratio	5.37	12.97	13.33	7.10	14.75	10.95	4.84	7.71 Average (1)	10.5
ne-metre intersections in I	Hole Composite	10	9	11	7	10	11		9 Total (1)	67
composites taken to BMT PO.	8	yes	yes	yes	yes	yes	yes	no	yes	٠.
lead Assay (ave. of duplicat		0.58	0.73	1.04	0.72	0.92	0.78	1.61	0.76	
(single assay)	ppm Cu	230	175	250	510	305	345	1120	460 Average (1)	316

BMT5753	Sheet 1	5-Dec-89			*********	
BILLITON NT TODD LOW GRADE	PRINARY O				COMPOSITE B	er P
Nominated Grind P80 = 75um SUMMARY		Split 11D MS Rods	ground with mild SS Rods	steel rods.		
Test No. (% solids)	Units	111				
Nominal Grind 80% passing	UM	75				
Total leach time	hours	24	24			
Extraction Au						
at 3 hours	g/t	0.00	0.00			
at 6 hours	g/t	0.00	0.00			
at 12 hours	g/t	0.00	0.00			
at 18 hours	g/t	0.00	0.00 0.00			
at 24 hours	g/t	0.00	0.00			
at 3 hours	X	£DIV/0!	10/VIG2			
at 5 hours	X	£DIV/0!	£DIV/0!			
at 12 hours	X	!0\VID\$:0\vid			
at 18 hours	X	!OVID	£DIV/0!			
at 24 hours	X	£DIV/0!	£DIV/0!			
Calculated Head	ppm Au	0.00	0.00			
Ground Head Assay 1	ppm Au					
Ground Head Assay 2	ppu Au					
Average Ground Head Assay	ppo Au					
Calculated residue grade	ppu Au	£DIV/0!	£DIV/0!			
Extraction Cu						
at 3 hours	g/t	0	0			
at 6 hours	g/t	0	0			
at 12 hours	g/t	0	0			
at 18 hours	g/t	0	0			
at 24 hours	g/t	0	0			
Assay Head	ppm Cu	298	(ave. of two hear	d splite)		
Extraction In						
at 3 hours	g/t	0.0	0.0			
at 6 hours	g/t	0.0	0.0			
at 12 hours	g/t	0.0	0.0			
at 18 hours	g/t	0.0	0.0			
at 24 hours	g/t	0.0	0.0			
Assay Head	ppm Zn	200	(ave. of two hear	d mplitm)		
NaCN consumption						
at 3 hours	kg/t	0.33	0.08			
at 6 hours	kg/t	0.39	0.17			
at 12 hours	kg/t	0.49	0.19			
at 18 hours	kg/t	0.52	0.26			
at 24 hours	kg/t	0.57	0.27			
CaO consumption						
at 3 hours	kg/t	1.01	0.89			
at 6 hours	kg/t	1.02	9.69			
at 12 hours	kg/t	1.07				
at 18 hours	kg/t	1.08	0.94			
at 24 hours	kg/t	1.14	0.94			

BNT5753 BILLITON MT TODD LON GRADE Nominated Grind P80 = 75um		Split 110 g	round with	LEACH AT 40% mild steel (•	COMPOSITE	BRT P 0.8 ;
Rod Charge Material		MS Rods	SS Rods				
Test No.	Units	110	· 11A				
Grind 80% passing	UM	75	75				
Total leach time	hours	24	24				;

Vessel	g	408.6	405.7				
Sample mass	g	1013.4	852.8				
Sitewater added	g	1520	1294				
Natural pH	_		A 04				
CaO added	g	1.07	0.86				
NaCN added	g	1.22	1.01				
Leach Time Gross off rolls	hrs	3 2941.4	3 2559.2				
	g dea c		2337.2 21				
Pulp temperature Liquor sample A (3 hours)	deg C	28 11.3	11.4				
FIGURE 200612)	pH ppm Au	11.5	11.7				
	ppa Cu						
	ppa Zn						
	NaCH	0. 3	c.073				
	% CaO	0.003	0.097				
Gross after sample	g	2886.7	2508.2				
CaO added	g	0.00	0.00				
NaCN added	g	0.00	0.00				
Leach time	hrs	3.50	3				
Gross off rolls	g	2940.9	2558.4				
Pulp temperature	deg C	29	23				
Liquor sample B (6 hours)	oligi C	11.3	11.3				
tránh náhto a (a non a)	ppm Au	22.0	24.0				
	ppm Cu						
	ppm Zn						
	% NaCN	0.052	0.064				
	% CaO	0.002	0.007				
Gross after sample	g	2885.5	2506.9		-		
CaO added	9	0.08	0.00				
NaCN added	g	0.00	0.00				
Leach time	hrs	6	6				
Gross off rolls	g	2939.3	2556.9				
Pulp temperature	deg C	26.0	22.0				
Liquor sample C (12 hours)	pH	11.5	11.3				
	ppm Au						
	ppe Cu						
	ppm Zn						
	% NaCH	0.044	0.060				
	% CaO	0.004	0.005				
Gross after sample	g	2881.1	2501.4				
CaO added	g	0.00	0.00				
NaCN-added	g	0.09	0.60				
Leach time	hrs	6	6				
Gross off rolls	9	2938.1	2555.8				
Pulp temperature	deg C	24	20				
Liquor sample D (18 hours)	pH	11.2	11.2				
	ppe Au						
	ppa Cu						
	ppm Zn						
	% NaCH	0.046	0.053				
	% CaO	0.003	0.003				
Gross after sample	9	2881.3	2498.7				
CaG added	g	0.06	0.00				
NaCN added	g	0.06	0.00				
Leach time	hrs	6	6				
Gross off rolls	9	2937.3	2557.9				
Pulp temperature	deg C	22	19				
Liquor sample E (24 hours)	pH com &s	11.2	11.1				
	ppm Au		•				
	ppe Cu Spe Zn						
	R NaCH	0.045	0.050			### 1 - 1.	7.12.1
	% CaG	0.003	0.003				
	* ***	4.400	4.460			27	

BMT P0.8 P80 = 38um Sheets 1-5

Actual grind passing nominated um (%) 75.3 72.7 67.8 71.0

0.91

0.90

0.92

0.91

0.92

0.87

0.86

0.87

0.88

kg/t

kg/t

kg/t

kg/t

kg/t

CaO consumption at 3 hours

at 6 hours

at 12 hours

at 18 hours

at 24 hours

Note: The 'actual grind passing nominated um' above are from the sizing of the residues. The coarser than nominated grinds were due to mill drive slippage. Refer to report under 'Discussion'.

0.88

0.87

0.90

0.91

0.92

0.89

0.89

0.90

0.89

0.91

BILLITON MT TODD LOW GRADE Hominated Grind P80 = 38um					
tests conducted (date)		8/11	8/11	8/11	8/11
iest No.	Units	16A	130		
rind 80% passing otal leach time	ua hours	38 24	38 24	38 24	38 24
	110413				
essel	9	408.3	405.2	407.2	408.0
mple mass itewater added	9 9	857.9 1287	883.0 1325	860.9 1291	873.2 1310
tura) pH	•	2207		•	
0 added	g	0.87	0.87	0.86	0.87
aCN added each Time	g hrs	1.03 3	1.06	1.04 3	1.05
ross off rolls	g	2550.7	2611.5	2557.3	2589.3
alp temperature	deg C	26	26	26	26
quor sample A (3 hours)	pri ppa Au	11.3 0.44	11.3 0.42	11.3 0.42	11.3 0.44
	ope Cu	26	27	27	27
	ppm Zn	1.2	1.0	1.1	4.2
	1 NaCH 1 CaO	0.071 0.007	0.071 0.008	0.072 0.008	0.070 0.007
oss after sample	9	2496.1	2556.9	2503.2	2535.1
added	ģ	0.00	0.00	0.00	0.00
CN added ach time	g hrs	0.00 3	0.00 3	0.00 3	0.00 3
oss off rolls	; n S	2549.8	2610.2	2556.1	2588.1
p temperature	deg C	30	30	30	. 30
quor sample B (6 hours)	při ppm Au	11.1 0.44	11.1 0.43	11.1 0.41	11.1 0.43
	ppe Cu	32	33	33	33
	ppa Zn	1.4	1.3	1.4	1.7
	% NaCH % Call	0.065 0.007	0.065 0.008	0.065 0.008	0.065 0.007
oss after sample	g	2495.0	2555.9	2502.0	2534.3
0 added	g	0.00	0.00	0.00	0.00
CM added ach time	g hrs	0.00 6	0.00	0.00 6	0.00 6
oss off rolls	9	2548.3	2608.6	2554.7	2586.9
lp temperature	deg C	28.0	28.0	28.0	28.0
quor sample C (12 hours)		11.1 0.43	11.1 0.41	11.1 0.41	11.0 0.42
	ppa Cu	0.43 40	0.41 42	0.41 42	0.42 41
	ppm Zn	1.8	1.7	4.2	2.1
	Nack	0.059	0.059	0.059	9.059
oss after sample	t CaO	0.006 2488.4	0.007 2554.1	0.006 2495.6	0.006 2530.1
0 added	g	0.00	0.00	0.00	0.00
CN added	g	0.00	0.00	0.00	0.00
ach time oss off rolls	hrs g	6 2547.2	6 2607.2	6 2553.7	6 2585.8
ip temperature	deg C	24	24	24	24
quor sample 0 (10 hours)		11.1	11.1	11.1	11.0
	ppe Au ppe Cu	0.41 46	0.41 46	0.40 46	0.41 45
	ppm Zn	2.1	3.6	2.0	2.3
	% NaCN	0.051	0.051	0.052	0.051
ss after sample	t CaO	0.006 2488.9	0.006 2549.1	0.005 2493.0	0.006 2520.2
O added	g g	0.00	0.00	0.00	6.00
X added	9	0.00	0.00	0.00	0.00
ch time ss off rolls	hrs a	6 2547.1	6 26%.4	6 2553.2	6 2527.4
ss off rolls p temperature	g deg €	2347.1	2650.4 23	2333.2	2327.4
or sample E (24 hours)	pH	11.0	11.0	11.1	11.0
	ppa Au	0.41	0.38	0.37	0.4 50
	ppm ču ppm žn	47 2,3	48 2.1	47 2.1	50 4.9
	1 HaCH	0.048	0.047	0.049	0.048
	% CaO	0.005	0.005	0.004	0.005
ss after sample added	g				
N added	9				
ch time	hrs				
ss off rolls p temperature	g deg C				
p comperature nor sample F (32 hours)	-				
	ppe Au				
	ppe Cu				
	ppm Zn % NaCN				
	% CaG				
ole wass account	la.	SEA .	6 76 *	DF4 *	
idue recovered (screened and head to assay	jg g	850.3 139.4	870.3 147.5	856.5 142.4	862.4 134.8
culated head to grind	9	989.7	1017.8	996.9	997.2
tual head to grind	g	997.3	1030.5	1003.3	1008.0

Particle size	g	Mass % (Retained	Passing	ppm Au	ppm Au	ppm Au		
Test No.		Nom. P80um						
+ 150						-		
- 150 + 106								
- 106 + 75		0.0	100.0					
- 75 + 53	81.0	9.5	90.5	0.27	0.27	0.27	21.87	16.9
- 53 + 38	129.2	15.2	75.3	0.20	0.22	0.21	27.13	20.5
- 38		15.2 75.3					83.21	
Calculated		100.0					132.2	
Test No.	138	Non. P80um	38	Leach hrs	24	_		
+ 150								•
- 150 + 106								
- 106 + 75		0.0	100.0					
- 75 + 53		11.1						
- 53 + 38	141.6	16.3	12.7	0.19	0.19	0.19	26.90	22.1
- 38	632.4	72.7		0.11	0.12	0.12	72.73	59.7
Calculated	870.3	100.0				0.14	121.8	100.0
Test No.		Non. P80um	38	Leach hrs	24			
+ 150								
- 150 + 106								
- 106 t 75		0.0	100.0					
- 75 + 53	127.0	14.8 17.3	85.2	0.20	0.20	0.20	25.40	21.6
- 53 + 38			67.8					
- 38	581.0	67.8				0.11		
Calculated	856.5	100.0				0.14	117.5	100.0
Test No.	10	Non. P80um	38	Leach hrs	24	_		
+ 150								
- 150 + 106						•		
- 106 + 75			100.0					
- 75 + 53	97.5	11.3	88.7	0.21	0.20	0.21	19.99	15.5
- 53 + 38	152.3	17.7	71.0	0.19	0.19	0.19	28.94	22.5
- 39		17.7 71.0		0.13	0.13	0.13		
Calculated		100.0					128.6	

BMT5732 Sheet 4 26-Mov-89

BILLITON MT TODD LOW GRADE PRIMARY ORE BOTTLE ROLL CYANIDE LEACH AT 40% SOLIDS; COMPOSITE BMT P 0.8 ;

Nominated Grind P80 = 38um

Summary of Residue Size Fraction Assays

Sample Identification	Grind P80 um	Head ppm Au	† 150 ppm Au	f 106 ppm Au	+ 75 ppm Au	+ 53 ppm Au	+ 38 ppm Au	- 38 ppn Au

4 hour residues								
16A	38	0.16				0.27	0.21	0.13
138	38	0.14				0.23	0.19	0.12
6C	38	0.14				0.20	0.19	0.11
10	38	0.15				0.21	0.19	0.13
Average		0.15				0.23	0.20	0.12

Summary of Residue Size Fraction Gold Distribution

Sample Identification	Grind P80	Head ppm Au	+ 150	+ 106	+ 75	+ 53	+ 38 •	- 38
24 hour residues								
16A	38	0.16				16.5	20.5	62.9
138	38	0.14				18.2	22.1	59.7
&C	38	0.14				21.6	24.0	54.4
10	38	0.15				15.5	22.5	61.9

Average		0.15				18.0	22.3	59.7

Actual grind passing nominated um (%)

71.7

75.3

! Refer to report 'Discussion'.

BMT P0.8 P80 = 53um Sheets 1-6

BILLITON NT TODD LON GRADE Hominated Grind PBO = 53um	PRIMARY OR	E BOTTLE ROLI	. CYANIDE	LEACH AT 40	i SOLIDS;	COMPOSITE	MT P 0.8	i			
SUMMARY Test Ho. (% solids)	Units	13A	18	70	148	38	ac	90	15A	48	120
Hominal Grind 80% passing	UM	53	53	53	53	53	53	53	53	53	53
Total leach time	hours	18	18	18	24	24	24	24	32	32	32
Extraction Au	4.								•		
at 3 hours	g/t	0.75	0.65	0.64	0.60	0.63	0.64	0.61	0.61	0.61	0.66
at 6 hours	g/t	0.76	0.67	0.73	0.65	0.65	0.70	0.64	0.64	0.64	0.67
at 12 hours	g/t	0.79	0.70	0.71	0.66	0.68	0.71	0.69	0.68 0.40	0.69	0.71 0.71
at 18 hours	g/t	0.90	0.68	0.69	0.68 0.66	0.68 0.67	0.74 0.72	0.69 0.69	0.69 0.67	0.7L 0.70	0.71
at 24 hours at 32 hours	g/t g/t				V.00	0.07	V.12	0. 07	0.68	0.71	0.70
at 3 hours	*	79.9	78.5	75.9	74.3	77.4	73.6	73.8	75.7	73.2	78.2
at 6 hours	•	81.4	81.5	85.9	81.0	80.5	79.8	76.7	78.7	76.0	79.5
at 12 hours	1	84.4	84.5	83.8	82.2	83.5	81.0	83.2	83.4	82.4	84.2
at 18 hours	*	84.8	82.4	81.8	83.7	83.2	84.3	B3.1	85.0	84.2	84.1
at 24 hours	1				81.5	82.8	82.5	82.8	82.9	84.0	87.5
at 32 hours	1								83.9	85.0	83.3
Calculated Head	ppm Au	0.94	0.82	0.85	0.81	0.81	0.88	0.83	0.81	0.84	0.84
Ground Head Assay 1	pps Au	0.83	18.0	0.86	0.75	0.74	0.78	1.02	0.75	0.79	0.77
Ground Head Assay 2	ppe Au	0.95	0.81	0.76	0.76	0.71	0.73	0.73	0.78	0.77	0.87
Average Ground Head Assay	ppa Au	0.89	0.81	0.81	0.76	0.73	0.76	0.86	0.77	0.78	- 0.79
Calculated residue grade	ppe Au	0.14	0.15	0.16	0.15	0.14	0.15	0.14	0.13	0.13	0.14
Extraction Ou	-1.	••	***	••	•	76	71	77	33	33	34
at 3 hours	g/t	31 37	32 39	31 39	31 37	30 36	31 37	33 39	39	33 40	34 42
at 6 hours at 12 hours	g/t g/t	31 46	48	37 48	46	44	46	48	48	54	51
at 18 hours	g/t g/t	53	53	52	51	51	52	54	54	64	57
at 24 hours	g/t	~	~	~	55	56	56	59	59	71	66
at 32 hours	g/t								64	79	68
Assay Head	ppm Cu	298 (a	ive. of tw	o head split	s)						
Extraction In											
at 3 hours	g/t	1.8	1.8	1.8	1.6	1.8	1.8	1.8	1.8	1.8	1.9
at 6 hours	g/t	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.6
at 12 hours	g/t	2.7	2.6	2.5	2.5	2.5	2.5	2.7	2.7	2.5	2.9
at 18 hours	g/t	3.1	4.8	3.2	2.8	3.0	3.6	3.0 3.4	3.0	2.8 2.9	3.1 3.4
at 24 hours	g/t				3.i	3.4	3.1	3.4	3.2 3.6	3.3	3.8
at 32 hours	g/t								3.6	3.3	3.0
Assay Head	ppm Zn	200 (4	ive. of tu	o head spliil	is)						
NaCH consumption											
at 3 hours	kg/t	0.10	0.09	0.10	0.19	0.11	0.11	0.09	0.09	0.09	0.09
at 6 hours	kg/t	0.13	0.12	0.11	0.25	0.09	0.10	0.66	0.10	0.13	0.12
at 12 hours	kg/t	0.20	0.19	0.18	0.29	0.19	0.18	0.18	0.20	0.22	0.25
at 18 hours	kg/t	0.21	0.22	0.23	0.34	0.22	0.23	0.22	0.21	0.27	0.27
at 24 hours at 32 hours	kg/t kg/t				0.35	0.29	0.27	9.27	0.27 0.29	0.29 0.34	6.25 6.28
										/11	
CaO consumption	kalt	A 07	V OI	A 0A	9.92	0.92	0.90	0.90	0.90	(1) 1.66	9.87
at 3 hours	kg/t kg/t	0.93 0.93	0.91 0.91	0.90 0.90	9.72 9.91	0.72 0.91	0.90 0.90	0.91	0.70 0.91	1.72	9.87
at 6 hours at 12 hours	kg/t kg/t	0.93 0.94	0.94	0.91	0.93	0.54	0.91	0.72	0.72	1.74	0.88
at 18 hours	kg/t	0.94	0.94	0.92	0.94	0.94	0.72	0.93	0.92	1.75	9.89
at 24 hours	kg/t	**/7	4.77		0.92	0.93	0.92	€.91	0.93	1.73	0.90
at 32 hours	kg/t								0.95	1.78	9.92
Actual grind passing nomina	ated un (1)	78.3	79.0	76.0	78.8	78.8	77.8	79.8	78.3	71.1	79.0
Note: The 'actual grind par	esina nania					residus.	The course	than non	insted eri	ade	
more due to mill drive st	warms warms										

O

DMT5733	Sheet 2	2	16-Nov-89								
BILLITON MT TODD LOW GRADE Nominated Grind PBD = 53um	PRIMARY CRE	BOTTLE ROL	L CYANIDE	LEACH AT (oa solids;	COMPOSITE	MIT # 0.8	1			
tests conducted (date) Test No.	Units	30/10 13A	30/10 18	30/10 7C	30/10 140	30/10 38	30/10 8C	30/10 90	30/10 150	30/i0	30/10 120
Grind 80% passing	un	53	53	53	53	53	53	53	53	53	53
Total leach time	hours	18	18	18	24	24	24	24	32	32	32
Vessel Sample mass	9	408.1 859.7	407.6 865.6	407.8 879.9	408.5 853.0	405.2 865.3	407.2 878.6	406.8 958.7	408.3 864.0	409.1 872.7	407.8 858.6
Sitemater added	9	1290	1298	1320	1280	1298	1318	1296	1296	1309	1288
Hatura) pH CaO added	9	0.88	0.87	0.87	0.86	0.87	0.87	0.86	0.87	1.71	0.84
NaCH added	9	1.04	1.04	1.06	1.03	1.04	1.06	1.63	1.64	1.05	1.63
Leach Time Gross off rolls	hrs g	3 2556.9	3 2574.9	3 2606.3	3 2540.6	3 2567.4	3 2603.3	3 2552.0	3 2567.6	3 2509.6	3 2551.i
Pulp temperature Liquor sample # (3 hours)	deg C pli	18 11.4	18 11.4	18 11.4	18 11.4	18 11.4	18 11.5	18 11.4	18 11.5	18 12.1	16 11.7
rideor seekto a (2 upor 2)	ppm Au	0.50	0.43	0.43	0.40	0.42	0.43	0.41	0.41	0.41	0.44
	ppa ču ppa žn	21 1.2	21 1.2	21 1.2	21 1.1	20 1.2	21 1.2	22 1.2	22 1.2	22 1.2	23 1.5
	1 HaCH	0.074	0.074	0.074	0.068	0.073	0.073	0.074	0.074	0.074	0.074
Gross after sample	t CaO	0.006 2505.2	0.006 2523.9	0.006 2554.9	0.006 2488.9	0.006 2515.6	0,006 2552.0	0,007 2500. 0	0.007 2516.1	0.020 2538.4	0.007 2499. 7
CaO added	9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NaCH added Leach time	g hrs	0.00 3	0.00 3	6.00 3	0.00 3	0.00 3	9.00 3	0.00 3	0.00 3	0.00 3	9.60 3
Gross off rolls Pulo temperature	g dea C	2556.0 19	2573.8 19	2605.5 19	2539.7 19	2566.4 19	2602.2 19	2551.3 19	2566.6 19	2588.6 19	2550.2 19
Liquor sample B (6 hours)	pH	11.4	11.4	11.4	11.4	11.4	11.4	11.4	11.4	12.0	11.5
	ppe Au ppe Cu	0.49 24	0.43 25	0.47 25	0.42 24	0.42 23	0.45 24	0.41 25	0.41 25	6.41 26	0.43 27
	ppm In	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.7
	\$ NaCH \$ CaG	0.069 0.006	0.069 0.006	0.070 0.006	0.061 0.006	0.071 0.006	0.071 0.006	0.072 0.006	0.071 0.006	0.069 0.015	0.069
Gross after sample	9	2504.4	2522.1	2553.9	2488.0	2514.7	2550.7	2499.8	2515.4	2537.2	2498.8
C:IS added NaON added	9 9	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	9.00 9.00	0.00 0.00	0.00 0.00	0.00 6.00
Leach time	hrs	6	6	6	6	6	6	6	-6	6	6
Gross off rolls Pulp temperature	g deg C	2554.4 19	2572.6 19	2604.2 19	2538.5 19	2565.2 19	2600.0 19	2549.9 19	2565.2 19	2587.2 19	2548.1 19
Liquor sample C (12 hours)	pH .	11.3	11.3	11.3	11.3	11.3	11.3	11.3	11.3	12.0	11.4
	ppe Au ppe Cu	0.49 29	0.43 30	0.44 30	0.41 29	0.42 28	9.44 29	0.43 30	0.42 30	0.43 34	0.44 3⊋
	ppm Zn 1 NaCH	1.7 0.062	1.6 0.062	1.6	1.6 0.056	1.6 0.062	1.6 0.063	1.7	1.7	1.6	1.8
	\$ CaO	0.002	0.002	0.005	0.005	0.004	0.005	0.005	0.005	0.013	0.006
Gross after sample CaO added	g g	2496.4 0.00	2516.4 0.00	2546.5 0.00	2480.7 0.00	2506.9 0.00	2540.7 9.00	2491.1 0.00	2507.2 0.00	2525.9 0.00	2490.0 0.00
NaCN added	g	0.00	0.00	0.00	0.00	0.00	0.00	9.00	9.66	0.00	0.00
Leach time Gross off rolls	hrs g	6 2554.3	6 2574.9	6 2602.9	6 2536.9	6 2564.2	6 2598.9	2549.3	6 2564.7	6 2586.4	6 2547.4
Pulp temperature	deg C	17	17	17	17	17	17	17	17	17	17
Liquor sample D (18 hours)	při ppe Au	11.3 0.47	11.3 0.40	11.3 0.41	11.2 0.40	11.3 0.40	11.2 0.44	11.3 0.41	11.3 0.41	12.0 0.42	11.4 0.42
	ppm Cu	32	32	32	31	31	32	33	33	39	35
	ppm Zn t NaCM	1.9 0.058	3.0 0.057	2.0 0.057	1.7 0.050	1.8 0.057	1.8 0.05?	1.8 0.057	1.6 0.058	1.7 0.054	1.9 0.054
O	% CaO	0.005	0.004	0.004	0.004	0.004	0.004	0.004	0.005	0.012 2524 7	0.005
Gross after sample CaO added	9				2478.2 0.00	2505.8 0.00	2541.2 9.00	2491.1 9.00	2505.8 0.00	2526.7 0.00	2409.0 0.00
HaCH added Leach time	g hrs				0.00 6	0.00 6	4.00 6	0.00 -6	6.00 6	0.00	0.00
Gross off rolls	g				2536.2	2563.9	2598.2	2546.7	2563.8	2585.8	2517.0
Pulp temperature Liquor sample E (24 hours)	deg C oH				16 11.1	16 11.1	16 11.1	16 11.1	16 11.1	16 11.9	16 11.2
CANDO SERVICE (ET HOUTO)	ppn Au				0.37	0.36	0.41	0.39	0.38	0.40	0.42
	ppe Cu ppe In				32 1.8	35 2.0	33 1.8	35 2.0	35 1.9	4 1.7	39 2.0
	% NaCH				0.047	0.050	0.052	0.05L	0.051	0.050	0.053
Gross after sample	% CaG		•		0.005	9.904	8,004	0.005	0.004 2512.6	9.013 2535.7	0.004 2497.2
CaO added	g								6.60	6.60	9.00
HaCH added Leach time	g hrs								1.00	0.00 B	9.00
Gross off rolls	g deg C								2564.1 22	2566.0 72	2547.7 22
Pulp temperature Liquor sample F (32 hours)	při								H.0	11.7	11.1
	ppe Au ppe Ca								0.57 57	1.37	0.35 39
	ppe Za								2.1	1.9	2.2
	t Hack t cas								9.043 200.0	0.065 0.007	0.049
Sample mass account			 -				 -				
Residue recovered (screened Ground head to assay)e 9	652.9 138.8	859.9 141.3	873.5 155.9	826.7 152.0	061.0 137.7	875.6 152.7	854.9 149.3	856.9 15£.5	968.6 144.3	852.4 147.0
Calculated head to grind	9	991.7	1001.2	1029.4	976.7	998.7	1028.3	1004.2	1008.4	2012.9	1001_4
Actual head to grind Unaccounted sass.	g t	998.5 0.68	1006.9 0.57	1035.8 0.62	1005.0 2.62	1003.0 0.43	1031 .3 0.29	1008.0 0.32	1015.5 0.70	1017.0	1007.6 0.62

Particle size	Hass g	Mass % (Retained	Cum. Mass Passing	Assay ppn Au	Assay ppn Au	Ave. assay ppm Au	Contents ug Au	Distrib'n Au t
Test No.	174	Non PAGE	53	Leach hrs	18			
+ 150								
- 150 + 106								
- 106 + 75	62.9	7.4	92.6	0.22		0.22	13.84	11.3
- 75 + 53	122.0	14.3	78.3	0.20	0.22	0.21	25.62	20.8
- 53 + 38	122.0 110.2 557.8	12.9	65.4	0.17	0.18	0.18	19.29	15.7
- 38	557.8	65.4		0.12 	0.11	0.12 	64.15	52.2
Calculated		100.0						100.0
Test No.	18	Nom. P80um	53	Leach hrs	18	_		
+ 150								-
- 150 + 106	en /					A 01	10 50	
- 106 + 75	59.6	6.9	95.1	0.21 0.21	. A 2A	0.21	12.52	7.7 10.7
- 75 + 53	120.8 117.8	14.0	17.0	V.21	V. ZV	V.ZI	29.70	17.7
- 53 + 38 - 38	561.7	65.3	65.3	0.12	0.12	0.12	67.40	53.5
Calculated		100.0						100.0
	7C			Leach hrs	18			
						-		
+ 150								
- 150 + 106 - 106 + 75	72.5	8 1	91 7	0.23		0.23	RA A1	12.3
- 75 + 53	137.5	15.7	76.0	0.20	0.22	0.21	28.88	21.3
- 53 + 38	108.6	12.4	63.5	0.17	0.16	0.17	17.92	13.2
- 38	554.9	63.5		0.13	0.13	0.13	72.14	53.2
Calculated		100.0				0.16		100.0
Test No.	14A	Non. P80us	53	Leach hrs	24			
+ 150						-		
- 150 + 106								
- 106 + 75	57.8 117.6	7.0	93.0	0.21		0.21	12.14	9.6
		14.2	78.8	0.21	0.21	0.21		
- 53 + 38	110.1		65.5	0.18			19.82	
- 38	541.2	65.5		0.13	0.13	0.13	70.36	55.4
Calculated	826.7	100.0				0.15	127.0	100.0
Test No.	38	Non. P80un	53	Leach hrs	24			
+ 150								
- 150 + 106								
- 106 + 75	56.9					0.22		
- 75 + 53	125.5				0.20		25.10	
- 53 + 38	112.3		65.8	0.19	0.18		20.78	
- 38	566.3	65.8		0.11	0.11	0.11	62.28	51.6
Calculated	861.0	100.0				0.14	120.7	100.0

BM15733 Sheet 4 26-Nov-89

BILLITON MT TODD LOW GRADE PRIMARY ORE BOTTLE ROLL CYAMIDE LEACH AT 404 SOLIDS; COMPOSITE BMT P 0.8; Nominated Grind P80 = 53um

Leach Residue Gold Distribution

Particle size	Hass g	Mass % Retained	Cum. Mass Passing	Assay ppm Au	Assay ppn Au	Ave. assay ppm Au		Distrib'n Au 1
Test No.	8C							**********
+ 150				~~~~~~~~	****	•		
- 150 + 106								
- 106 + 75	63.9	7.3	92.7	0.23		0.23	14.70	10.9
- 75 + 53	130.1	14.9	77.8	0.21	0.21	0.21	27.32	20.3
- 53 + 38	115.8	13.2	64.6	0.19	0.19	0.19 0.13	22.00	16.3
- 38	565.8	64.6		0.13	0.12	0.13	70.73	52.5
Calculated	875.6	100.0						100.0
Test No.	90	Non. P80um	53	Leach hrs	24			
+ 150						-		-
- 150 + 106								
- 106 + 75 - 75 + 53	52.8	6.2	93.8	0.20		0.20 0.20	10.56	8.6
13 1 30	120.0	14.0	79.8	0.20	0.20	0.20	24.00	19.5
- 53 + 38								
- 38		66.1				0.12		
Calculated		100.0						100.0
Test No.	15A	Nom. P80um	53	Leach hrs	32			
+ 150						•	٠	
- 150 + 106								
- 106 + 75	56.7	6.6	93.4	0.20		0.20	11.34	10.0
- 75 + 53	129.2	15.1	78.3	0.20	0.21	0.21	26.49	23.4
- 53 + 38	118.0	13.8	64.5	0.17	0.17	0.17 0.10	20.06	17.7
- 38		64.5				0.10		
Calculated		100.0						100.0
Test No.	48	Mom. P80um	53	Leach hrs	32			
+ 150								
- 150 + 106								
- 106 + 75	64.3	7.4	92.6	0.22		0.22		
- 75 + 53	129.3 116.5	14.9	77.7	0.20	0.20	0.20	25.86	23.5
- 53 + 38	116.5	13.4	64.3			0.17	19.81	18.0
- 38	558.5	64.3		0.09	0.09	0.09	50.27	45.7
Calculated	868.6	100.0				0.13	110.1	100.0
fest No.	120	Hom. P80um	53	Leach hrs	32			
+ 150		**********				•		
- 150 + 106								
- 106 + 75	57.1	6.8	93.2	0.20		0.20	11.54	9.6
- 75 + 53	121.1	14.2	79.0	0.20 0.20	0.20	0.20	24.22	
- 53 + 38	122.1	14.3		0.17	0.18		21.37	
- 38	551.5	64.7		0.12	0.11	0.12	63.42	52.6
Calculated	852.4	100.0				0.14	120.5	100.0

ILLITON NT TOOD LOW GRADE COMPOSITE BUT P 0.8 ;	ritiani uic		= 53un (18			= 53um (24	hours)	P80	= 53um (32	hours)
MALYSIS								******		
est No. (% solids) ominal Grind 80% passing	Units	Ave. S3	Max	Min	Ave.	Max	Min :	Ave.	Hax	Mir
otal leach time	ton ;	33 18	53 18	53 ¦ 18 ¦	53 24	53 24	53 ¦ 24 ¦	- 53 32	53	53
xtraction Au	nuurs ;	10	10	10		29	- A i	32	32	32
at 3 hours	g/t	0.68	0.75	0.64	0.62	0.64	0.60	0.63	0.66	0.61
at 6 hours	ø/t	0.72	0.76	0.67	0.66	0.70	0.64	0.65	0.67	0.64
at 12 hours	g/t	0.73	0.79	0.70	0.69	0.71	0.66	0.69	0.71	0.68
at 18 hours	g/t	0.72	0.80	0.68	0.70	0.74	0.68	0.70	0.71	0.69
nt 24 hours	g/t ;			- 1	0.69	0.72	0.66	0.70	0.74	0.67
it 32 hours	g/t							0.70	0.71	0.68
it 3 hours	1	78.1	79.9	75.9	74.8	77.4	73.6	75.7	78.2	73.2
it 6 hours it 12 hours	1	82.9	85.9	81.4	79.5	81.0	76.7	78.1	79.5	76.0
it 18 hours	1	84.3 83.0	84.5	83.8	82.5	83.5	81.0	83.3	84.2	82.4
t 24 hours		63.0	84.8	81.6	83.6 82.4	84.3 82.8	83.1 ¦ 81.5 ¦	84.4	85.0 87.5	84.1
t 32 hours				- !	02.7	02.0	61.3	84.8 84.1	85.0	82.9 83.3
liculated Head	ppe Au	0.87	0.94	0.82	0.83	0.88	0.81	0.83	0.84	0.81
ound Head Assay 1	ppe Au	0.83	0.86	0.81	0.82	1.02	0.74	0.77	0.79	0.75
ound Head Assay 2	ppe Au	0.84	0.95	0.76	0.73	0.76	0.71	0.78	0.80	0.77
erage Ground Head Assay	ppm Au	0.84	0.89	0.81	0.78	0.88	0.73	0.78	0.79	0.77
alculated residue grade	ppm Au	0.15	0.16	0.14	0.15	0.15	0.14	0.13	9.14	0.13
traction Cu	İ			i			i			
t 3 hours	g/t ;	32	32	31	31	33	30 ;	33	34	33
t 6 hours	g/t	38	39	37	37	39	36	40	42	39
t 12 hours	g/t	47	48	6	46	48	44	51	54	48
t 18 hours	g/t	53	53	52	52	54	51	58	4	54
t 24-hours t 32 hours	g/t :			į	56	59	55	65 70	71 79	59 64
say Head	ppm (t)	298			298			298	"	
	-	270					i	2.0		
traction In				- 1			!			
t 3 hours	g/t	1.8	1.8	1.8	1.8	1.8	1.6	1.8	1.9	1.8
t 6 hours	g/t	2.2	2.2	2.2	2.2	2.2	2.2	2.3	2.6	2.2
t 12 hours t 18 hours	g/t :	2.6 3.7	2.7	2.5	2.6	2.7	2.5	2.7	2.9	2.5
t 24 hours	g/t	3.7	4.8	3.1	2.9 3.2	3.0 3.4	2.8 ; 3.1 ;	3.0	3.1	2.8
32 hours	git			;	3.2	3.1	3.1	3.2 3.6	3.4 3.8	2.9 3.3
say Head	ppe In	200			200			200		
W	į			į			İ			
# consumption : 3 hours	ka/t	0.09	0.10	0.09	A 10	A 12				
	kg/t :	0.17	0.10	0.07	0.12 0.13	0.19 0.25	0.09 ; 0.08 ;	0.0 7 0.12	0.09 0.13	0.09
	kg/t	0.12	0.13	0.11	0.13	0.25	0.08	0.12 0.22	0.13 0.25	0.10 0.20
	kg/t	0.22	0.23	0.21	0.25	0.34	0.22	0.25	0.27	0.21
	kg/t				0.29	0.35	0.27	0.27	0.29	0.25
32 hours	kg/t							0.30	0.34	9.28
consumption				ļ					(1)	
•	kg/t	0.92	0.93	0.90	0.91	0.92	0.90	1.15	1.66	0.87
	kg/t	0.91	0.93	0.90	0.91	0.91	0.90	1.17	1.72	0.87
	kg/t	0.93	0.94	0.91	0.92	0.94	0.91	1.18	1.74	9.86
	kg/t	0.93	0.94	9.92	0.93	0.94	0.92	1.19	1.75	0.89
	kg/t			i	0.92	0.93	0.91	1.19	1.73	0.90
32 hours	kg/t							1.21	1.78	6.92
ual grind passing nominat CaO addition doubled in		77.8	79.0	76.0	78.8	79.8	77.8	78.3	79.0	77.7

8MT5733 Sheet 6 26-Nov-89 BILLITON NT TOOD LON GRADE PRIMARY ORE BOTTLE ROLL CYANIDE LEACH AT 40% SOLIDS; COMPOSITE BMT P 0.8; Mominated Grind P80 = 53um Summary of Residue Size Fraction Assays Sample Identification Grind P80 Head + 150 + 106 + 75 **† 53** ppm Au UR ppne Au ppne Au ppne Au ppm Au ppm Au ppm Au 18 hour residues 13A 0.14 53 0.22 0.21 0.18 0.12 18 53 0.15 0.21 0.21 0.18 0.12 7C 53 0.23 0.16 0.21 0.17 0.13 ---------------Average 0.15 0.22 0.21 0.17 0.12 24 hour residues 14A 53 0.15 0.21 0.21 0.18 0.13 **3**8 53 0.14 0.22 0.20 0.19 0.11 8C 53 0.15 0.23 0.21 0.19 0.13 90 53 0.14 0.20 0.20 0.18 0.12 ----------Average 0.18 0.15 0.22 0.21 0.12 32 hour residues 15A 53 0.13 0.20 0.21 0.17 0.10 48 53 0.13 0.22 0.20 0.17 0.09 120 53 0.14 0.20 0.20 0.18 0.12 Average 0.13 0.21 0.20 0.17 0.10 Summary of Residue Size Fraction Gold Distribution Sample Identification Grind P80 + 150 + 106 + 75 + 53 - 38 * * 切職 ppm Au \$ ŧ 1 ŧ 18 hour residues 13A 53 0.14 20.8 11.3 15.7 52.2 18 53 0.i5 9.9 19.7 16.8 53.5 7C 53 0.16 12.3 21.3 13.2 53.2 ----------Average 0.15 11.2 20.6 15.3 53.0 24 hour residues 14A 53 0.15 9.6 19.4 15.6 55.4 38 53 0.14 10.4 20.8 17.2 51.6 **8**C 53 0.15 10.9 20.3 16.3 52.5 90 53 0.14 8.6 19.5 16.7 55.2 0.15 Average 9.9 20.0 16.5 53.7

32 hour residues L5A

48

120

Average

53

53

53

0.13

0.13

0.14

0.13

10.0

12.9

9.6

10.8

23.4

23.5

20.1

22.3

17.7

18.0

17.7

17.8

48.9

45.7

52.6

49.0

BMT P0.8 P80 = 75um Sheets 1-6

BILLITON HT TODO LOW GRADE			. CYANIDE L	EACH AT 40	A SOLIDS;	COMPOSITE	807 P 0.8	!			
Hominated Grind P80 = 75um SURPARY)				•						
Test No. (% solids)	Units	9A ·	148	4 C	11A	158	3C	60	12A	168	50
Mominal Grind 80% passing	US .	75	75	75	75	<i>7</i> 5	75	75	75	75	75
Total leach time	hours	18	18	18	24	24	24	24	32	32	32
Extraction Au at 3 hours	g/t	0.60	0.61	0.61	0.61	0.61	0.57	0.58	0.61	0.60	0.60
at 6 hours	g/t	0.58	0.64	0.62	0.65	0.64	0.61	0.59	0.65	0.62	0.62
at 12 hours	g/t	0.60	0.65	0.64	0.66	0.65	0.63	0.61	0.66	0.64	0.63
at 18 hours	g/t	0.61	0.66	0.64	0.66	0.66	0.62	0.61	0.66	0.64	0,64
at 24 hours	g/t				0.67	0.67	0.63	0.62	0.68	0.64	0.63
at 32 hours	g/t	74.4	40.0	71.0	71.8	70.2	69.5	73.9	0.69	0.64	0.64
at 3 hours at 6 hours	1	76.6 73.9	69.9 72.7	71.9	76.3	73.1	74.0	75.0	71.4 75.8	71.1 73.9	72.0 74.7
at 12 hours	i	77.1	73.7	74.6	77.4	74.5	76.7	77.8	76.9	76.6	75.7
at 18 hours	1	78.4	74.9	74.0	77.0	75.7	76.0	77.0	76.4	76.1	76.8
at 24 hours	4				78.4	77.0	77.1	78.2	79.3	75.5	76.1
at 32 hours	t								80.2	76.2	76.9
Calculated Head		A 90	0.88	0.86	0.85	0.87	0.82	0.79	0.86	0.84	0.83
Calculated Head Ground Head Assay 1	ppe Au ppe Au	0.78 0.94	0.78	0.79	0.74	0.87	0.78	0.76	0.80	0.77	0.79
Ground Head Assay 2	pos Au	0.73	0.75	0.79	0.84	0.79	0.74	0.76	0.80	0.76	0.75
Average Ground Head Assay	ppe Au	0.84	0.77	0.79	0.79	0.78	0.76	0.76	0.80	0.77	0.77
											-
Calculated residue grade	ppe Au	0.17	0.22	0.23	0.19	0.20	0.19	0.17	0.17	0.20	0.19
Extraction Ou											
at 3 hours	g/t	31	31	30	31	30	31	33	34	31	33
at 6 hours	g/t	37	36	36	37	39	37	40	40	37	39
at 12 hours	g/t	46	46	47	47	49	48	49	49	46	49
at 18 hours at 24 hours	g/t g/t	53	51	55	54 61	56 60	54 57	56 61	56 61	54 57	56 .61
at 32 hours	a/t				•	•	31	•	64	61	64
Assay Head	ppe Cu	298 (a	ve. of two	head enli	te)					••	•
HSSey Hour	ppe vo	2.0 (6	70. UI 140	IIVINI SPIZ	64)						
Extraction In											
at 3 hours	g/t	2.2	1.8	1.8	1.8	1.9	1.8	1.8	1.9	1.6	1.8
at 6 hours at 12 hours	g/t g/t	2.8 3.4	2.2 2.5	2.2 8.4	2.3 2.8	2.3 2.9	2.0 2.5	2.2 2.7	2.2 2.7	2.9 2.5	2.2 2.7
at 18 hours	g/t	3.4	3.8	4.1	3.3	3.3	2.9	2.9	3.1	2.9	2.9
at 24 hours	g/t	0.0		***	4.1	3.3	3.8	3.7	3.4	3.1	3.1
at 32 hours	g/t								4.2	3.5	4.1
Assay Head	ppa Zn	200 (2	ve. of two	head spli	ts)						
MaCM consumption	kg/t	0.09	0.11	0.13	0.08	0.08	0.11	0.12	0.18	9.08	0.13
at 3 hours at 6 hours	kg/t kg/t	0.09	0.19	0.13 0.21	0.17	0.06 0.14	0.11	0.12	V.16 0.22	0.15	0.21
at 12 hours	kg/t	0.19	0.24	0.24	0.19	0.20	0.17	0.23	0.21	0.19	0.27
at 18 hours	kg/t	0.24	0.28	0.26	0.26	0.22	0.24	0.26	0.28	0.22	0.24
at 24 hours	kg/t				0.27	0.22	0.25	0.26	0.26	0.25	0.23
at 32 hours	kg/t								0.52	0.29	0.31
CaO consumption											
at 3 hours	kg/t	0.91	0.86	0.89	0.89	0.92	0.87	0.89	9.87	0.86	0.89
at 6 hours	kg/t	0.91	0.87	0.88	0.89	0.93	0.88	0.89	0.86	0.86	0.89
at 12 hours	kg/t	0.92	0.88	0.91	0.91	0.94	0.89	0.91	0.89	0.88	0.91
at 18 hours	kg/t	0.93	0.88	0.91	0.94	0.95	0.90	0.93	9.90	0.90	0.93
at 24 hours	kg/t kg/t				0.94	0.95	0.90	0.92	0.90 0.91	0.89 0.81	0.92 A 04
at 32 hours	kg/t								0.91	0.91	0.94
Actual grind passing nomina Note: The 'actual grind pa		77.6 stad :m' show	73.0	76.3	73.1	79.7	72.0 The course	73.0	76.7	75.4	75.1
were due to mill drive si						11 eri 4 3 ,	110 WH 30		meron A y	indi)	

AUTEST	G-4 0										
BILLITON HT TOOD LON GRADE		_	6-Nov-89 L CYANIDE	LEACH AT 4	iot solids;	COMPOSITE	9 17 ? 0.6	1			
Hominated Grind P80 = 75um tests conducted (date)	•	23/10	23/10	23/10	25/10	23/10	23/10	23/10	23/10	23/10	23/10
Test No.	Units	98	148	40	11A	159	30	40	120	168	50
Grind 80% passing Total leach time	te hours	75 18	75 18	75 18	75 24	75 24	75 24	75 24	75 32	75 32	75 32

Vessel Sample mass	9	405.2 847.6	407.6 854.4	407.8 869.2	405.7 862.8	407.8 828.7	409.2 863.1	406.3 652.3	408.6 865.5	406.9 868.2	407.6 862.3
Sitewater added	9	1271	1282	1304	1294	1243	1295	1278	1298	1302	1293
Natural pN CaO added	g	0.85	0.81	0.85	0.86	0.85	0.84	0.85	0.84	0.84	0.86
NaCH added	9	1.03	1.03	1.04	1.01	1.01	1.03	1.03	1.04	1.04	1.03
Leach Time Gross off rolls	hrs g	3 2521.4	3 2540.5	3 2577.5	\$ 2559.2	\$ 2477.7	3 2565.4	3 2534.0	3 2568.8	\$ 2574.7	3 2560.8
Pulp temperature	deg C	. 21	. 21	21	21	21	21	21	21	21	21
Liquor sample A (3 hours)	pili ppe Au	11.3 0.40	11.3 0.4 1	11.4 0.41	11.4 0.41	11.4 0.41	11.4 0.38	11.5 0.39	11.4 0.41	11.4 0.40	11.5 0.40
	ppm Cu	21	21	20	21	20	21	22	23	21	22
	ppn Zn % NaCH	1.5 0.075	1.2 0.073	1.2 6.071	1.2 1.073	1.3 0.076	1.2 0.072	1.2 0.073	1.3 0.068	1.1 0.075	1.2 0.071
	\$ CaO	0.006	0.006	0.006	0.007	0.007	0.607	0.007	6.607	0.007	0.007
Gross after sample CaD added	9	2470.3 0.00	2489.6 0.00	2527.3 0.00	2508.2 0.00	2426.4 0.00	2514.4 0.00	2462.7 0.00	2518.6 0.00	2523.4 0.00	2509.9 0.00
NaCN added	9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Leach time Gross off rolls	hrs g	3 2521.0	3 2539.8	3 2576.8	3 2558.4	3 2476.6	3 2564.8	3 2533.1	3 2567.3	3 2573.5	3 2559.6
Pulp temperature	deg C	23	23	23	23	23	23	23	23	23	23
Liquor sample 8 (6 hours)	pili ppa Au	11.2 0.37	11.2 6.41	11.3 0.40	11.3 0.42	11.3 0.41	11.3	11.4 0.38	11.3 0.42	11.3 0.40	11.4 0.40
	ppa Cu	24	23	23	24	25	24	26	26	24	25
	ppa Zn % NaCN	1.8 0.072	1.4 0.065	1.4 0.063	1.5 0.064	1.5	1.3 0.064	1.4 0.060	1.4 0.063	1.3 0.067	1.4 0.663
	\$ CMO	0.006	0.005	0.006	0.007	0.006	0.006	0.007	0.007	0.007	0.007
Gross after sample	9	2468.5	2487.8	2525.6	2506.9	2418.7	2513.5	2462.2	2515.9	2522.9	2509.0
CaD added NaCN added	9	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	9.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.60	9.00 9.09
Leach time	hrs	6	6	6	6	6	6	6	6	6	
Gross off rolls Pulp temperature	g deg C	2525.2 22	2537.4 22	2575.7 22	2556.9 22	2475.3 22	2562.2 22	2531.7 22	2566.1 22	2572.1 22	2551.7 22
Liquor sample C (12 hours)	pH	11.2	11.2	11.3	11.3	11.3	11.2	11.3	11.2	11.2	11.3
	ppm Au ppm Cu	0.37 29	0.40 29	0.40 30	9.41 39	9.40 31	0.39 30	0.38 31	0.41 31	0.40 29	6.39 31
	ppe Zn	2.1	1.6	5.5	1.8	1.8	1.6	1.7	1.7	1.6	1.7
	% HACH % CAD	0.062 0.005	0.059 0.004	0.059 0.004	0.060 0.005	0.062 0.005	0.062 0.005	0.060 0.005	0.061 0.005	0.062 0.005	0.061 0.005
Gross after sample	9	2468.0	2462.8	2520.6	2501.4	2421.5	2507.8	2477.4	2511.7	2515.9	2502.3
CaO added NaCH added	9	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 9.00	0.00 4.00	0.00 0.00	0.60 4.60	0.00 0.00	0.00 0.00
Leach time	hrs	6	6	6	6	6	6	6	6	6	6
Gross off rolls Pulo temperature	g deg C	2526.J 20	2536.1 20	2574.3 20	2555.8 20	2473.7 20	2561.0 20	2539.3 20	2564.8 20	2571.3 26	2557.2 20
Liquor sample D (18 hours)	při	11.2	11.1	11.2	11.2	11.3	11.2	11.5	11.2	11.2	11.3
	ppe Au ppe Cu	0.36 32	0.39 31	0.38 34	0.37 33	0.39 34	0.37 33	9.36 34	0.39 34	6.36 33	0.38 34
	ppe in	2.3	2.4	2.4	2.0	2.0	1. 8	1.8	1.9	1.0	1.8
	% ReCH	0.056	0.054	0.055	0.053	0.058	0.056	0.056	0.054 0.004	0.057	0.056
Gross after sample	t CaG	0.004	0.004	9.004	0,003 2498.7	0.004 2418.6	0.004 2505.2	0.004 2473.2	2507.7	0.004 2512.9	0.004 2499.5
CaO added	9				0.00	0.00	0.00	0.00	0.00	0.00	9.00
HaCH added Leach time	f hrs				0. 00 6	0.00 6	9.00 6	0.00 6	9.00	0.00 6	0.00 6
Gross off rolls	9				2557.9	2474.4	2559.8	2531.0	2563.2	2574.2	2553.8
Pulp temperature Liquor sample E (24 hours)	deg C pH				19 11.1	19 11.1	19 11.1	19 11.2	19 11.1	19 11.1	19 11.2
	ppm Au				0.38	0.30	0.36	4.35	6.39	0.36	0.36
	ppe Cu ppe Za				35 2.5	35 1.9	34 2.3	36 2.2	36 2.0	34 1.8	36 1.8
	% NaCH				0.050	0.055	0.053	0.053	0.053	0.053	0.054
Gross after sample	t CaO		•		0.003	0.004	0.004	0.004	0.004 2512.2	0.004 2519,2	9.604 2562.1
CaO added	i								0.00	8.00	0.00
NaCN added Leach time	e hrs								9.00 E	0.0) 8	0,00 E
Gross off rolls	9								7562.9	2567.7	2553.3
Pulp temperature Liquor sample F (32 hours)	deg C pH								22 11.0	22 11.0	22 11.1
erdam suchta. (se unu.)	ppe Au								0.38	11.5	0.35
	ppe Cr								37	35	37
	ppe In † NaCH								2.5 0.947	2.9 9.963	2.4 0.017
	t Cat								0.005	0.005	0.003
Sample mass account Residue recovered (screened)a	827.2	946.9	864.8	860.5	823.3	850.8	942. 5	856.7	859.4	657.6
Ground head to assay	1	152.5	152.4	146.8	135.8	1.101	153.1	151.4	136.5	141.5	149.3
Calculated head to grind Actual head to grind	•	979.7 1000.1	1001.3 1006.8	1011.6 1016.0	996.3 998.6	3094.4 1009.8	1011.9 1015.2	993.9 1003.7	993.2 1002.6	1000.5 1009.7	1006.9 1011.6
Unaccounted mass	i.	2.64	0.55	0.43	0.23	1.53	0.33	6.78	0.88	4.87	1.4

8KT5731

Sheet 3

26-Nov-89

Particle size	Mass	Mass & C	um. Mass	Assay	Assay	Ave. assay	Contents	Distrib'
Un	g	Retained	Passing	ppm Au	ppm Au	ppn Au	ug Au	AU \$
Test No.	9A	Hom. P80um	75	Leach hrs	18	_		
+ 150								
- 150 + 106					4 00	• •	47.10	70.
- 106 + 75 - 75 + 53	183.8	22.2	11.8	0.25	0.22	0.24	43.17	30.7
- /5 ↑ 33 - 5₹ ∔ ₹R	112.0 68.3	8.3	55.9	0.21	V.21	0.20	13.66	9.6
- 75 + 53 - 53 + 38 - 38	462.3	55.9	-	0.14	0.13	0.14	62.41	43.1
Calculated	827.2						143.0	
Test No.	148	Nom. P80um	75	Leach hrs	18	_		
+ 150						-		
- 150 + 106							45.04	74
- 106 + 75	228.9	27.0	/3.0	0.29	0.28	0.29	95.24	34.0
- 75 + 53 - 53 + 38	41.Z	11.3	01.0 54.3	0.26	V.20	0.28	17.22	9.1
- 38	461.3	11.5 7.2 54.3	31.0	0.18	0.17	0.18	80.73	12.1
Calculated		100.0					188.5	
Test No.						-		
+ 150								
- 150 + 106								
- 106 + 75	204.9	23.7	76.3	0.24	0.26	0.25	51.23	26.
- 75 + 53	117.9	13.6	62.7	0.33	0.26	0.30	54.78 15.76	17.1
- 53 + 38 - 38	204.9 117.9 75.0 467.0	8. <i>1</i> 54.0	54.0	0.21 0.19	0.21	0.21 0.20	93.40	47.9
Calculated		100.0					195.2	
	11A							
+ 150						-		
- 150 + 106								
- 106 + 75		26.9					52.18	
- 75 + 53		12.4	60.7	0.22			23.47	
- 53 + 38 - 38	65.3 456. 6	7.6 53.1	53.1	0.20 0.15	0.16	0.20 0.16	13.06 70.77	
Calculated	860.5	100.0				0.19	159.5	100.
Test No.	158	Non. P80um	75	Leach hrs	24			
+ 150		*********				-		
- 150 + 106								
- 106 + 75	167.4	20.3	79.7	0.25	0.25	0.25		
- 75 + 53	123.7	15.0	64.6	0.25	9.25	0.25		
- 53 + 38		8.2				0.22		
- 38	464.9	56.5		V. 18	0.16	0.17	79.03	47.
Calculated	823.3	100.0				0.20	166.6	100.

BMT5731 Sheet 4 26-Nov-89
BILLITON MT TODD LOW GRADE PRIMARY ORE BOTTLE ROLL CYANIDE LEACH AT 40% SOLIDS; COMPOSITE BMT P 0.8; Nominated Grind P80 = 75um

Leach Residue Gold Distribution

Test No.						FF	٠, ٠.٠	774 19
	3C			Leach hrs		_	******	
+ 150						-		
- 150 + 106								
- 106 + 75	240.2	28.0	72.0	0.21	0.21	0.21	50.44	31.1
- 75 + 53	85.1	9.9	62.1	0.22	0.26	0.24	20.42	12.6
- 53 + 38 - 38	59.8 473.7	7.0 55.2	55.2	0.26	0.18	0.26 0.16	15.55 75.79	9.0 46.1
Calculated		100.0			••••••			100.0
Test No.	60	Non. P80un	75	Leach hrs	24			
+ 150	******					•		-
- 150 + 106								
- 106 + 75	227.2	27.0	73.0	0.23	0.25	0.24	54.53	37.2
- 75 + 53	86.5 54.8 474.0	10.3	62.8	0.23	0.23	0.23	19.90	13.6
- 53 + 38	54.8	6.5	56.3	0.19		0.19	10.41	7.1
- 38 				0.13				42.1
Calculated	842.5	100.0				0.17	146.5	100.0
Test No.	12A	Non. P80um	75	Leach hrs	32			
+ 150						•		
- 150 + 106								
- 106 + 75	200.0	23.3	76.7	0.23 0.22 0.21	0.23	0.23	46.00	31.3
- 75 + 53	111.1	13.0	63.7	0.22	0.22	0.22	24.44	16.6
- 53 + 38	71.2	8.3	55.4	0.21		0.21	14.95	10.2
- 38 		55.4		0.12 		0.13		
Calculated	856.7	100.0				0.17	147.1	100.0
Test No.	168	Hom. P80um	75	Leach hrs	32			
+ 150								
- 150 + 106 - 106 + 75	211 7	24 4	76 4	A 24	A 27	A 24	40.22	20.4
- 106 + 75 - 75 A 57	211.3 111 7	29.0 11 A	13.4 49 C	V.24 A 24	V.23	V.24 A 24	47.00 20 20	20.0
- 75 + 53 - 53 + 38	111.J	13.7	54 T	V.20 A 20	V.23	0.26	14.06	8.1
- 38						0.18		
Calculated	859.4	100.0		*****	*********	0.20	173.7	100.0
lest No.	50	Hom. P80um	75	Leach hrs	32			
+ 150	42200644500							
- 150 + 106								
- 106 + 75	213.2	24.9	75.1	0.26 0.27	0.24	0.25	53.30	32.2
- 75 + 53	128.7	15.0	60.1	0.27	0.28			
- 53 + 38	63.5	7.4	52.7	0.25			15.88	
- 38 		52. 7		0.12	0.15	0.14	61.05	36.9
Calculated		100.0				0.19	165.6	100.0

AMALYSIS Test No. (% solids) Unin Invalid Grind 80% passing Intal leach time Extraction Au at 3 hours at 6 hours at 12 hours at 18 hours at 32 hours at 6 hours at 12 hours at 18 hours at 19 hours at 19 hours at 19 hours at 19 hours at 19 hours at 19 hours at 19 hours at 19 hours at 19 hours at 19 hours at 19 hours at 19 hours at 19 hours at 19 hours at 19 hours at 19 hours at 32 hours Calculated Head Ground Head Assay 1 ppn Ground Head Assay 2 ppn Calculated residue grade Extraction Cu at 3 hours at 6 hours at 6 hours at 6 hours at 6 hours g/t at 18 hours g/t at 18 hours at 18 hours g/t at 32 hours g/t at 32 hours Assay Head ppn	75.8 0.61 0.63 0.64 72.5 72.9 75.1	9. Max 5 75 8 18 0.61 0.64 0.65 0.66 76.6 73.9 77.1	Min 75 18 0.60 0.58 0.60 0.61 0.61 69.9 71.9	8ve. 75 24 0.59 0.62 0.64 0.64	Hax 75 24 0.61 0.65 0.66 0.66	Hin : 75 : 24 : 0.57 : 0.59 : 0.61 : 0.61	Ave. 75 32 0.60 0.63 0.65	Max 75 32 0.61 0.65	Mi 75 32 9.60 0.62
Nominal Grind 80% passing un Total leach time Extraction Au at 3 hours g/t at 6 hours g/t at 18 hours g/t at 18 hours g/t at 32 hours g/t at 32 hours g/t at 12 hours g/t at 12 hours g/t at 12 hours g/t at 12 hours g/t at 12 hours g/t at 12 hours g/t at 12 hours g/t at 12 hours g/t at 12 hours g/t at 12 hours g/t at 12 hours g/t at 32 hours g/t at 34 hours g/t at 34 hours g/t at 34 hours g/t at 34 hours g/t at 34 hours g/t at 34 hours g/t at 45 hours g/t at 16 hours g/t at 18 hours g/t at 19 hours g/t at 24 hours g/t at 32 hours g/t at 32 hours g/t at 32 hours g/t at 32 hours g/t at 32 hours g/t at 32 hours g/t at 32 hours g/t at 35 hours g/t at 36 hours g/t at 37 hours g/t at 38 hours g/t at 38 hours g/t at 39 hours g/t at 39 hours g/t at 39 hours g/t at 39 hours g/t at 39 hours g/t	75 18 0.61 0.63 0.64 72.5 72.9 75.1 75.8	75 75 18 18 1 0.61 0.64 0.65 0.66 0.66 76.6 73.9 77.1	75 18 0.60 0.58 0.60 0.61	75 24 0.59 0.62 0.64 0.64	0.61 0.65 0.66 0.66	75 24 0.57 0.59 0.61	75 32 0.60 0.63	75 32 0.61 0.65	75 32 9.60
Extraction Au at 3 hours g/t at 6 hours g/t at 12 hours g/t at 18 hours g/t at 32 hours g/t at 32 hours g/t at 34 hours g/t at 34 hours t at 12 hours t at 12 hours t at 18 hours t at 18 hours t at 18 hours t at 18 hours t at 18 hours t at 18 hours t at 18 hours t at 18 hours t at 18 hours t at 18 hours t at 18 hours t at 18 hours t Average Ground Head Assay ppn Calculated residue grade ppn Extraction Cu at 3 hours g/t at 18 hours g/t at 19 hours g/t at 19 hours g/t at 19 hours g/t at 32 hours g/t at 32 hours g/t at 32 hours g/t at 33 hours g/t at 33 hours g/t at 33 hours g/t at 38 hours g/t at 38 hours g/t at 38 hours g/t at 39 hours g/t at 38 hours g/t at 38 hours g/t	0.61 0.63 0.63 0.64 72.5 72.9 75.1	0.61 0.64 0.65 0.66 76.6 73.9	0.60 0.58 0.60 0.61	0.59 0.62 0.64 0.64 0.65	0.61 0.65 0.66 0.66	0.57 0.59 0.61	0.60 0.63	0.61 0.65	9.60
at 3 hours g/t at 6 hours g/t at 12 hours g/t at 18 hours g/t at 18 hours g/t at 24 hours g/t at 3 hours 3 at 6 hours 3 at 12 hours 3 at 12 hours 3 at 12 hours 3 at 12 hours 3 at 12 hours 3 at 12 hours 3 at 12 hours 3 at 13 hours 3 at 14 hours 3 at 15 hours 3 at 16 hours 3 at 17 hours 3 at 18 hours 3 at 18 hours 3 at 18 hours 3 at 18 hours 3 at 18 hours 3 at 18 hours 3 at 19 hours 4 at 19 ho	0.64 0.63 0.64 72.5 72.9 75.1 75.8	0.64 0.65 0.66 76.6 73.9 77.1	0.58 0.60 0.61	0.62 0.64 0.64 0.65	0.65 0.66 0.66	0.59 0.61	0.63	0.65	
at 6 hours g/t at 12 hours g/t at 18 hours g/t at 24 hours g/t at 24 hours g/t at 35 hours g/t at 36 hours g/t at 12 hours t at 18 hours t at 18 hours t at 18 hours t at 28 hours t at 32 hours t at 32 hours t at 32 hours t calculated Head ppn Ground Head Assay ppn Calculated residue grade ppn Extraction Cu at 3 hours g/t at 18 hours g/t at 18 hours g/t at 18 hours g/t at 18 hours g/t at 24 hours g/t at 32 hours g/t at 32 hours g/t at 32 hours g/t at 32 hours g/t at 33 hours g/t at 33 hours g/t at 34 hours g/t at 35 hours g/t at 37 hours g/t at 37 hours g/t at 38 hours g/t at 38 hours g/t at 38 hours g/t at 38 hours g/t	0.64 0.63 0.64 72.5 72.9 75.1 75.8	0.64 0.65 0.66 76.6 73.9 77.1	0.58 0.60 0.61	0.62 0.64 0.64 0.65	0.65 0.66 0.66	0.59 0.61	0.63	0.65	
at 12 hours g/t at 18 hours g/t at 24 hours g/t at 32 hours g/t at 3 hours g/t at 3 hours g/t at 4 hours g/t at 18 hours g/t at 18 hours g/t at 18 hours g/t at 18 hours g/t at 24 hours g/t at 24 hours g/t at 32 hours g/t at 32 hours g/t at 34 hours g/t at 4 hours g/t at 5 hours g/t at 18 hours g/t at 18 hours g/t at 19 hours g/t at 19 hours g/t at 24 hours g/t at 32 hours g/t at 32 hours g/t at 33 hours g/t at 34 hours g/t at 34 hours g/t at 34 hours g/t at 34 hours g/t at 37 hours g/t at 37 hours g/t at 38 hours g/t at 39 hours g/t at 39 hours g/t at 39 hours g/t	0.64 0.64 72.5 72.9 75.1 75.8	0.65 0.66 76.6 73.9 77.1	0.60 0.61 69.9	0.64 0.64 0.65	0.66 0.66	0.61			0.62
at 18 hours g/t at 24 hours g/t at 32 hours g/t at 32 hours g/t at 33 hours g/t at 34 hours at 16 hours at 12 hours at 18 hours at 18 hours at 18 hours at 19 hours at 19 hours at 19 hours at 19 hours at 19 hours at 19 hours at 19 hours ground Head Assay 1 ppm Ground Head Assay 2 ppm Calculated residue grade ppm Extraction Cu at 3 hours g/t at 19 hours g/t at 19 hours g/t at 24 hours g/t at 24 hours g/t at 32 hours g/t at 32 hours g/t at 32 hours g/t at 32 hours g/t at 32 hours g/t at 32 hours g/t	72.5 72.9 75.1 75.8	76.6 73.9 77.1	69.9	0.64 0.65	0.66	• • • •	0.65		
at 24 hours g/t at 32 hours g/t at 33 hours g/t at 3 hours t at 6 hours t at 12 hours t at 18 hours t at 24 hours t at 32 hourc t Calculated Head GSSay 1 ppm Ground Head ASSay 2 ppm Calculated residue grade ppm Extraction Cu at 3 hours g/t at 12 hours g/t at 12 hours g/t at 12 hours g/t at 24 hours g/t at 32 hours g/t at 32 hours g/t at 32 hours g/t at 33 hours g/t at 33 hours g/t at 34 hours g/t at 35 hours g/t at 35 hours g/t at 36 hours g/t at 37 hours g/t at 38 hours g/t at 38 hours g/t	72.5 72.9 75.1 75.8	76.6 73.9 77.1	69.9	0.65		0.61 :		0.66	0.63
at 32 hours g/t at 3 hours ta 4 hours ta 12 hours ta 12 hours ta 18 hours ta 18 hours ta 18 hours ta 18 hours ta 18 hours ta 18 hours ta 18 hours ta 18 hours ta 18 hours ta 18 hours ta 18 hours ta 18 hours g/t p/t mg/t mg/t mg/t mg/t mg/t mg/t mg/t mg	72.9 75.1 75.8	73.9 77.1			0.67	-	0.65	0.66	0.64
at 3 hours at 6 hours at 12 hours at 18 hours at 24 hours at 24 hours at 32 hours ta 32 hours ta 32 hours ta 32 hours ta 32 hours ta 34 hours ta 4 hours ta 54 hours ta 6 hours ta 54 hours ta 6 hours ta 6 hours ta 6 hours ta 6 hours ta 12 hours ta 18 hours ta 19 hours	72.9 75.1 75.8	73.9 77.1		•• •		0.62	0.65	C.68	0.63
at 6 hours at 12 hours at 18 hours at 24 hours at 24 hours at 37 hours t Calculated Head Ground Head Assay 1 Populated Assay 2 Average Ground Head Assay Calculated residue grade Extraction Cu at 3 hours at 6 hours at 10 hours g/t at 10 hours g/t at 10 hours g/t at 10 hours g/t at 10 hours g/t at 24 hours g/t at 32 hours g/t Assay Head ppa	72.9 75.1 75.8	73.9 77.1					0.66	0.69	0.64
at 12 hours at 18 hours at 24 hours at 24 hours at 32 hours t 32 hours t 32 hours t 32 hours t 32 hours t 34 hours t 44 hours t 45 hours t 46 hours at 3 hours t 46 hours t 47 hours t 48 hours t 49 hours t 59 hours t 69 hours t 79 h	75.1 75.8	77.1	B.9 ;	71.4	73.9	69.5	71.5	72.0	71.1
at 18 hours at 24 hours at 24 hours at 32 hours t Calculated Head Ground Head Assay 1 ppn Ground Head Assay 2 Average Ground Head Assay ppa Calculated residue grade Extraction Cu at 3 hours at 6 hours at 12 hours at 18 hours at 19 hours at 24 hours at 32 hours g/t at 32 hours g/t at 35 hours g/t at 38 hours g/t at 38 hours g/t at 39 hours g/t at 38 hours g/t	75.8		i	74.6	76.3	73.1	74.8	75.8	73.9
at 24 hours at 32 hours t Calculated Head Ground Head Assay 1 Ground Head Assay 2 Average Ground Head Assay ppa Calculated residue grade Extraction Cu at 3 hours at 6 hours at 12 hours at 18 hours at 19 hours at 24 hours at 32 hours g/t at 32 hours g/t at 33 hours g/t at 33 hours g/t	; 6 8 8	76.4	73.7	76.6	77.8	74.5	76.4	76.9	75.7
at 32 hours t Calculated Head Ground Head Assay 1 ppn Ground Head Assay 2 ppn Average Ground Head Assay ppn Calculated residue grade ppn Extraction Cu at 3 hours g/t at 12 hours g/t at 12 hours g/t at 14 hours g/t at 24 hours g/t Assay Head ppn	Au 0.84		74.0	76.4	77.0	75.7	76.4	76.8	76.1
Calculated Head ppe Ground Head Assay 1 ppn Ground Head Assay 2 ppe Average Ground Head Assay ppa Calculated residue grade ppn Extraction Cu at 3 hours g/t at 16 hours g/t at 12 hours g/t at 18 hours g/t at 24 hours g/t at 32 hours g/t	Au 0.84		- 1	11.1	78.4	77.0	77.0	79.3	75.5
Ground Head Assay 1 ppm Ground Head Assay 2 ppm Average Ground Head Assay ppm Calculated residue grade ppm Extraction Cu at 3 hours g/t at 6 hours g/t at 12 hours g/t at 18 hours g/t at 24 hours g/t Assay Head ppm	Au 0.84		1			1	77.8	80.2	76.2
Ground Head Assay 2 Average Ground Head Assay Calculated residue grade ppa Extraction Cu at 3 hours g/t at 6 hours g/t at 12 hours g/t at 18 hours g/t at 32 hours g/t Assay Head ppa	•		0.78	0.83	0.87	0.79	0.84	0.86	0.83
Average Ground Head Assay ppa Calculated residue grade ppa Extraction Cu at 3 hours g/t at 6 hours g/t at 12 hours g/t at 18 hours g/t at 24 hours g/t at 32 hours g/t	•		6.78	0.76	0.78	0.74	0.79	0.80	0.77
Calculated residue grade ppm Extraction Cu at 3 hours g/t at 6 hours g/t at 12 hours g/t at 18 hours g/t at 24 hours g/t at 32 hours g/t Assay Head ppm			0.73	0.78	0.84	0.74	0.77	0.80	0.75
Extraction Cu at 3 hours g/t at 6 hours g/t at 12 hours g/t at 18 hours g/t at 24 hours g/t at 32 hours g/t Assay Head ppm	Au ; 0.80	0.84	0.77	0.77	0.79	0.76	0.78	0.80	0.77
at 3 hours	Au 0.21	0.23	0.17	0.19	0.20	0.17	0.19	0.20	0.17
at 6 hours			_ [
at 12 hours g/t at 18 hours g/t at 24 hours g/t at 32 hours g/t Assay Head ppm	31		30	31	33	30	33	34	31
at 18 hours g/t at 24 hours g/t at 32 hours g/t Assay Head ppm	36		36	36	40	37	39	40	37
at 24 hours g/t at 32 hours g/t Assay Head ppm	47	47	46	48	49	47	48	49	46
at 32 hours g/t Assay Head ppm	53	55	51	55	56	54	55	56	54
Assay Head ppm	į		i	60	61	57	60	61	57
•			İ			į	63	64	61
	Du 298		į	298		į	298		
Extraction Zn									
at 3 hours g/t	1.9	2.2	1.8	1.8	1.9	1.8	1.8	1.9	1.6
at 6 hours g/t	2.4	2.8	2.2	2.2	2.3	2.0	2.1	2.2	2.0
at 12 hours g/t	4.8	8.4	2.5	2.7	2.9	2.5	2.6	2.7	2.5
at 18 hours g/t	3.9	4.1	3.8	3.1	3.3	2.9	3.0	3.1	2.9
at 24 hours g/t	į			3.7	4.1	3.3	3.2	3.4	3.1
at 32 hours g/t	į						3.9	4.2	3.5
Assay Head ppm i	/n 200			200			200		
MaCH consumption			ļ						
at 3 hours kg/t	0.11	0.13	0.09	0.10	0.12	0.08	0.13	0.18	0.08
at 6 hours kg/t	0.17	0.21	0.09	0.19	0.27	0.14	0.19	0.22	0.15
at 12 hours kg/t	0.22	0.24	0.19	0.20	0.23	0.19	0.20	0.21	0.19
at 18 hours tg/t	0.26	0.28	0.24	0.24	0.26	0.22	0.25	0.28	0.22
at 24 hours kg/t				0.25	0.27	0.22	0.25	0.26	0.23
at 32 hours kg/t							0.31	0.32	0.29
CaO consumption	!					1			
at 3 hours kg/t	0.89	0.91	0.86	0.89	0.92	0.87	0.87	0.89	9.86
at 6 hours kg/t	0.89	0.91	0.97	0.90	0.93	0.88	0.87	0.89	9.86
at 12 hours kg/t	0.90	6.92	0.86	6.92	0.94	0.89	0.90	0.91	0.88
at 18 hours kg/t	0.91	0.93	0.88	0.93	0.95	0.90	₹.91	0.93	0.90
at 24 hours kg/t	1			0.93	0.95	0.90	4.90	0.92	0.89
at 32 hours kg/t	į		į				0.92	0.94	6.95

BHT5731

Sample Identification				+ 106		+ 53	+ 38	- 38
comple 100istillation	UM	ppm Au	ppm Au		ppm Au	ppe Au	ppm Au	ppm Au
8 hour residues					*******	*******		
9A	75	0.17			0.24		0.20	0.14
148	75	0.22			0.29		0.28	
4C	75 	0.23		*****	0.25	0.30		0.20
Aver age		0.21			0.26	0.26		0.17
4 hour residues								
11A	75	0.19			0.23	0.22	0.20	0.16
158	75	0.20			0.25	0.25	0.22	0.17
3C	75	0.19			0.21	0.24	0.26	0.16
60 	75	0.17			0.24	0.23	0.19	0.13
Average		0.19	******		0.23	0.24		0.15
12 hour residues								
12A	75	0.17			0.23	0.22	0.21	0.13
168	75	0.20			0.24	0.26	0.20	0.18
50	75	A 1A			A 85	A 30	3 AE	0.14
- -	75	0.19			0.25	0.28	0.25	
Average Size Fr	action Gold (0.19 Distribution			0.25	0.25		0.15
Average	action Gold (0.19 Distribution		+ 106		,,,,,,		
Average Summary of Residue Size Fr	action Gold (Grind P80	0.19 Distribution	+ 150	+ 106	0.24	0.25	0.22	0.15
Average Jummary of Residue Size Fr Sample Identification 8 hour residues	Grind P80	0.19 Distribution Head ppm Au	+ 150	+ 106	0.24	0.25	0.22	- 38 t
Average Sample Identification 8 hour residues 9A	Grind P80 um	0.19 Distribution Head ppm Au	+ 150	+ 106	0.24 + 75 \$	0.25 + 53 \$	0.22 + 38 \$	- 38 \$
Average Fundancy of Residue Size Fr Sample Identification 8 hour residues	Grind P80	0.19 Distribution Head ppm Au	+ 150	+ 106	0.24	0.25	0.22 + 38 \$	- 38 \$ 43.7 42.8
Average Sample Identification 8 hour residues 9A 148	Grind P80 UM 75	0.19 Distribution Head ppn Au 0.17 0.22	+ 150	+ 106	0.24 + 75 \$ 30.2 34.6 26.2	0.25 + 53 \$ 16.6 13.4	9.6 9.1 8.1	- 38 \$ 43.7 42.8 47.9
Average Sample Identification 8 hour residues 9A 148 4C Average	Grind P80 UM 75 75 75	0.19 Distribution Head ppm Au 0.17 0.22 0.23	+ 150	+ 106	0.24 + 75 \$ 30.2 34.6 26.2	0.25 + 53 \$ 16.6 13.4 17.8	9.6 9.1 8.1	- 38 \$ 43.7 42.8 47.9
Average Summary of Residue Size Fr Sample Identification 8 hour residues 9A 148 4C Average 4 hour residues	Grind P80 UM 75 75	0.19 Distributiv Head ppm Au 0.17 0.22 0.23 0.21	+ 150	+ 106	0.24 + 75 \$ 30.2 34.6 26.2	0.25 + 53 \$ 16.6 13.4 17.8	9.6 9.1 8.1	- 38 \$ 43.7 42.8 47.9
Average Summary of Residue Size Fr Sample Identification 8 hour residues 9A 148 4C Average 4 hour residues 11A	75 75	0.19 Distribution Head ppm Au 0.17 0.22 0.23 0.21	+ 150	+ 106	0.24 + 75 \$ 30.2 34.6 26.2 30.4	0.25 + 53 \$ 16.6 13.4 17.8 15.9	9.6 9.1 8.1	- 38 \$ 43.7 42.8 47.9
Average Summary of Residue Size Fr Sample Identification 8 hour residues 9A 148 4C Average 4 hour residues 11A 158	75 75 75 75	0.19 Distribution Head ppm Au 0.17 0.22 0.23 0.21 0.19 0.20	+ 150	+ 106	0.24 + 75 \$ 30.2 34.6 26.2 	0.25 + 53 \$ 16.6 13.4 17.8 15.9	9.6 9.1 8.1 8.9	- 38 \$ 43.7 42.8 47.9 44.8
Average Sample Identification 8 hour residues 9A 148 4C Average 4 hour residues 11A	75 75	0.19 Distribution Head ppm Au 0.17 0.22 0.23 0.21	+ 150	+ 106	0.24 + 75 \$ 30.2 34.6 26.2 30.4	0.25 + 53 \$ 16.6 13.4 17.8 15.9	9.6 9.1 8.1	- 38 \$ 43.7 42.8 47.9 44.8 44.4 47.4
Average Sample Identification 8 hour residues 9A 148 4C Average 4 hour residues 11A 158 3C	75 75 75 75 75	0.19 Distribution Head ppm Au 0.17 0.22 0.23 0.21 0.19 0.20 0.19	+ 150	+ 106	0.24 + 75 \$ 30.2 34.6 26.2 	9.25 + 53 \$ 16.6 13.4 17.8 15.9 14.7 18.6 12.6	9.6 9.1 8.1 8.9 8.2 8.9 9.6	- 38 \$ 43.7 42.8 47.9 44.8 44.4 47.4 46.7
Average Sample Identification 8 hour residues 9A 148 4C Average 4 hour residues 11A 158 3C 6D Average	75 75 75 75 75	0.19 Distribution Head ppm Au 0.17 0.22 0.23 0.21 0.19 0.20 0.19 0.17	+ 150	+ 106	0.24 + 75 \$ 30.2 34.6 26.2 	0.25 + 53 \$ 16.6 13.4 17.8 15.9 14.7 18.6 12.6 13.6	9.6 9.1 8.9 8.2 8.9 9.6 7.1	- 38 \$ 43.7 42.8 47.9 44.8 44.4 47.4 46.7
Average Sample Identification 8 hour residues 9A 148 4C Average 4 hour residues 11A 158 3C 6D Average	75 75 75 75 75 75	0.19 Distribution Head ppm Au 0.17 0.22 0.23 0.21 0.19 0.20 0.19 0.17	+ 150	+ 106	0.24 + 75 \$ 30.2 34.6 26.2	16.6 13.4 17.8 15.9 14.7 18.6 12.6 13.6	9.6 9.1 8.1 8.9 8.2 8.9 9.6 7.1	- 38 \$ 43.7 42.8 47.9 44.8 44.4 47.4 46.7 42.1
Average Summary of Residue Size Fr Sample Identification 8 hour residues 9A 148 4C Average 4 hour residues 11A 158 3C 6D Average 2 hour residues 12A	75 75 75 75 75 75 75 75 75 75 75 75 75 7	0.19 Distribution Head ppm Au 0.17 0.22 0.23 0.21 0.19 0.20 0.19 0.17	+ 150	+ 106	0.24 + 75 \$ 30.2 34.6 26.2	16.6 13.4 17.8 15.9 14.7 18.6 12.6 13.6	+ 38 \$	- 38 \$ 43.7 42.8 47.9 44.8 44.4 47.4 46.7 42.1 45.2
Average Summary of Residue Size Fr Sample Identification 8 hour residues 9A 148 4C Average 4 hour residues 11A 158 3C 6D Average 2 hour residues	75 75 75 75 75 75	0.19 Distribution Head ppm Au 0.17 0.22 0.23 0.21 0.19 0.20 0.19 0.17	+ 150	+ 106	0.24 + 75 \$ 30.2 34.6 26.2	16.6 13.4 17.8 15.9 14.7 18.6 12.6 13.6	9.6 9.1 8.1 8.9 8.2 8.9 9.6 7.1	- 38 \$ 43.7 42.8 47.9 44.8 44.4 47.4 46.7 42.1

BMT P0.8 P80 = 106um Sheets 1-6

SUMMARY Test No. (% solids)	Units	6A	. 98	4D	7A	118	13C	30	84	128	14
Hominal Grind 80% passing	UM	106	106	106	106	106	106	106	106	106	106
Total leach time	hours	18	18	18	24	24	24	24	32	32	32
Extraction Au											
at 3 hours	g/t	0.60	0.55	0.54	0.57	0.60	0.57	0.55	0.52	0.61	0.57
at 6 hours	g/t	0.65	0.58	0.58	0.58	0.62	0.62	0.58	0.56	0.61	0.59
at 12 hours	g/t	0.68	0.60	0.60 0.59	0.58 0.59	0.63 0.64	0.63 0.66	0.58 0.61	0.5 8 0.59	0.62 0.61	0.63 0.64
at 18 hours at 24 hours	g/t g/t	0.68	0.61	V.37	0.60	0.64	0.65	0.60	0.61	0.62	0.65
at 32 hours	g/t g/t				V.00	V.01	0.00	7.00	0.60	0.64	0.63
at 3 hours	\$	69.6	70.6	69.3	43.6	73.8	68.0	69.9	66.4	73.7	68.3
at 6 hours	1	75.9	73.4	74.0	44.2	76.7	74.1	72.7	70.8	73.1	71.1
at 12 hours	1	78.7	76.2	76.8	44.7	17.1	75.0	73.6	73.3	74.0	75.6
at 18 hours	\$	78.6	77.4	76.2	45.5	79.3	78.3	76.7	74.3	73.5	77.0
at 24 hours	1				46.1	78.8	77.8	76.0	77.0	74.7	78.2
at 32 hours	1								75.7	77.2	75.8
Calculated Head	ppm Au	0.86	0.79	0.78	1.31	0.81	0.84	0.79	0.79	0.83	0.83
Catcutated mead Ground Head Assay 1	ррини ррини	0.73	0.74	0.70	0.71	0.75	0.80	0.72	0.69	0.78	0.78
Ground Head Assay 2	ppe Au	0.74	0.74	0.74	0.72	0.70	0.75	0.76	0.70	0.74	0.76
Iverage Ground Head Assay	CCM An	0.74	0.74	0.72	0.72	0.73	0.78	0.74	0.70	0.76	0.77
Calculated residue grade	pon Au	0.19	0.18	0.19	0.71	0.17	0.19	0.19	0.19	0.19	0.20
extraction Cu	,,,,,,,,										
at 3 hours	a/t	30	33	31	31	æ	31	34	28	28	31
at 6 hours	g/t g/t	36	39	37	37	30	39	37	34	36	37
at 12 hours	a/t	47	48	48	48	45	48	48	43	44	48
at 18 hours	a/t	52	54	53	53	£	54	53	49	51	53
at 24 hours	g/t				59	61	58	58	52	36	56
at 32 hours	g/t								57	59	61
Issay Head	ppe Cu	298 (a	ive. of two	head split	:s)						
extraction In											
at 3 hours	g/t	1.6	1.6	1.6	1.8	1.6	2.1	1.6	1.5	1.6	1.7
at 6 hours	g/t	2.0	2.0	2.2	2.3	2.2	2.6	2.0	2.0	2.0	<u> </u>
at 12 hours	g/t	2.4	2.5	2.7	3.0	3.1	3.3	2.7	2.5	2.7	2.5
at 18 hours	g/t	2.8	3.2	3.6	3.3	3.1	3.8	3.0	2.8	3.1	2.8
at 24 hours	g/t				3.7	3.4	4.2	3.5	3.2	3.2	3.1
at 32 hours	g/t								3.4	3.6	3.6
Assay Head	ppm in	200 (a	ive. of two	head split	(s)						
faCM consumption											
at 3 hours	kg/t	0.11	0.08	0.12	0.12	0.09	0.10	0.11	0.10	0.09	0.10
at 6 hours	kg/t	0.16	0.14	0.15	0.13	0.13	0.12	0.14	0.15	0.13	0.20
at 12 hours	kg/t	0.18	0.19	0.18	0.20	0.18	0.19	0.19	0.20	0.20	0.2
at 18 hours	kg/t	0.24	0.24	0.23	0.23	0.25	0.25	₹.25	0.25	0.26	0.3
at 24 hours	kg/t				0.25	0.27	0.26	0.26	0.26	0.25	0.33
at 32 hours	kg/t								0.32	0.31	0.37
CaO consumption											
at 3 hours	kg/t	0.86	0.86	0.83	0.85	0.85	0.85	0.84	0.81	0.87	0.8
at 6 hours	kg/t	0.88	0.87	0.84	0.84	0.86	0.83	0.85	0.81	0.86	0.8
at 12 hours	kg/t	0.90	0.88	0.85	0.87	0.89	0.86	0.86	0.83	0.89	0.8
at 18 hours	kg/t	0.89	0.90	0.85	0.86	0.99	0.87	9.86	0.84	0.89	6.5
at 24 hours	kg/t				0.89	0.91	0.89	0.90	0.86	0.93	9.8
at 32 hours	kg/t								0.87	0.93	9.8
ctual grind passing nomin	(4)	76.9	78.4	11.3	76.6	76.6	75.7	75.6	75.4	76.5	76.

BHT5734 Billitor at todo Lon Grade	Sheet 2		S-Hov-29	LEACH AT A	or en inc!	COMPOSITE	690 9 A S	. !			
Hominated Grind P80 = 106u											
tests conducted (date) Test No.	Units	1/11 6A	'/II 98	1/11	1/11 7A	1/11 118	1/11 13C	1/11 30	1/11 84	1/11 128	1/11 14C
Grind 80% passing	UE	106	106	106	106	106	106	106	106	106	106
Total leach time	hours	18	18	18	24	24	24	24	2	32	32
Yessel	9	406.9	407.7	407.8	405.8	407.7	406.5	408.5	407.6	408.2	408.0
Sample mass Sitemater added	9	861.1 1292	838.1 1257	844.9 1267	852.4 1279	843.4 1265	859.8 1290	847.6 1271	897.1 1346	843.7 1266	831.8 1248
Natural pH	9	1272	1C)	1,201	1217	1.003	1270	12/1	1340	1290	1240
CaO added	g	0.83	0.81	0.79	0.81	0.82	0.82	0.80	0.82	0.82	0.77
NaCH added Leach Time	g hrs	1.04 3	1.01 3	1.01 3	1.02	1.01 3	1.03 3	1.02 3	1.07 3	1.01 3	0. 9 9 3
Gross off rolls	9	2557.3	2502.8	2519.1	2536.2	2515.3	2555.0	2525.9	2649.7	2517.4	2486.1
Pulp temperature	deg C	. 21	21	21	21 11.3	21 11.5	21 11.4	21 11.4	21 11.3	21 11.4	21 11.4
Liquor sample A (3 hours)	pii ppa Au	11.3 0.40	11.3 0.37	11.3 0.36	0.38	0.40	0.38	0.37	0.35	0.41	0.36
	ppe Cu	20	22	21	21	22	21	21	19	19	21
	ppm <i>In</i> % NaCH	1.1 0.073	1.1 0.075	1.1 0.072	1.2 0.072	1.1 0.074	1.4 0.073	1.1 0.073	1.0 0.073	1.1 0.074	1.0 0.073
	t CaO	0.007	0.007	0.007	0.007	9.008	0.007	0.007	0.007	0.007	0.008
Gross after sample	9	2505.9	2451.4	2467.3	2484.2	2464.1	2505.6	2474.5	2598.7	2466.1	2434.4
CaO added NaCN added	9	0.00 0.00	0.00	0.00	0.00 6.00	0.00 0.00	0.00 6.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 8.00
Leach time	hrs	3	3	3	3	3	3	3	3	3	3
Gross off rolls Pulp temperature	g deg C	2556.7 24	2501.7 24	2517.9 24	2535.1 24	2514.1 24	2553.9 24	2525.0 24	2648.5 24	2516.1 24	2484.5 24
Liquor sample # (6 hours)	ρH	11.2	11.2	11.3	11.3	11.4	11.3	11.3	11.2	11.3	11.3
	ppm Au	0.42	0.37	0.37	0.37	0.40	0.40	0.37	0.36	0.39	0.38
	ppa Cu ppa Zn	23 1.3	25 1.3	24 1.4	24 1.5	25 1.4	25 1.7	24 1.3	22 1.3	23 1.3	24 1.3
	% HaCH	9.067	0.049	0.967	0.068	0.068	0.069	0.068	0.067	0.068	0.063
Gross after sample	t CaO	0.005 2504.8	0.644 2450.3	2466.6	0.007 2483.9	0.007 2462.9	0.008 2502.9	0.006 2473.8	0,007 2597.4	0.006 2465.2	0.007 2433.7
CaD added	9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NaCN added	g	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Leach time Gross off rolls	hrs g	6 2555.4	6 2499.9	6 2516.4	6 2533.9	6 2511.4	6 2551.8	6 2523.9	6 2647.1	6 2514.9	6 2482.4
Pulp temperature	deg C	24	24	24	24	24	24	24	24	24	24
Liquor sample C (12 hours)	pH ann Au	11.2 0.42	11.1 0.37	11.3 0.37	11.2 0.36	11.3 0.39	11.3 0.39	11.3 0.36	11.1 0.36	11.2 0.38	11.2 0.39
	ppe Au ppe Cu	30	30	30	30	31	30	30	27	7.30	30
	ppm Zn	1.5	1.6	1.7	1.9	2.0	2.1	1.7	1.6	1.7	1.6
	t HaCH t CaO	0.063 0.004	0.062 0.005	0.062 0.005	0.061 0.005	0.062 0.005	0.062 0.006	0.062 0.005	0.061 0.005	0.061 0.005	0.059 0.006
Gross after sample	9	2495.9	2442.7	2457.8	2473.5	2450.5	2491.0	2466.7	2590.5	2457.1	2424.6
CaO added HaCN added	9	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	9.00 9.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
Leach time	g hrs	6	6	6	6	6	6	6	6	6	6
Gross off rolls	9	2554.3	2498.5	2515.6	2533.6	2510.7	2550.9	2525.5	2646.4	2513.9	2461.4
Pulp temperature Liquor sample D (18 hours)	deg C pH	22 11.2	22 11.1	22 11.3	22 11.2	22 11.3	22 11.2	22 11.2	22 11.1	22 11.2	22 11.2
21400 30410 5 (10 1100 5)	ppe Au	0.40	0.36	0.35	0.35	0.38	4.39	0.36	0.35	0.36	9.38
	ppe Cu	32 1.7	33 2.0	32 2.2	32 2.0	34 1.9	.33 2.3	32 1.8	30 1.7	31 1.9	32 1.7
	ppm Zn % NaCH	0.056	0.056	0.056	0.056	9.055	0.755	0.055	0.055	0.054	0.050
	% CaG	0.004	0.004	0.005	0.005	0.004	0.705	0.005	0.004	0.005	0.004
Gross after sample CaO added	9				2476.7 0.00	2452.8 0.00	249s.4 0.00	2467.9 0.00	2500.6 0.00	2454.7 0.00	2424.0 0.00
NaCN added	9				0.00	0.00	0.00	0.00	0.00	0.00	0.00
teach time Gross off rolls	hrs				6 2532.9	6 2509.7	6 2550.1	6 2524.8	6 2644.8	6 2512.7	6 2480,1
Pulp temperature	g deg C				21	21	21	21	21	21	21
Liquor sample E (24 hours)	pii				11.1	11.1	11.1	11.1	11	11.1	11.1
	ppe Au ppe Cu				0.34 35	0.36 36	ê.37 34	0.34 34	9.3 5 31	8.35 22	0.37 33
	ppa In				2.2	2.0	2.5	2.1	1.9	1.9	1.8
	% NaCH % CaD				0.052 0.003	0.05 <u>1</u> 0.003	0.052 0.063	0.052 0.002	0.052 0.003	0.052 0.092	0.047 6.003
Gross after sample	g		•		7.70	4.40	7.490	*****	2595.5	2461.4	2424.6
CaO added	g								0.00	9.00	9.00
MaCM added Leach time	g hrs								9.00 B	8.60 8	9.00 8
Gross off rolls	g								2644.3	2512.0	2479.4
Pulp temperature Liquor sampla F (32 hours)	deg C sH								26 10.8	26 10.9	26 10.9
Frien such reit (95 HAL2)	ppa Au								0.33	0.35	0.34
	ppe Cu								33	34	35
	ppm Zn % MaCN								2.0 9.046	2.1 0.046	2.1 0.042
	‡ CaO								0.002	0.002	9.002
Sample mass account	ila.	855.0	824.5	836.6	B48.4	838.2	853.0	812.0	889.3	832.3	824.6
Residue recovered (screened Ground head to assay	9	833.0 173.5	165.3	836.6 157.4	155.7	163,4	855.8 155.8	165.9	110.1	156.6	166.5
Calculated head to grind	g	1028.5	989.8	994.0	1004.1	1001.6	1008.8	1007.9	995.4	998.9	971.1
Actual head to grind Unaccounted mass	1	1034.6 0.59	1003.4 1.36	1902.3 0.83	1006.1 0.40	1006.8 0.52	1015.6 0.67	1013.5 0.55	1007.2 0.77	1000,3 1.14	998.3 9.72
	-								-2		

BMT5734 Sheet 3 26-Nov-89

BILLITON NT TODD LOW GRADE PRIMARY ORE BOTTLE ROLL CYAMIDE LEACH AT 40% SOLIDS; COMPOSITE BMT P 0.8 ;

Nominated Grind P80 = 106um

Leach Residue Gold Distribution

Particle size um	g	Retained	Passing	ppm Au	ppe Au	ppm Au	ug Au	Au \$
Test No.	6A	Non. P80um	106		18			
+ 150 - 150 + 106 - 106 + 75	60.2	7.0	93.0	0.19		0.19	11.44	7.3
- 150 + 106	137.7	16.1	76.9	0.24	0.26	0.25	34.43	21.
- 106 + 75	142.1	16.6	60.2	0.26	0.26	0.26	36.95	23.
- 75 + 53	84.8	9.9	50.3	0.25	0.26	0.26	21.62	13.6
- 53 + 38	62.3	7.3	43.0	0.22		C. 22	15./1	8.4
- 38	367.9			0.11	0.11	0.11	40.47	25.5
Calculated		100.0					158.6	
Test No.	98					_		
+ 150	47.7	5.8	94.2	0.21		0.21	10.02	6.
- 150 + 106	130.0	15.8	78.4	0.23	0.25	0.24	31.20	20.5
- 106 + 75	139.2	16.9	61.6	0.25	0.22	0.24	32.71	21.9
- 106 + 75 - 75 + 53	88.9	10.8	50.8	0.24	0.25	0.25	21.78	14.6
- 53 + 38	66.2	8.0	42.8	0.22		0.22	14.56	9.8
- 38	352.5	42.8		0.11	0.11	0.11	38.78	26.0
Calculated		100.0					149.0	
Test No.	40	Non. P80un	106	Leach hrs	18			
+ 150	53.0	6.3	93.7	0.20		0.20	10.60	6.0 21.4
- 150 + 106	136.6	16.3	77.3	0.25	0.24	0.25	33.47	21.4
- 150 + 106 - 106 + 75	137.3	16.4	60.9	0.26	0.28	0.25 0.27	37.07	23.
	87.9	10.5	50.4	0.25	0.25	0.25	21.98	14.1
- 53 + 38	66.9	8.0	42.4	0.21		0.21	14.05	9.0
- 38	354.9	42.4		0.11	0.11	0.21 0.11	39.04	25.
Calculated	836.6	100.0				0.19	156.2	100.0
Test Ho.	7A				24			
+ 150	61.7	7.3	92.7	0.20		0.20	12.34	
- 150 + 106	137.1	16.2	76.6	0.25	0.27	0.26	35.65	5.9
- 106 + 75	139.4	16.4	60.1	0.25	0.24	0.25	34.15	5.
- 106 + 75 - 75 + 53	87.1	10.3	49.9	0.24	0.25	0.25	21.34	3.6
- 53 + 38	65.3	1.1	42.2	0.20		0.20	13.06	2.5
- 38	357.8	42.2	•	1.29		1.35		80.
Calculated		100.0				0.71	599.6	100.0
Test No.		Non. P80um	106	Leach hrs	24			
+ 150	59.1	7.1	92.9			0.19	11.23	
- 150 + 106	136.9	16.3	76.6	0.23	0.24	0.24	32.17	22.
- 106 + 75	139.8	16.7	59.9	0.24	0.25	0.25	34.25	23.
- 75 ÷ 53	87.3	10.4	49,5		0.22		19.64	13.
- 53 + 38	66.4					0.20	13.28	
- 38	348.7		.2,0	0.10	0.10		34.87	
Calculated	838.2	100.0				0.17	145.4	100.

BMT5734 Sheet 4 26-Nov-89

BILLITON MT TODD LON GRADE PRIMARY ORE BOTTLE ROLL CYANIDE LEACH AT 40% SOLIDS; COMPOSITE BMT P 0.8 ;

Mominated Grind P80 = 106um

Leach Residue Gold Distribution

Particle size um	g	Retained	Passing	ppm Au	ppm Au	ppm Au	ug Au	Au 1
Test No.	13C	Non. P80um				_	*******	********
+ 150 - 150 + 106			92.3	0.20		0.20	13.18	8.2
- 150 + 106	141.0	16.5	75.7	0.25	0.26	0.26	35.%	22.5
- 106 ± 75	137.8	16.2	59.6	0.26	0.25	0.26	35.14	22.0
- 75 + 53	85.7 64.8	10.0	49.5	0.24	0.25	0.25	21.00	13.1
- 53 + 38	64.8	7.6	41.9	0.21		0.21	13.61	8.5
- 38	357.8	41.9		0.11	0.12	0.12	41.15	25.7
Calculated		100.0					160.0	
	30					_		
+ 150	65.8	7.8	92.2	0.19		0.19	12.50	
- 150 + 106	139.9	16.6	75.6	0.28	0.26	0.27	37.77 37.80	23.4
- 150 + 106 - 106 + 75	135.0	16.0	59.5	0.28	0.28	0.28	37.80	23.4
- 75 + 53	86.8	10.3	49.2	0.26	0.24	0.25	21.70	13.4
- 53 ÷ 38	64.6	7.7	41.6	0.23		0.23	14.86	9.2
- 53 + 38 - 38						0.11		
Calculated		100.0					161.4	
Test No.	8A	Non. P80um	106	Leach hrs	32	_		
+ 150 - 150 + 106	70.3	7.9	92.1	0.18	-	0.18	12.65	7.3
- 106 + 75	143.3	16.1	59.2	0.28	0.28	0.28	40.12	23.3
- 75 + 53	91.2	10.3	49.0	0.26	0.25	0.26 0.24	23.26	13.5
- 53 + 38	63.9	1.2	41.8	0.24		0.24	15.34	8.9
- 38	371.8	41.8		0.11	0.11	0.11	40.90	23.7
Calculated		100.0				0.19	172.4	100.0
Test No.	128					_		
f 150	58.7	7.1	92.9	0.23		0.23	13.50	
- 150 + 106 - 106 + 75	137.1	16.5	76.5	0.25	0.26	0.26	34.%	21.8
	136.2	16.4	60.1	0.25	0.26	0.26	34.73	21.7
- 75 + 53	136.2 87.8	10.5	49.6	0.26	0.28	0.27	23.71	14.8
- 53 + 38								
- 38	348.7	41.9		0.12	0.11	0.12	40.10	25.0
Calculated	832.3	100.0				0.19	160.4	100.0
Test No.	140	Hom. P80um	106	Leach hrs	32	_		
+ 150	56.2					0.33		
- 150 + 106	136.3	16.5	76.7	0.26	0.26	0.26	35.44	
- 106 + 75	139.4		59.8	0.25	0.25	0.25	34.85	20.0
- 75 + 53	93.0		48.5	0.24	0.24	0.24	22.32	13.
- 53 + 38	65.5			0.20		0.20	13.10	7.0
- 38	334.2			0.13	0.13		43.45	
Calculated	824.6	100.0				0.20	167.7	100.0

BILLITON NT TOOD LON GRADE COMPOSITE BAT P 0.8 ;	-	P80=1	106um (18 h		P80=	106um (24	hours)	PE0=106um (32 hours)			
MMALYSIS Fest No. (% solids)	Units	Ave.	Max	Min	Ave.(1)	Max (1)	Mán (1)	Ave.	Max	Mil	
Hominal Grind 80% passing	UNILES ;	106	106	106	106	106	106	106	106	106	
otal leach time	hours	18	18	18	24	24	24	32	32	32	
extraction Au							į				
at 3 hours	g/t	0.56	0.60	0.54	0.57	0.60	0.55	0.57	0.61	0.52	
at 6 hours	a/t	0.60	0.65	0.58	0.61	0.62	0.56	0.59	0.61	0.56	
at 12 hours	g/t	0.62	0.68	0.60	0.61	0.63	0.58	0.61	0.63	0.58	
at 18 hours	g/t	0.63	0.68	0.59	0.64	0.66	0.61	0.61	0.64	0.59	
at 24 hours	g/t			1	0.63	0.65	0.60	0.63	0.65	0.61	
at 32 hours	g/t ;			1				0.62	0.64	0.60	
at 3 hours	3	69.8	70.6	69.3	70.6	73.8	68.0	69.5	73.7	66.4	
at 6 hours	3	74.4	<i>1</i> 5.9	73.4	74.5	76.7	72.7	71.6	73.1	70.8	
at 12 hours	1 ;	77.2	78.7	76.2	75.4	11.1	73.6	74.3	75.6	73.3	
at 18 hours	1	77.4	78.6	16.2	70.1	79.3	76.7	74.9	77.0	73.5	
at 24 hours	*			į	77.5	78.8	76.0	16.7	78.2	74.7	
at 32 hours	•			į			i	76.2	77.2	75.1	
Calculated Head	ppa Au	0.81	0.86	0.78	0.81	0.84	0.79	0.82	0.83	0.79	
Ground Head Assay 1	ppa Au	0.72	0.74	0.70	0.76	0.80	0.72	0.75	0.78	0.69	
Ground Head Assay 2	ppe Au	0.74	0.74	0.74	0.74	0.76	0.70	0.73	0.76	0.70	
Iverage Ground Head Assay	ppa Au	0.73	0.74	0.72	0.75	0.78	0.73	0.74	6.77	0.70	
Calculated residue grade	ppm Au	0.18	0.19	0.18	0.18	0.19	0.17	0.20	0.20	0.19	
Extraction Cu	:						i				
at 3 hours	g/t	31	33	30 ¦	32	33	31	2 9	3 i	28	
at 6 hours	g/t	37	39	36 ;	38	39	37	36	37	34	
at 12 hours	g/t	48	48	47	48	49	48	45	48	43	
at 18 hours	g/t	53	54	52	54	56	53	51	53	49	
at 24 hours	g/t				59	61	56	55	56	52	
at 32 hours	g/t						i	59	61	57	
Assay Head	ppm Cu	298		į	298			298			
Extraction <i>I</i> n	i										
at 3 hours	g/t	1.6	1.6	1.6	1.6	2.1	1.6	1.5	1.6	1.5	
at 6 hours	g/t	2.1	2.2	2.0	2.3	2.6	2.0	2.0	2.0	2.6	
at 12 hours	g/t	2.5	2.7	2.4	3.0	3.3	2.7	2.6	2.7	2.5 2.8	
at 18 hours	g/t	3.2	3.6	2.8	3.3 3.7	3.8	3.0 ¦ 3.4 ¦	2.9 3.2	3.1 3.2	3.1	
at 24 hours at 32 hours	g/t ¦ g/t ;			1	3.7	4.2	3.4	3.6	3.6	3.4	
Assay Head	ppu Zn	200			200		į	200			
aCM consumption				!							
at 3 hours	kg/t	0.10	0.12	0.08	0.10	0.11	0.09	0.09	0.10	0.05	
at 6 hours	kg/t	0.15	0.16	0.14	0.13	0.14	0.12	0.16	0.20	9.13	
at 12 hours	kg/t	0.18	0.19	0.18	0.19	0.19	0.18	0.21	9.22	0.20	
at 18 hours	kg/t	0.24	0.24	0.23	0.25	0.25	0.25	0.28	0.32 A 37	0.25	
at 24 hours	kg/t			į	0.26	0.27	0.26	0.28	0.33 0.37	0.25 0.31	
at 32 hours	kg/t			į			į	0.34	V.31	9.3	
CaO consumption	i			i			i				
at 3 hours	kg/t	0.85	0.86	0.83	0.85	0.85	0.84	9.83	0.87	0.8	
at 6 hours	kg/t	0.87	0.88	0.84 ‡	0.85	0.86	0.83	0.83	0.88	0.8	
at 12 hours	kg/t	0.88	0.90	0.85	0.87	0.89	0.86	0.85	0.89	9.8	
at 18 hours	kg/t	0.88	0.90	0.85	0.87	0.90	0.86	0.86	0.89	0.8	
at 24 hours	kg/t			1	0.90	0.91	9.89	9.88	0.93	0.8	
at 32 hours	kg/t						į	0.89	0.93	0.8	
Actual grind passing nomin	!	77.5		•			,			75.	

Sample Identification	Grind P80 UM	Head ppn Au	† 150 ppm Au	+ 106 ppm Au	+ 75 ppm Au	+ 53 ppm Au	+ 38 ppm Au	- 38 ppn Au
18 hour residues								
6 A	106	0.19	0.19	0.25	0.26	0.26	0.22	0.1
98	106	0.18	0.21	0.24	0.24	0.25	0.22	0.1
40	106	0.19	0.20	0.25	0.27	0.25	0.21	0.11
Average		0.18	0.20	0.25	0.26	0.25	0.22	0.11
4 hour residues								
7A	106							
118	106	0.17	0.19	0.24	0.25	0.23	0.20	0.10
13C	106	0.19	0.20	0.26	0.26	0.25	0.21	0.1
30	106	0.19	0.19	0.27	0.28	0.25	0.23	0.1
Average .		0.18	0.19	0.25	9.26	0.24	0.21	0.1
2 hour residues								
8A	106	0.19	0.18	0.27	0.28	0.26	0.24	0.1
128	106	0.19	0.23	0.26	0.26	0.27	0.21	0.1
14C	106	0.20	0.33	0.26	0.25	0.24	0.20	0.1
Average	4+555	0.20	0.25	0.26	0.26	0.26	0.22	0.1

Summary of Residue Size Fraction Gold Distribution

Sample Identification	Grind P80	Head ppm Au	+ 150 \$	+ 106	+ 75	+ 53 \$	+ 38	- 38 \$
18 hour residues								
6 A	106	0.19	7.2	21.7	23.3	13.6	8.6	25.
98	106	0.18	6.7	20.9	21.9	14.6	5.8	26.0
40	106	0.19	6.8	21.4	23.7	14.1	9.0	25.0
Average		0.18	6.9	21.4	23.0	14.1	9.1	25.9
24 hour residues								
7A	106							
118	106	0.17	1.7	22.1	23.5	13.5	9.1	24.
13C	106	0.19	8.2	22.5	22.0	13.1	8.5	25.
30	106	0.19	7.7	23.4	23.4	13.4	9.2	22.
Average		0.18	7.9	22.7	23.0	13.4	8.9	24.
32 hour residues								
8 A	106	0.19	7.3	23.3	23.3	13.5	8.9	23.
128	106	0.19	8.4	21.8	21.7	14.8	8.4	25.
14C	106	0.20	11.1	21.1	20.8	13.3	7.8	25.
Average		0,20	8.9	22.1	21.9	13.9	8.4	24.

Test 7A with anomolously high - 38um fraction assays has been ommitted from this summary of residues.

BMT P0.8 P80 = 150um Sheets 1-6

,

•

BMT5735 Billiton ht todo low grade		26-Nov-89	CVANIES	LEAGU AT AM	en the	COMPONETTE	MI 0 6 0 (r			
Hominated Grind PBG = 150u		. BUTTLE AULI	. CIMILUE	LEMAN HI TO	301.1034			1			
Test No. (% solids)	Units	1A .	58	140	3A	78	90	160	44	88	110
Nominal Grind 80% passing	UN	150	150	150	150	150	150	150	150	150	150
Total leach time Extraction Au	hours	18	18	18	24	24	24	24	32	32	32
at 3 hours	g/t	0.51	0.48	0.48	0.48	0.48	0.45	0.48	0.49	9.42	0.47
at 6 hours	g/t	0.56	0.50	0.53	0.51	0.53	0.48	0.54	0.53	0.53	0.52
at 12 hours	g/t	0.59	0.58	0.55	0.55	0.55	0.52	0.57	0.55	0.55	0.55
at 18 hours	g/t	0.61	0.55	0.56	0.56	0.56	0.51	0.56	0.56	0.54	0.58
at 24 hours	g/t				0.55	0.56	0.52	0.55	0.56	0.56	0.56
at 32 hours	g/t	£1 (£7 £	55.7	59.1	58.4	58.1	42.9	0.58 58.8	0.56 49.8	0.58 55.6
at 3 hours at 6 hours	1	57.6 63.4	57.5 60.0	55.7 6. 4	63.4	64.3	62.2	48.5	62.9	62.4	61.2
at 12 hours	•	65.9	69.5	63.8	61.7	66.8	66.8	50.6	65.4	64.7	65.2
at 18 hours	i	68.7	65.4	64.7	68.7	67.7	65.4	50.3	66.1	63.9	68.0
at 24 hours	i			• • • • • • • • • • • • • • • • • • • •	67.6	68.5	67.7	49.5	67.0	66.4	65.9
at 32 hours	1								69.2	67.0	68.3
Calculated Head	ppe Au	0.88	0.83	0.86	0.81	0.82	0.77	1.12	0.84	0.84	0.85
Ground Head Assay i	ppe Au	0.86	0.76	0.76	0,80	0.74	0.70	0.76	0.76	0.75	0.79
Ground Head Assay 2	ppm Au	0.77	0.77	0.77	0.86	0.74	0.71	0.74	0.76	0.80	0.80
Average Ground Head Assay	ppm Au	0.82	0.77	0.77	0.83	0.74	0.71	0.75	0.76	0.78	0.80
Calculated residue grade	ppe Au	0.28	0.29	0.31	0.26	0.26	0.25	0.57	0.26	0.28	0.27
Extraction Cu											
at 3 hours	g/t	28	30	28	28	28	27	27	24	28	26
at 6 hours	g/t	33	34	33	34	34	31	31	29	33	32
at 12 hours	g/t	40	42	40	41	41	38	38	35	38	37
at 18 hours	g/t	46	46	45	46 50	46 51	43 47	43 46	39 43	44 48	43 46
at 24 hours at 32 hours	g/t g/t				30	31	*1	70	48	54	52
Assay Head	ppm Cu	298 (a	ve. of t	no head split	s)						
Extraction In											
at 3 hours	g/t	۶.۶	1.5	3.4	1.5	1.6	1.5	1.6	1.5	1.6	1.7
at 6 hours	g/t	1.9	5.0	2.2	1.9	2.2	1.9	2.6	1.9	2.0	2.2
at 12 hours	g/t	2.4	2.5	2.6	2.5 2.8	2.7	2.4 2.8	2.4 2.7	2.2 2.5	2.4 2.6	2.5 2.8
at 18 hours at 24 hours	g/t g/t	2.5	7.1	2.9	2.0 3.0	3.1 9.1	2.9	2.1	2.5 3.6	2.9	3.2
at 32 hours	g/t				5.4	, .	4.,	2.,	6.4	3.4	6.7
Assay Head	ppm Zn	200 (a	ve. of tw	o head split	s)						
MaCM consumption											
at 3 hours	kg/t	0.09	0.11	0.12	0.12	0.12	0.11	0.12	0.12	0.12	0.14
at 6 hours	kg/t	0.14	G.14	0.14	0.17	0.15	0.10	0.16	0.17	0.17	0.18
at 12 hours	kg/t	0.20	0.21	0.22	0.22	0.20	0.23	0.22	0.22	0.22	0.23
at 18 hours	kg/t	0.22	0.25	0.25	0.25	0.24	0.29	0.23	0.21	0.26	0.24
at 24 hours	kg/t				0.30	0.27	0.30	0.29	0.25	0.27	0.27
at 32 hours	kg/t								0.30	0.31	0.35
CaO consumption											
at 3 hours	kg/t	0.94	0.97	0.95	0.95	0.92	0.91	0.95	0.95	0.94	0.91
at 6 hours	kÇ't	0.95	0.98	0.95	0.%	0.93	0.91	0.96	0.96	9.95	0.92
at 12 hours	kg/t	0.95	0.99	0.95	0.%	0.92	0.91	0.%	0.97	0.95	0.93
at 18 hours	kg/t	0.96	C.99	0.%	0.97	0.92	0.92	9.95	0.97	0.95	0.93
at 24 hours	kg/t				0.%	0.93	0.93	9.97	9.97	0.%	0.94
at 32 hours	kg/t								0.99	0.97	0.95
Actual grind passing nomina		70.4	67.0	66.5	66.3	66.0	65.9	67.2	65.3	65.1	63.1
Note: The 'actual grind pas were due to mill drive sli					VI CAR I	काष्ट्रहरू.	ike coarser	unai DUE	neres & I	III,S	

AMPETIE.	*		v H 44								
BRISTON MT TOOD LOW SMACE	Sheet 2 Prinkry on		6-Nov-89 L Cyanide	LEACH AT 4	iot 50L105;	COMPOSITE	E DOT P 0.4	11			
Nominated Grind P80 = 150						*******					
tests conducted (date) Test No.	Units	16	9	140	34	78	9C	10	44		110
Grind 80% passing	US	150	150	150	150	150	150	150	150	150	150
Total leach time	hours	18	18	18	24	24	24	24	¥	Ŋ	32
Vessel	9	408.7	407.0	407.7	407.0	407.3	407.9	405.9	408.0	407.1	497.6
Sample mass	ġ	864.6	839.8	866.5	858.2	884.9	877.1	856.0	850.0	963,7	885.5
Sitemater added	0	1297	260	1300	1267	1327	1349	1284	1267	12%	1529
Hatural pN CaO added		0.89	0.89	0.89	0.89	0.89	0.87	0.89	0.89	0.89	0.89
HaCH added	9	1.04	1.01	1.04	1.05	1.06	1.07	1.03	1.03	1.04	1.66
Leach Time	hrs	3	3	3	3	3	3	3	3	3	3
Gross off rolls Pulo temperature	g deg C	2569.5 22	2505.9 22	2573.5 22	2551.5 22	2618.1 22	2655.3 22	2544.8 22	2551.2 22	2566.2 22	2519.1 22
Liquor sample A (3 hours)	oeg.t pH	11.1	11.1	11.1	11.2	11.1	11.1	11.1	11.1	11.1	11.1
	ppm Au	0.34	0.32	0.32	0.32	0.32	0.30	0.32	0.33	0.28	6.34
	ppin Cu	19	20	19	19	19	18	18	16	19	19 1.2
	pon Zn 1 NaCH	1.0 0.074	1.0 0.073	2.3 0.072	1.0 0.072	1.1 0.672	1.0 0.072	1.1 0.072	1.0 0.072	1.1 0.072	0.976
	t Call	0.006	0.006	0.005	0.006	0.006	0.005	0.006	0.906	0.006	0.007
Gross after sample	g	2515.9	2452.4	2520.2	2498.4	2565.1	2602.6	2495.2	2479.2	2513.5	2467.3
CaO added NaCN added	g	0.00 0.00	0.00 0.00	6.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 6.00	9.00 9.00	0.00 0.00	0.00 0.00
Leach time	g hrs	3	3	3	3	3	3	3	3	3	3
Gross of? rolls	g	2568.4	2506.0	2573.5	2556.5	2617.1	2654.2	2544.2	2550.1	2565.2	2517.9
Pulp temperature	deg C	25	25	25	75	25	25	25	25	25	25 11 A
Liquor sample # (6 hours)	pif pon Au	11.0 0.36	11.0 0.32	11.0 0.34	11.1 0.33	11.0 0.34	11.0 0.31	11.0 0.35	11.6 6.34	11.0 0.34	11.0 0.36
	ppa Cu	21	27	21	22	22	20	20	19	21	22
	ppe Zn	1.2	3.3	1.4	1.2	1.4	1.2	1.3	1.2	1.3	1.5
	t NaCN	0.068 0.005	0.965 0.905	0.068 0.005	0.066 0.005	0.067 0.005	0.070 0.005	0.967 0.005	0.066 0.005	0.046 0.005	0.070 0.006
Gross after sample	\$ C=0	2514.7	2452.3	2520.1	2497.2	2564.2	2594.1	2499.4	2496.0	2513.3	2467.6
CaO added	è	0.00	2.00	0.00	0.00	9.00	0.00	0.00	0.00	0.00	0.00
NaCN added	g	0.00	0.00	0.00	0.00	0.00	0.00	0,00	9.00	0.90	0,00
Leach time Gross off rolls	hrs	6 2568.0	6 2504.3	257 : 7	6 2559.0	6 2617.3	2653.2	2545.7	2545.8	ة 1.6خت	2517.2
Pulp temperature	g deg C	2300.V 25	25	25	25.0	25	25	25	25	25	25 25
Liquor sample C (12 hours)	pH	11.0	11.0	11.0	11.0	11.0	10.9	11.0	10.9	11.6	11.0
	ppa Au	0.36	9.36	0.34	0.34	9.34	0.32	6.35	0.34	6.34	0.37
	ppa Cu ppa Zn	25 1.5	26 1.5	25 1.6	26 1.6	26 1.7	24 1.5	24 1.5	22 1.4	24 1.5	25 1.7
	t HaCH	0.061	0.060	0.060	0.060	0.061	0.058	0.060	0.060	9.060	0.064
	% CaO	0.005	0.004	0.005	0.005	0.005	0.005	0.005	0.004	9.005	0.005
Gross after sample	9	2507.2	2445.1	2513.0	2490.9	2558.5 0.00	2598.8 6.00	2478.7 0.00	2495.5 0.00	2500.8 0.00	2458.9 0.00
CaS added RaCH added	9	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	9.09	0.00	0.00	0.00	8.00
Leach time	hrs	6	6	6	6	6	6	6	6	6	6
Gruss off rolls	9	2566.3	2505.4	2570.9	2548.4	2616.1	2651.6	2544.3	2548.1	2569.1	2515.9
Pulp temperature	deg.€ pii	22 11.0	22 10.9	22 11.0	22 11.0	22 11.0	22 10.9	22 10.9	22 18.9	22 11.0	22 11.0
Liquor sample D (18 hours)	ppa Au	0.36	0.32	0.33	0.33	0.33	0.30	0.33	0.33	9.32	9.37
,	ppm Cu	28	28	27	28	28	26	26	24	27	28
	pps In	1.5	4.5	1.7	1.7	1.9	1.7	1.6	1.5	1.6	1.8
	t RaCN t CaG	0.057 0.064	0.055 0.004	0.055 0.004	0.055 0.004	0.056 0.005	0.852 0.004	0.056 0.005	0.058 0.004	0.055 0.005	0.060 0.005
Gross after sample	9	V.004	V.444	V.VII	2491.6	2557.6	2594.1	2487.3	2009.9	2503.2	2458.0
Call added	9				0.00	6.00	0.00	0.00	0.00	6.80	0.00
NaCH added	g bre				9.06 6	0.0 0 6	9.00 6	9.98 6	6.00 6	9.69	0.00 4
Leach time Gross off rolls	hrs g				2547.5	2615.2	2650.6	2543.5	2548.0	2559.1	2515.2
Pulp temperature	deg C				72	22	22	72	22	22	22
Liquor sample E (24 hours)					10.9	10.8	10.8	10.9	8.41	10.9	10.9
	ppe Au ppe Cu				0.31 29	6.32 39	0.30 28	6.31 27	9.\$2 25	0.32 28	0.34 29
	ppm Zn				1.8	5.8	1,7	1.7	2.2	1.7	2.0
	1 NaCH				0.049	0.051	0.049	9.050	0.053	0.652	9.055
	\$ CaS				0.004	0.004	0.00 3	0.004	9.694	9,604	0.004
Gross after sample CaO added	9								2094,? 0.00	2505.8 8.00	2460,7 0.00
NaCN added	9								0.00	0.00	9.60
Leach time	hrs										
Gress off rolls	9								2543.6	2558.8	2514.4
Pulp temperature Liquor sample F (32 hours)	deg C pli								29 10.6	29 19.6	29 10.6
	ppa Au								6.32	9.31	9.34
	rra Cu								78	31	32
	ppa in								4.8 A A47	2.0	4.5
	% NaCN % CaO								0.047 0.002	0.047 0.003	0.047 0.003
Sample wass account											
Residue recovered (screened	-	856.2	832.9	857.2	852.7	879.7	693.8	850.2	848.5	857.6	872.8
Ground head to assay	9	144.4	166.6 dog 5	142.5	144.2	137.5 1017.2	136.3 1030.1	144.9	145.6 996.1	141.7	145.1 1017.9
Calculated head to grind Actual head to grind	9 9	1000.6 1009.0	999.5 1006.4	999.7 1009.6	9%.9 1092.4	1022.4	1935,1 1935,4	995.1 1980.9	774.1 1063.6	998.9 1988.6	1017.7 1028.4
Unaccomind ness	ĭ	8.83	0.69	0.92	0.55	12.0	1.51	4.52	1.5	0.%	1.62

8NT5735 Sheet 3 26-Nov-89

BILLITON MT TODD LOW GRADE PRIMARY ORE BOTTLE ROLL CYANIDE LEACH AT 404 SOLIDS; COMPOSITE BNT P 6.8; Mominated Grind P80 = 150um

Leach Residue Gold Distribution

Particle size	g	Retained	Passing	ppm Au				Distrib'r Au 1
Test No.	1A				18			
+ 150	253.5	29.6	70.4	0.35	0.36	0.36	89.99	37.6
- 150 + 106	136.5	15.9	54.4	0.35 0.39	0.40	0.40	53.92	22.5
- 106 + 75	86.7	10.1	44.3	0.35		0.35	30.35	12.7
- 75 + 53	59.6	7.0	37.4	0.35 0.25 0.12		0.35	20.86	8.7
- 53 + 38	46.8	5.5	31.9	0.25		0.25	11.70	4.9
- 38 .				0.12		0.12		13.7
Calculated		100.0					239.6	
Test No.	58	Non. P80um	150	Leach hrs	18			
	274.8							
- 150 + 106	106.0	12.7	54.3	0.36	0.37	4.37	38.69	16 0
- 106 + 75	81.0 59.8	9.7	44.5	0.37 0.29		0.34	27.54	11.4
- 75 + 5s	59.8	7.2	37.4	0.29			17.34	
- 53 + 38	41.8						10.03	
- 39	269.5	32.4		0.26 	0.26	0.26	70.07	29.0
Calculated	832.9	100.0				0.29	242.0	100.0
Test No.	140	Non. P80un	150	Leach hrs	18			-
+ 150	287.1	33.5	66.5	0.32	0.33	0.33	93.31	35.4
- 150 + 106	115.5	13.5	53.0	0.37 0.34	0.39	0.38		
- 106 + 75	83.5						28.39	10.8
- 75 + 53	61.6			0.26		0.26		6.1
- 53 + 38	44.2	5.2	30.9	0.24		0.24	10.61	4.0
- 38		30.9		0.26	0.28	0.27		27.1
Calculated	857.2	100.0					263.8	
Test No.	3A	Non. P80un	150	Leach hrs	24			
+ 150				0.32				
- 150 + 106	110.2				0.36			
- 106 + 75	82.1 61.8	9.6	43.8	0.35		0.35		12.0
- 75 + 53	61.8	7.2	36.5	0.29			17.92	8.0
- 53 + 38	44.2		31.3	0.24		0.24	10.61	4.7
- 38	267.2	31.3		0.13	0.12	0.13	33.40	14.8
Calculated	852.7	100.0				0.26	225.3	100.0
Test No.	78	Non. P80um	150	Leach hrs	24			
+ 150		34.0			0.31	0.31		40.5
- 150 + 106	113.2				0.41	0.40	45.28	19.8
- 106 + 75	83.0					0.33	27.39	12.0
- 75 + 53	63.6		36.5			0.28	17.81	7.8
- 53 + 38	44.7	5.1	31.4	0.31		0.31	13.86	6.1
- 38	276.0	31.4		0.12	0.11	0.12	31.74	13.9

BM15735 Sheet 4 26-Nov-89

BILLITON MT TODD LON GRADE PRIMARY ORE BOTTLE ROLL CYANIDE LEACH AT 404 SOLIDS; COMPOSITE BMT P 0.8 ;

Nominated Grind P80 = 150um

Leach Residue Gold Distribution

Particle size um		Retained	Passing	ppe Au	ppm Au	ppa Au		Distrib'n Au 1
	9C					_		
+ 150	305.1	34.1	65.9	0.32	0.29	0.31	93.06	41.4
- 150 + 106	124.9	14.0	51.9	0.36	0.35	0.36	44.34	19.7
- 106 + 75 - 75 + 53	79.1	8.8	43.0	0.31		0.31	24.52	10.9
- 75 + 53	58.7	6.6	36.5	0.27				7.0
- 53 + 38								6.0
- 38	281.0	31.4		0.12	0.12	0.12	33.72	15.0
Calculated	893.8	100.0				0.25	225.0	100.0
Test No.	160	Non. P80um				_		
+ 150	278.8 110.0 83.0						96.19	19.9
- 150 + 106	110.0	12.9	54.3	0.39	0.38	0.39	42.35	
- 106 + 75	83.0	9.8	44.5	0.33		0.33		5.7
- 75 + 53	61.8	7.3	37.2	0.29		0.29	17.92	3.7 2.3
- 53 + 38	44.8	5.3	32.0	0.25		0.25	11.20	2.3
- 38		32.0		1.12	1.00	1.06		
Calculated		100.0					483.2	
Test Mo.	4 A	Non. P80um	150	Leach hrs	32			
+ 150	294.3	34.7	65.3	0.32	0.33	0.33	95.65	43.1
- 150 + 106	108.0	12.7	52.6	0.35	0.39	0.37	39.96	18.0
- 150 + 106 - 106 + 75 - 75 + 53 - 53 + 38	80.3	9.5	43.1	0.33		0.33	26.50	18.0 11.9 7.7
- 75 + 53	60.8	7.2	36.0	0.28		0.28	17.02	7.7
- 53 + 38	45.8	5.4	30.6	0.23		0.23	10.53	4.7
- 38	259.3	30.6		0.13	0.12	0.13	32.41	
Calculated		100.0				0.26	222.1	100.0
Test No.	88	Non. P80um	150	Leach hrs	32	_		
+ 150	298.9	34.9	65.1	0.33	0.31	0.32	95.65	39.8
- 150 + 106	107.7	12.6 9.7	52.6	0.36	0.36	0.36	38.77	16.1
- 106 + 75	83.1	9.7	42.9	0.35		0.35	29.09	12.1
	60.4	7.0	35.8	0.29				
- 53 + 38	51.2	6.0	29.8	0.24		0.24		
- 38	255.7	29.8		0.19	0.18	0.19	47.30	19.7
Calculated	857.0	100.0				0.28	240.6	100.0
Test No.	11C	Non. P80um	150	Leach hrs	32			
+ 150	322.0	36.9	63.1	0.33	0.35	0.34	109.48	46.0
- 150 + 106	105.4	12.1	51.0	0.38	0.40	0.39	41.11	
- 106 + 75	80.9	9.3	41.8	0.32		0.32	25.89	10.9
- 75 + 53	64.7	7.4	34.3 29.4	0.26		0.26	16.82	7.1
- 53 + 38	43.6	5.0	29.4	0.23		0.23	10.03	4.2
- 38	256.2	29.4		0.14	0.13	0.14	34.59	14.5
Calculated	872.8	100.0				0.27	237.9	100.0

BILLITON HT TODO LON GRADE COMPOSITE BHT P 0.8 (P80:	150um (18			150um (24	hours)	P80=	150um (32	hours)
AMALYSIS Test No. (% solids)	Units	1	Manc	 Min	Ave.(1)	Max (1)	Min (1)	Ave.	Hax	H
Nominal Grind 80% passing	UR	150	150	150	150	150	150	150	150	150
Total leach time	hours	10	18	18	24	24	24	32	32	32
Extraction Au							- 1			-
at 3 hours	g/t	0.49	0.51	0.48	0.47	0.48	0.45	0.46	0.49	0.42
at 6 hours	g/t	0.53	0.56	0.50	0.51	0.53	0.48	0.53	0.53	0.52
at 12 hours	g/t	0.57	0.58	0.55	0.54	0.55	0.52	0.55	0.55	0.55
at 18 hours	g/t	0.57	0.61	0.55	0.54	0.56	0.51	0.56	0.58	0.54
at 24 hours	g/t				0.55	0.56	0.52	0.56	0.56	0.56
at 32 hours	g/t ;			- 1			!	0.58	0.58	0.56
at 3 hours	1	56.9	57.6	55. <i>ī</i> ,	58.5	59.1	58.1	54.7	58.8	49.8
at 6 hours	1 :	61.6	63.4	60.0	63.3	64.3	62.2	62.2	62.9	61.2
at 12 hours	1 ;	66.4	69.5	63.8	67.1	67.7	66.8	65.1	65.4	64.7
at 18 hours	1 ;	66.3	68.7	64.7	67.2	68.7	65.4	66.0	68.0	63.9
at 24 hours	1 ;				67.9	68.5	67.6	66.4	67.0	65.9
at 32 hours	1			ļ			į	68.2	69.2	67.0
Calculated Head	ppe Au	0.86	9.88	0.83	0.80	0.82	0.77	0.84	0.85	0.84
Ground Head Assay 1	ppm Au	0.79	0.86	0.76	¢.75	0.80	0.70	0.77	0.79	0.75
Ground Head Assay ?	ppm Au	0.77	0.77	0.77	0.77	0.86	0.71	0.79	0.80	0.76
Average Ground Head Assay	ppe Au	0.78	0.82	0.77	0.76	0.83	0.71	0.78	0.80	0.76
Calculated residue grade	ppe Au	0.29	0.31	0.28	0.26	0.26	0.25	0.27	0.28	0.26
Extraction Ou	i									
at 3 hours	g/t	29	30	28	28	28	27	26	28	24
at 6 hours	g/t	33	34	33	33	34	31	31	33	29
at 12 hours	g/t !	40	42	40	40	41	38	37	38	35
at 18 hours	g/t	46	46	45	45	46	45	42	44	39
at 24 hours	g/t			Í	.49	51	47	45	48	43
at 32 hours	g/t							51	54	48
Assay Head	ppm Cu	298			298		i !	298		
xtraction In							;			
at 3 hours	g/t ¦	2.1	3.4	1.5	1.5	1.6	1.5	1.6	1.7	1.5
at 6 hours	g/t ;	3.0	5.0	1.9	2.0	2.2	1.9	2.0	2.2	1.9
at 12 hours	g/t	2.5	2.6	2.4	2.5	2.7	2.4	2.4	2.5	2.2
at 18 hours	g/t	4.2	7.1	2.5	2.9	3.1	2.8	2.6	2.8	2.5
at 24 hours	g/t			1	5.0	9.1	2.9	3.2	3.6	2.9
at 32 hours	g/t						-	5.5	6.7	3.4
issay Head	ppm In	200		:	200		; ; ;	200		
aCM consumption				i						
at 3 hours	kg/t	0.11	0.12	0.09	0.12	0.12	0.11	0.13	0.14	0.12
at 6 hours	kg/t	0.14	0.14	0.14	0.14	0.17	9.10	0.17	0.18	0.17
at 12 hours	kg/t	0.21	0.22	0.20	0.22	0.23	0.20	0.22	0.23	0.22
at 18 hours	kg/t ;	0.24	0.25	0.22	0.26	0.29	0.24	0.24	0.26	0.21
at 24 hours	kg/t			;	0.29	0.30	0.27	0.26	0.27	0.25
at 32 hours	kg/t						i	0.32	0.35	0.30
aO consumption	:			i						
at 3 hours	kg/t	0.95	0.97	0.94	0.93	0.95	0.91	0.93	0.95	0.91
at 6 hours	kg/t	0.96	0.98	0.95	0.93	0.96	0.91	0.94	0.%	0.92
at 12 hours	kg/t	0.%	0.99	0.95	0.93	0.96	0.91	0.95	0.97	0.93
at 18 hours	kg/t	0.97	0.99	0.%	0.94	0.97	0.92	0.95	0.97	0.93
at 24 hours	kg/t			i	0.94	0.96	0.93	0.95	0.97	0.94
at 32 hours	kg/t						į	0.97	0.99	6.95
				:						

BMT5735

BILLITON HT TODO LON GRADE PRIMARY ORE BOTTLE ROLL CYANIDE LEACH AT 40% SOLIDS; COMPOSITE BHT P 0.8; Mominated Grind P80 = 150um

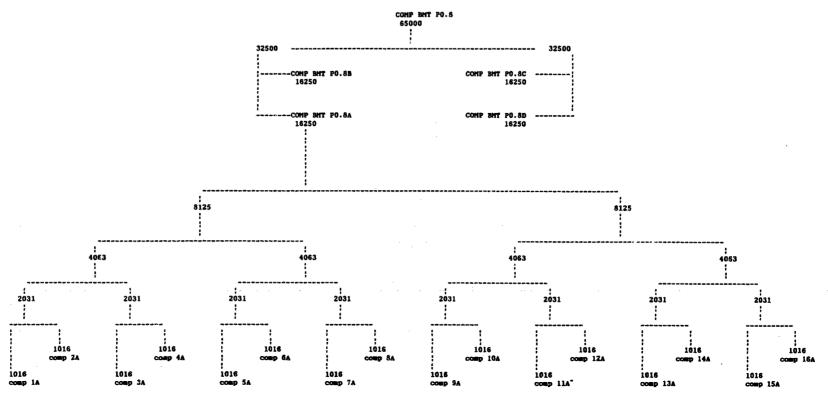
Summary of Residue Size Fraction Assays

Sample Identification	Grind P80	Head ppm Au	+ 150 ppm Au	+ 106+ ppm Au	+ 75 ppa Au	† 53 ppm Au	+ 38 ppm Au	- 38 ppn Au
18 hour residues					********	** ** **	****	
1A	150	0.28	0.36	0.40	0.35	0.35	0.25	0.12
58	150	0.29	0.29	0.37	0.34	0.29	0.24	0.26
140	150	0.31	0.33	0.38	0.34	0.26	0.24	0.27
Aver age		0.29	0.32	0.38	0.34	0.30	0.24	0.22
24 hour residues								
3A	150	0.26	0.33	0.38	0.35	0.29	0.24	0.13
78	150	0.26	0.31	0.40	0.33	0.28	0.31	0.12
9C	150	0.25	0.31	0.36	0.31	0.27	0.30	0.12
160	150							
Average		0.26	0.31	0.38	0.33	0.28	0.28	0.12
52 hour residues			•	∵-4	٠.			
4A	150	0.26	0.33	0.37	0.33	0.28	0.23	0.13
88	150	0.28	0.32	0.36	0.35	0.29	0.24	0.19
110	150	0.27	0.34	0.39	0.32	0.26	0.23	0.14
Average		0.27	0.33	0.37	0.33	0.28	0.23	0.15

Summary of Residue Size Fraction Gold Distribution

Sample Identification	Grind P80	Head	+ 150 %	+ 106	+ 75 1	+ 53 %	+ 38 1	- 38 1
	UM	ppe Au	*	•	•	•	•	•
8 hour residues								
1A	150	0.28	37.6	22.5	12.7	8.7	4.9	13.7
58	150	0.29	32.4	16.0	11.4	1.2	4.1	29.9
140	150	0.31	35.4	16.6	10.8	6.1	4.0	27.1
Average	4,,,,,	0.29	35.1	18.4	11.6	7.3	4.3	23.3
4 hour residues								
3A	150	0.26	41.4	18.3	12.8	8.0	4.7	14.8
78	150	0.26	40.5	19.8	12.0	7.8	6.1	13.9
7€▼ +	150	0.25	41.4	19.7	10.9	7.0	6.0	15.0
160	150							
Average		0.26	41.1	19,3	11.9	7.6	5.6	14.6
2 hour residues								
4A	150	0.26	43.1	18.0	11.9	7.7	4.7	14.6
88	150	0.28	39.8	16.1	12.1	7.3	5.1	19.7
110	150	0.27	46.0	17.3	10.9	7.1	4.2	14.5
Average		0.27	42.9	17.1	11.6	7.3	4.7	16.3

Test 160 with anomalously high - 38um fraction assays ammited from this summary of residues.


sheet 1
PRIMARY ORE DRILL CORE SAMPLE FOR COMPOSITE BMT PO.8

north	drill hole number	from	to	m	Av. RL	grade g/t	core	wt. of sample received gms	sample wt. to comp. gms
9850	BD057	69	70	1.0		0.19		3144	1903
		70	71	1.0		0.09		3114	1971
		71	72	1.0		0.65		3551	2093
		72	73	1.0		0.01		3384	1959
		73	74	1.0		2.22		3817	2083
		74	75	1.0		3.04		3908	1902
		75	76	1.0		0.94		3878	1901
		76	77	1.0		0.51		4027	2094
		77	78	1.0		0.15		3470	2100
		78	79	1.0	108	0.45	0.83	3386	2103
9900	BD069	115	116	1.0		1.30		3836	1904
		116	117	1.0		0.52		4626	1983
		117	118	1.0		0.90		3492	1920
		118	119	1.0		1.34		4211	2062
		119	120	1.0		0.52		3016	2103
		120	121	1.0		0.58		4999	1959
		121	122	1.0		1.09		3266	1976
		122	123	1.6		0.19		3945	1982
		123	124	1.0	57	0.76	C.80	3702	1941
•									
10000	BD001	186		1.0		0.41		2218	2025
	•,	187	188	1.0		1.15		2162	2085
	*.	188	189	1.0		0.79		2202	2027
		189	190	1.0		1.61		2256	2089
		190	191	1.0		0.40		2369	2078
		191	192	1.0		0.58		2435	2040
		192	193	1.0		0.96		2246	2045
		193 194	194	1.0		0.86		2440	2048
		194 ે.	195	1.0		0.73		2549	2013
		195	196	1.0		1.19		2379	1995
•		196	197	1.0	0	0.70	0.85	2425	1935
10100	BD076	196	197	i.0		1.13		1753	1664
		197	198	1.0		0.32		2039	1941
		198	199	1.0		1.11		2232	2055
		199	200	1.0		0.65		2120	2051
		200	201	1.0		0.69		2513	1981
		201	202	1.0		0.81		2309	1963
		202	203	1.0	-18	0.98	0.81	2491	1940

sheet 2
PRIMARY ORE DRILL CORE SAMPLE FOR COMPOSITE BMT P0.8

north	drill hole number	from	to	m	Av. RL	grade g/t	core	e wt. of sample received gms	sample wt. to comp. gms
10150	BD035	90	91	1.0		0.75		3254	2010
10130	50033	91	92	1.0		0.64		4006	1969
		92	93	1.0		0.20		4145	1986
		93	94	1.0		0.28		3376	2035
						1.30	-	3958	1953
		94	95 06	1.0 1.0		1.14		3935	1957
		95 96	96 97	1.0		0.23		3787	1969
		97	98	1.0		0.99		4307	2065
		98	99	1.0		1.56		3353	2032
		99	100	1.0	105	0.63	0.77	4318	2095
		33	100	1.0	103	0.03	0.77	4310	2095
10200	BD009	109	110	1.0		0.80		4055	1983
		110	111	1.0		0.87		4454	2060
		111	112	1.0		0.88		4141	2021
		112	113	1.0		0.51		5283	1968
		113	114	1.0		0.49		3780	1930
		114	115	1.0		0.82		5082	1917
		115	116	1.0		1.55		4426	2067
		116	117	1.0		0.68		4526	2045
		117	118	1.0		0.57		4403	2056
		118	119	1.0		1.10		4055	2073
		119	120	1.0	90	1.06	0.85	2853	2068
10050	DD045	114	115			0.61		4050	2025
10250	BD065	114	115	1.0		0.61		4252	2025
		115	116	1.0		0.57		4136	2011
		116	117	1.0		0.65		3688	2140
		117	118	1.0		1.24		4026	1950
		118	119	1.0		0.88		4030	2032
		119	120	1.0		0.49		3698	2085
		120	121	1.0		1.26		4254	2086
		121	122	1.0		1.00		3827	2087
		122	123	1.0	77	0.55	0.81	4819	2053
Sample	received	but not	incl	uded i	n Comp	osite E	BMT PO.	3	
10200	BD027	211	212	1.0		1.35		2152	2064
		212	213	1.0		0.51		1955	1868
		213	214	1.0		0.59		1974	1892
		214	215	1.0		1.83		2134	2041
		215	216	1.0		0.28		2192	2087
		216	217	1.0		1.12		2790	2036
		217	218	1.0	-27	0.31	0.86	missing	

sheet 1
FION SHEET TO RIFFLE DOWN PRIMARY ORE COMPOSITE BMT PO.8

TYPICAL FOR ALL COMPOSITES

1016 grind 127 assay 3A 389 comp 3A

sheet 2 LEACH TEST PROGRAM : PRIMARY ORE COMPOSITE PO.8

COMP	SITE B	MT PO.SA	TEST PR	OCRAM	COMP	OSITE I	MT PO.88	TEST PR	OGRAH	COMP	OSITE 8	W17 PO.8C	TEST PE	OGRAM	СОНР	OSITE I	MIT PO.8D	TEST PRO	DGRAH
comp sub sample	wt.	test	GRIND P80 UMA	LEACH TIME hrs	comp sub sample	wt.	test	GRIND P80	LEACH TIME hrs	comp sub semple	wt.	test	GRIND P80	LEACH TIME hrs	comp sub sample	wt.	test	GRIND P80	LEACH TIME hrs
1A	1016	LEACH	150	18	18	1016	LEACH	53	18	1C	1016	RESERVE			10	1016	LEACH	38	24
2A	1016	ASSAY			28	1016	ASSAY			2C	1016	ASSAY			2D	1016	ASSAY		
ЗA	1016	LEACH	150	24	3B	1016	LEACH	53	24	3C	1016	LEACH	75	24	30	1016	LEACH	106	24
44	1016	LEACH	150	32	48	1016	LEACH	53	32	4C	1016	LEACH	75	18	40	1016	LEACH	106	18
5A	1016	RESERVE			58	1016	LEACH	150	18	5C	1018	RESERVE			50	1016	LEACH	75	32
6A	1016	LEACH	106	18	6B	1016	RESTRUK			6C	1016	LEACH	38	24	6D	1016	LEACH	75	24
7A	1016	LEACH	106	24	7B	1016	LEACH	150	24	7C	1016	LEACH	53	18	7D	1016	RESERVE		
8A	1016	LEACH	106	32	8B	1016	LEACH	150	32	8C	1016	LRACH	53	24	8p	1016	RESERVE		
9A	1016	LEACH	75	18	9B	1016	LEACH	106	18	9C	1016	LEACH	150	24	SD	1016	LEACH	53	24
1GA	1016	ASSAT			108	1016	ASSAY			10C	1016	ASSAY			100	1016	ASSAY	•••	
114	1016	LEACH	75	24	118	1016	LEACH	108	24	11 c	1016	LEACH	150	32	110	1016	RESERVE		
12A	1016	LEACH	75	32	12B	1016	LEACH	106	32	12C	1016	RESERVE			12D	1016	LEACH	53	32
13A	1016	LEACH	53	18	138	1016	LEACH	38	24	13C	1016	LRACH	106	24	13p	1016	RESERVE	33	32
14A	1016	LEACH	53	24	-14B	1016	LEACH	75	18	14C	1016	LEACH	106	32	14D	1016	LEACH		
15A	1016	LEACH	53	32	15B	1015	LEACH	75	24	15C		RESERVE	100	32				150	18
16A	1016	LEACH	38	24	168	1016	LEACH	75	32						15D		RESERVE		
144	1010	mentin	30	• •	100	1010	LDACE	13	34	16C	1016	Reserve			16D	1016	LEACH	150	. 24

SAMPLE GRIND PREPARATION Each charge ground 0 50% solids. Weigh rods before & after grinding.

LEACH CONDITIONS FOR EACH TEST	
Cyanide (NaCN) concentration	: 0.05
Lime (CaO) concentration	: 0.01
Pulp pH	: 11.0
Pulp density (% solids)	: 40.0
Pulp temperature (degree C)	:ambien

SAMPLING FOR EACH LEACH TEST SAMPLING FOR EACH LEAGH TEST
Head manay smaples to be pulverized prior to duplicate fire assay.

Duplicate fire assays required on ground head samples
Liquor sample to be taken @ 3.6.12.18.24.32 hours.

Each liquor sample to be assayed for MaCN.CCO.PM.Au.Cu.En.
Finel liquor for each sample to be assayed for soluble S. Residue solids to be screened on 150,106,75,53 & 38 um and fractions fire assayed for Au. Duplicate fire assays required on residue mixed fractions if sufficient sample.
Assay head samples 2A & 10C for Cu,Zn,Ag,Pb,As,Pe,& S.

MOUNT TODD GOLD PROJECT

REPORT ON GOULDIAN FINCH INVESTIGATIONS

IN THE YINBERRIE HILLS, NORTHERN TERRITORY

by

08.4674

Brett A Lane and Denise Goodfellow

Prepared by: 1

Brett A Lane Pty. Ltd.

12/262 Barkly Street, North Fitzroy, Vic., 3068

Ph (03) 481 6597

Denise Goodfellow

P.O. Eox 39373,

Winellie,

N.T., 0821

Ph (089) 81 8492

for:

Kinhill Engineers Pty. Ltd.

Billiton Australia Gold Pty. Ltd.

date:

March 1989

Shell House.

1 Spring Street, Melbourne, 3000 P.O. Box 872K, Melbourne, 3001 Facsimile: (03) 666 5839 Telex: AA 134867 SHELL

Telephone: (03) 666 5444

Date

1 September, 1989

FOREWORD

This report on investigations into the status of the Gouldian Finch and its breeding habitat in the Yinberrie Hills was commissioned by Billiton Australia Gold Pty. Ltd. and Zapopan N.L. as the initial stage in a programme of research whose objective is a management plan for the Mt Todd Gold Project. The Preliminary Environmental Report drew from this report.

Detailed follow up work is in progress on habitat availability in the area coincident with the ore body and will include a statistical analysis of relevant parameters for which data has been collected but not yet reported. Results of this survey will be presented by end-November 1989.

A more intensive study of Gouldian Finch breeding and feeding habits will be carried out in February and March during the bird's main period of residence in the Yinberrie Hills for the breeding season.

The Mt. Todd Gold Project is substantially funding research by World Wildlife Fund Australia into the ecology of the Gouldian Finch. This work is being carried out by the Conservation Commission of the Northern Territory.

The principal objective is to determine the prime cause for the decline in abundance of the Gouldian Finch over recent decades which has been variously attributed to clinical effects of mite infestation and adverse changes in habitat. This will hopefully lead to the discovery of appropriate measures to arrest and perhaps reverse the decline.

The Mt. Todd Gold Project seeks to work closely with the Conservation Commission of the Northern Territory and other interested parties to draw up a sound management plan. With this in place it is believed that the presence of the mine will not be a substantial contributing factor to any further decline of the Gouldian Finch.

CSGC

CONTENTS

List o	of Tak	oles		1
List o	of Fig	gures		2
1.	INTI	RODUCTION		3
2.	THE	GOULDIAN	FINCH	5
	2.1	Distribu	tion	5
		2.1.1	Australia	5
		2.1.2	Northern Territory	5
		2.1.3	Yinberrie Hills	7
		2.1.4	Movements	7
	2.2	Status		8
		2.2.1	Changes in Status	8
		2.2.2	Reasons for Decline	9
	2.3	Habitat		13
•		2.3.1	Australia	11
		2.3.2	Northern Territory	13
		2.3.3	Yinberrie Hills	12
3.	FIEL	D SURVEY		14
	3.1	Methods		14
	3.2	Results		15
		3.2.1	Distribution of Eucalyptus alba	15
		3.2.2	Sorghum spp. densities	16
		3.2.3	Helicopter Survey	18
	3.3	Conclusio	ons	20
4.	OTHE	R BIRDS		21
	4.1	Hooded Pa	arrot	21

	4.2 Crested Shrike-tit	21
	4.3 Implications for Development	22
5.	POTENTIAL IMPACT OF PROJECT	23
	5.1 Area Affected	23
•	5.2 Mine Management	23
6.	RESEARCH NEEDS	25
7.	ACKNOWLEDGEMENTS	28
8.	REFERENCES	29
	APPENDICES	
I	Notes on Status of the Gouldian Finch in Other Areas.	30
II	Records of the Gouldian Finch in the Yinberrie Hills.	32
III	Description of Survey Sites.	33
	SUPPLEMENT	
	Gouldian Finch Habitat in the Yinberrie Hills. Supplementary Helicopter Survey, June, 1989.	38

"

CH.

CJBH

List of Tables

		PAGE
Table 1:	Latitude and longitude limits for the distribution of the Gouldian Finch in the Northern Territory, pre-1978 and post-1978.	6
Table 2:	Parameters of Gouldian Finch nesting hollows in E. brevifolia at Newry Station, N.T.	12
Table 3:	Parameters of Gouldian Finch nesting hollows in E. alba in the Yinberrie Hills, N.T.	13
Table 4:	Density of E. alba and other parameters at each site surveyed.	16
Table 5:	Ground coverage of Sorghum spp. at tree survey sites.	17
Table 6:	Mean ground coverage of Sorghum spp. at sites in different settings.	17
Table 7:	Results of the helicopter survey.	19
Table 8:	Results of ground and helicopter survey results at validation sites.	19

List of Figures

		BETWEEN PAGES
Figure 1:	Map of northern Australia showing original and current known distribution of the Gouldian Finch.	5/6
Figure 2:	Distribution and numbers of Gouldian Finch reported in the Northern Territory.	5/6
Figure 3:	Occurrence of the Gouldian Finch in the Yinberrie Hills.	7/8
Figure 4:	Map of study area showing the location of transect and survey sites.	14/15
Figure 5:	Map of study area showing the distribution of high quality Gouldian Finch habitat.	19/20

1.0 INTRODUCTION

This report presents the results of an investigation of the status of the Gouldian Finch (Erythrura gouldiae) and its habitat on the site of the proposed Billiton Australia Gold Pty. Ltd. gold mine in the Yinberrie Hills area between Pine Creek and Katherine in the Northern Territory. The Gouldian Finch is a highly endangered bird and it has been the subject of intensive research by scientists from the Conservation Commission of the Northern Territory in recent years which has confirmed the precarious state of the species' population.

Billiton Australia Gold Pty Ltd. propose to develop a gold mine on the east n edge of the Yinberrie Hills. The Hills are one of only two sites in the Northern Territory where the bird is known to breed. Accordingly, a study was needed to determine the species' status in the area and to develop guidelines for the development and management of the mine which minimise its impact on the species and its habitat. The objectives of this investigation were:

- 1. to determine the availability of suitable breeding habitat for the Gouldian Finch in the Yinberrie Hills in order to place the mine site in context;
- 2. to determine the quality of Gouldian Finch breeding habitat (density of hollows and food) in areas where the mine and associated infrastructure could be situated so that a map of breeding habitat quality can be prepared to assist in the siting of components of the mine in the least sensitive areas;
- 3. to investigate the likelihood of Gouldian Finch feeding areas being affected by the development;
- 4. to develop management guidelines for the operation of the mine which will minimise or eliminate significant effects on the Gouldian Finch;
- 5. to develop objectives and guidelines for further research and monitoring work relevant to the design, management and rehabilitation of the mine;
- 6. to develop objectives and guidelines for research of the ecology of the Gouldian Finch which could be funded by the company through World Wildlife Fund Australia or other avenues.

Because of the lack of detailed data on the distribution of the Gouldian Finch near the mine site, a detailed survey of the availability of breeding and feeding habitat in the area was required. After discussions with Sonia Tidemann of the Conservation Commission of the Northern Territory (John Woinarski was not available), it was decided to survey the area for the quality of breeding and feeding habitat. From this, preliminary recommendations for mine design could be developed.

C38"

The next section of this report reviews the status, distribution and habitat of the Gouldian Finch and looks at possible reasons for its decline. This is considered at three scales: nationally, within the Northern Territory and in the Yinberrie Hills area. This is followed by a report on the field investigation conducted between 7th and 12th February and 6th and 13th April 1989 and it includes the methods adopted, summaries of date and analyses and some conclusions. The next section of the report deals with other birds which are of concern. The section following this considers the implications of the findings of the investigation for mine design and management and assesses the impact of the mine on the species and its habitat. final section comprises a discussion of Gouldian Finch research needs and some research recommendations.

2385

2.0 THE GOULDIAN FINCH

This section of the report describes the distribution, status and habitat of the Gouldian Finch in Australia, in the Northern Territory and in the Yinberrie Hills.

2.1 Distribution

2.1.1 Australia

The Gouldian Finch is the most restricted in distribution of any of the northern Australian finches and its dietary preferences appear to be narrower than other related species (Tidemann, 1987). Immelmann (1982) and Pizzey (1980) give its range as extending west to Derby, W.A. and south-east to Charters Towers in Queensland. Data gathered during the Atlas of Australian Birds (Blakers, Davies & Reilly, 1984) shows a more limited distribution than this. The authors of the Atlas comment that the species' has declined, particularly in the eastern part of its range, in Queensland. Figure 1 shows the species' distribution, both in the past and in more recent times.

2.1.2 Northern Territory

The Gouldian Finch occurs in the northern third of the Northern Territory between the Western Australian border and Boroloola in the east, and from Daly Waters in the south to Greenhill Island (just south of Cobourg Peninsula) in the north (Storr, 1977). Appendix I gives details of the occurrence of the species in the Northern Territory based on a number of published and unpublished sources. This information is summarised below and Figure 2 shows its distribution in the Territory.

The most recent and comprehensive information available on the distribution of the Gouldian Finch in the Territory comes from surveys by Sonia Tidemann and John Woinarski of the Conservation Commission of the Northern Territory. Sonia Tidemann has kindly made available a summary of these records. Twenty-four regions of the Northern Territory, within the species' historical range, were searched for periods ranging from 2 to 35 days. Gouldian Finches were recorded in nine of these regions. Appendix I gives details.

On the face of it, these records suggest a strong parallel between the occurrence of the species in a region and the number of days spent by observers in that region. However, two points are worth noting.

First, Gouldian Finches were generally detected within a day or two of arriving in an area (S. Tidemann, pers. comm.). If the species was found then more time was spent surveying the area. The parallel is thus an artifact of the need to collect detailed information on the behaviour of the finch if detected in a region.

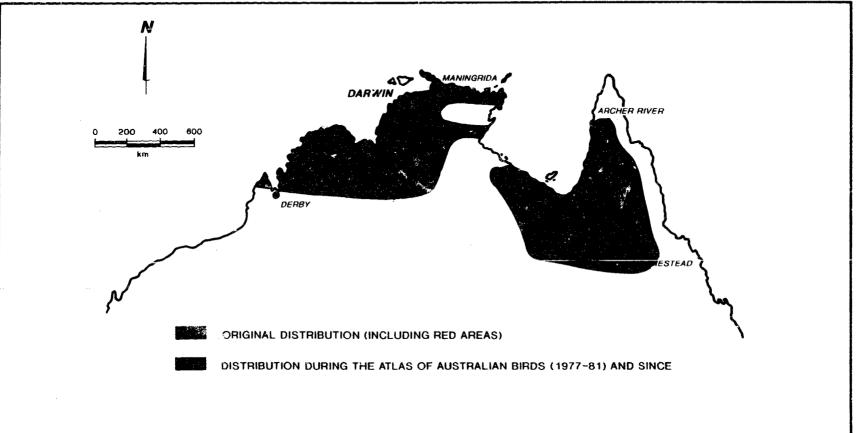
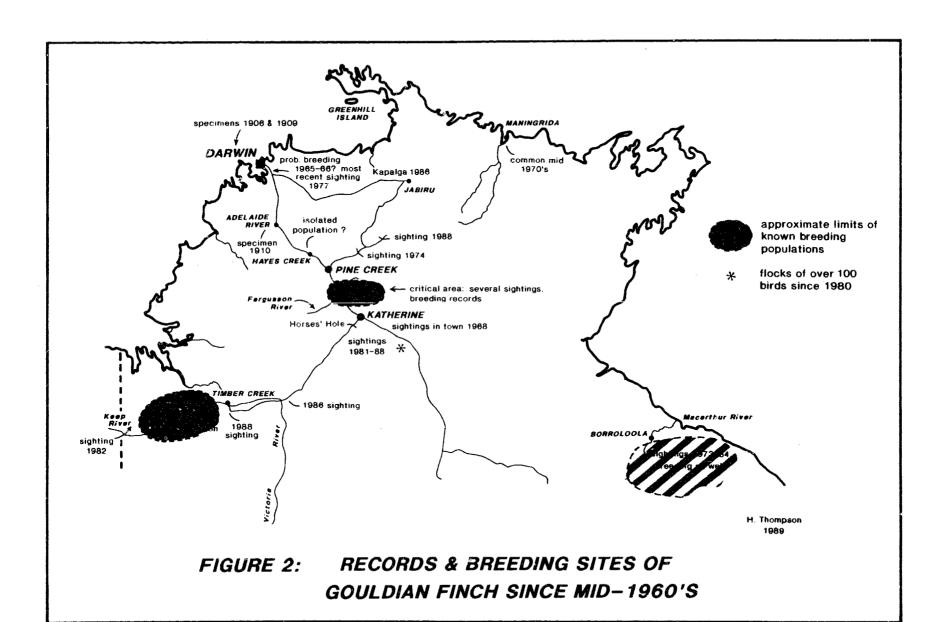



FIGURE 1: MAP OF NORTHERN AUSTRALIA
SHOWING ORIGINAL AND CURRENT
KNOWN DISTRIBUTION OF
THE GOULDIAN FINCH

(SOURCES: BLAKERS, ET AL., 1984; TIDEMANN, 1987)

The results of the survey are therefore a good indication of the distribution and status (see later) of the Gouldian Finch in the Northern Territory.

Second, the Conservation Commission has found the bird breeding in only two places in the Territory: at Newry Station and in the Yinberrie Hills.

Its occurrence within its range does not appear to be continuous. Blakers et al. (1984) draw attention to a "recent" break in its distribution at the head of the Gulf of Carpentaria. This break appears to be a longer standing phenomenon than these authors believe. Recent historical research by Tidemann (1987) shows that there are no documented records from this part of the species' range (see Figure 2).

No records have been documented away from the coast of Arnhem Land. This could reflect the distribution of observers as the region has been subject to very limited access for many years. Field surveys here could clarify the status and distribution of the Gouldian Finch in this region.

The distribution of the Gouldian Finch in the Northern Territory has contracted in recent years. As evidence for the decline in the species' status, Tidemann (1987) cited the fact that records between 1978 and 1982 from the Atlas of Australian Birds (Blakers, et al.,1984) appeared to come from a smaller area than did earlier records (back to 1840). The relevant latitude and longitude limits for the two periods are given in Table 1.

TABLE 1: latitude and longitude limits for the distribution of the Gouldian Finch in the Northern Territory, pre-1978 and post-1978 (source: Tidemann, 1987).

Period	Latitude		Longitu	ıde
	North limit	South limit	West limit	East limit
pre-1978	11 ⁰ 25'S	17 ⁰ 50'S	129 ⁰ 30'E	137 ⁰ 42'E
post-197	8 12 ⁰ 20'S	16 ⁰ 00'S	129 ⁰ 10'E	139 ⁰ 10'E
percent change	-14	-29	+4	+18

As can be seen, there has been a 43 percent decline in the north-south range of the species, much of it in the southern part of the species' range. Conversely, there has been a 23 percent increase in its east-west range. The increased east-west range is more than cancelled out by the dramatic decline in north-south range, showing that the Gouldian Finch has indeed contracted in distribution in the Northern Territory. The reasons for the expansion in its east-west range are not

known, but it could be related to the increased accessibility to observers of areas in the east with the construction over the last twenty years of "developmental roads" in north-western Queensland.

2.1.3 Yinberrie Hills

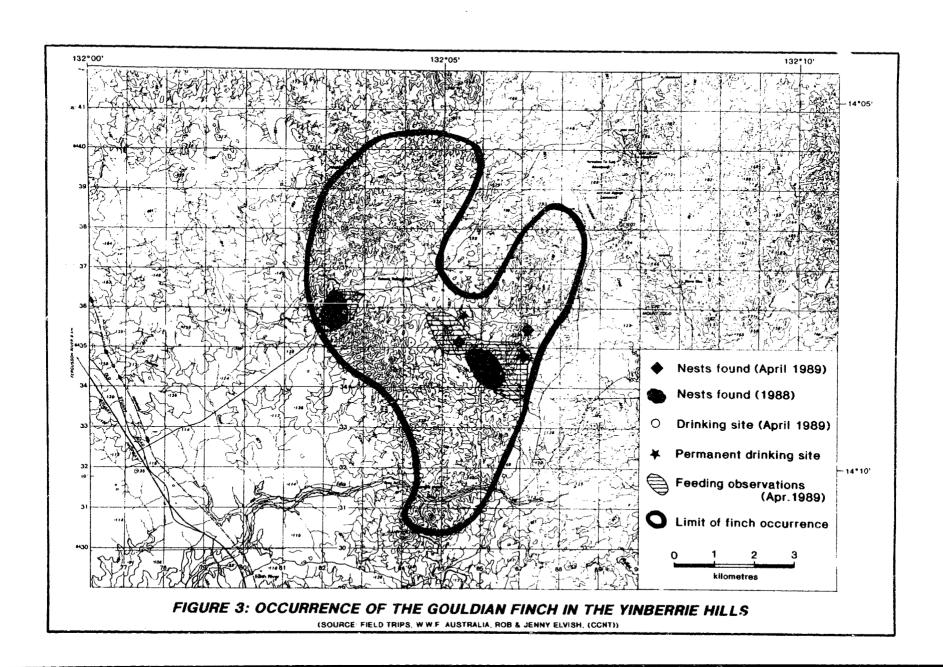

The Yinberrie Hills area, 40 kilometres north of Katherine has been known to local bird-watchers and trappers for at least twenty years, and it is considered by them to be the traditional area in which to see Gouldian Finches.

Figure 3 shows the distribution of the species in the Yinberrie Hills area. This is based on discussions with Sonia Tidemann, and Rob and Jenny Elvish of the Conservation Commission of the Northern Territory, on information supplied to Billiton Australia Gold Pty. Ltd. by World Wildlife Fund Australia and on information gathered during the two field trips. Information provided on this map includes data gathered up to mid-1988. Details are provided in Appendix II.

2.1.4 Movements

Both Immelmann (1982), and Evans and Fidler (1986) mention a migration of the Gouldian Finch out of the northern part of its range in the wet season, its breeding season (December to April). Blakers, et al. (1984) comment that there were too few records of the species in the Atlas of Australian Birds to determine the extent of the movement, or if, as Immelmann suggests, they breed only in the southern part of their range. This together with records summarised in Appendices I and II, show that there is little-evidence-to-indicate-a-seasonal-movement. Indeed, there are records of Gouldian Finches breeding in the Darwin area in the late 1960's (see Appendices). Research by Tidemann (pers. comm.) in the Yinberrie Hills shows that numbers there vary through the year, suggesting a degree of nomadism, as distinct from regular seasonal migration. More research is needed to determine the nature, extent and factors influencing movements of the Gouldian Finch.

In the Yinberrie Hills, the species is present all year round, albeit in varying numbers, both as a breeder and in non-breeding flocks. Banded individuals have moved up to 4 kilometres within the area. This suggests that the year-round requirements of the species are met in this area. This includes food, water, shelter for roosting at night and breeding sites. Birds recorded in other regions of the Territory may be more mobile if these requirements are not met at some times of year. Tidemann (pers. comm.) has suggested that the breeding population in the Yinberrie Hills may be a source of some of the birds sighted elsewhere, although there is not direct evidence to support this.

2.2 Status

This section of the report reviews the status of the Gouldian Finch, concentrating mostly on the Northern Territory. The first part reviews the change that has occurred in the status of the species in recent years and the next part discusses reasons for the decline in its population.

2.2.1 Changes in Status

The Gouldian Finch was once more abundant than it is now. It was first reported as declining by Heumann (1926). Storr (1977) reported that it was "formerly the commonest finch of the semi-arid zone, but [it is] now uncommon to moderately common...". The decline in the species has been most noticeable in Queensland, where its range has contracted considerably as shown on Figure 1 (Blakers, et al., 1984).

Trapping returns to the Western Australian Department of Conservation and Land Management, anecdotal reports from reliable observers, both bird-watchers and ex-trappers (H. Thompson, pers. comm.), and a small study by Evans and Bougher (1987), have demonstrated their recent endangered status (Tidemann, 1987). Evans and Bougher (1987) were told by one of their guides that flocks of several thousand individuals used to occur in the Kimberleys. The largest flock that they saw was of 50 to 100 birds.

Birdwatchers collecting information for the Atlas of Australian Birds (Blakers, et al., 1984) sighted Gouldian Finches in a smaller range than those reported before (see Section 2.1.2). Ex-trappers have reported seeing very large flocks numbering several hundred in the Yinberrie Hills/Edith Falls area 12 to 14 years ago but only occasional birds in more recent years (H. Thompson, pers. comm.).

The bird used to be seen in the Darwin area. Neville Cayley (in Immelmann, 1982) painted from specimens collected at Port Darwin in 1906 and 1909, and it has bred behind the old Darwin hospital in the late 1960's (Don Jacobs, pers. comm. to H. Thompson). There is another report of 15 birds in a Fannie Bay yard in April 1974. In 1977, two were seen at Diana Beach and their behaviour suggested that they were wild birds, not aviary escapees (H. Thompson, pers. comm.). There have been no records since from the Darwin area.

Relatively large flocks of Gouldian Finches have been reported occasionally in recent years. J. McKean (unpubl. notes) has reported seeing a flock of 300 birds in the Katherine area in September 1985. F. Maher (pers. comm.) has reported seeing a flock of about 200 individuals at the Fergusson River in June 1988. H. Thompson (pers. comm.) has stated that the species has become more difficult to find over the last twenty years or so.

The available evidence clearly indicates that the Gouldian Finch has become much rarer in the last fifteen to twenty years. In Darwin and Katherine, the species was common in the late 1960's. By the mid 1970's, there were occasional reports from these towns but none since. The species therefore started to decline in the late 1960's with a crash in numbers occurring in the mid 1970's.

Sonia Tidemann has recently stated that the bird "has declined in numbers by about 80 percent in the last fifteen years". There are probably about 1,000 breeding birds left in the Northern Territory which breed in two areas: Newry Station and the Yinberrie Hills (Tidemann, pers. comm.). Its current breeding status in Western Australia and Queensland is not known.

The species is now classified by wildlife biologists who compile the Red Data Book for the International Union for the Conservation of Nature (IUCN) as "endangered" (Collar and Andrew, 1988).

2.2.2 Reasons for Decline

The literature discusses a number of reasons for the decline of the Gouldian Finch population but in few areas is there agreement.

All agree that the proximate cause for the species decline, at least in the Northern Territory and Western Australia is the Air-sac Mite (Stenostoma tracheacolum) which infests the respiratory system of birds. This mite has often been found in both captive and wild birds of many species, mostly in the northern hemisphere. Tidemann, Woinarski and Freeland (in press) dissected 367 finches and mannikins, including some Gouldian Finches, from thirteen sites in the Northern Territory and Western Australia between Katherine and Wyndham. They found Air-sac Mite infestation in 58 percent of Gouldian Finches collected. As well, the infestation was observed in one Pictorella Mannikin (Lonchura pectoralis). More adult Gouldian Finches than young ones were affected and 70 percent of the sample from Katherine were infested compared with 43 percent from the Kimberley region.

Aviculturalists are familiar with Air-sac Mite, which is widespread in captive populations of birds and becomes a very serious problem when they are under stress. After treatment, and the removal of the stressing conditions, the disease is easily controlled.

Trapping for the avicultural market has been cited as a cause of the decline of the Gouldian Finch (Collar and Andrew, 1988). Tidemann (in press) considers that it may be partly to blame. Other papers suggest that legal trapping this century is unlikely to have caused its decline (Tidemann, Woinarski and Freeland, in press). Licenced trapping of Gouldian Finches for the avicultural market was stopped in 1981. Evans and Bougher (1987) found no evidence

for a recovery in numbers after this time, evidenced by survey results in the Kimberleys of 123 birds in 1983 and 125 birds in 1985. Although only a small sample, this suggests that some other factor must be operating to keep the population low.

northern in the tropical savannahs of Burning regimes Australia, originally maintained by the aboriginal population, have probably changed little since European settlement and the arrival of pastoral activities (Stocker and Mott, 1981). Burning practices differ between cattle stations although most areas are burnt at least once per year (Tidemann, in press). The timing of the fire may be important to the survival and regeneration of some annual and perennial grasses of importance as food sources for the Gouldian Finch (Stocker and Mott, 19810. Fire may be an asset to the Gouldian Finch as it removes clumps of grass, making seed on the ground more accessible to feeding finches (Tidemann, in press). Woinarski (in press) reached the same conclusion for early dry-season fires, which tend to be less intense, but believed that late dry-season fires, in August, resulted in the destruction of most ground seed. This would be detrimental to seed eating birds, such as the Gouldian Finch.

Grazing by free-range cattle and feral populations of herbivores (e.g. Donkeys, Water Buffalo) may have influenced the availability of food for the Gouldian Finch. Tidemann (in press) has examined this possibility and has concluded that grazing adversely affects the Gouldian Finch, although it is unlikely to be the only reason for the decline. Grazing acts in two ways. First, it reduces the ground cover of grasses. Second, the grasses which the finch prefers (Sorghum spp., see section 2.3) are also preferred by cattle. Cattle and Gouldian Finches are thus in competition.

Although Air-sac Mite appears to be the proximate cause of the decline of the Gouldian Finch, it is possible that the disease has manifested in response to some stress. This stress could be caused by changes in habitat conditions due to a range of human-induced environmental changes, including those mentioned above, which are affecting food supplies. The Gouldian Finch feeds on the narrowest range of grass species of any of the northern Australian Finches and would therefore be most likely to be vulnerable to bottlenecks in food supplies at which time it could be susceptible. The current situation is possibly a result of both changes in food supply caused by environmental change and of the inability of birds to obtain what they need as a result of being weakened by Air-sac Mite infestation.

Excellent steps have been taken by wildlife biologists working with the Conservation Commission of the Northern Territory in isolating and defining more rigorously the possible causes for the species' decline. The current inconclusiveness about the influence of trapping, fire and grazing on the population of the Gouldian Finch arises from a lack of fundamental data on its biology in the wild.

כטטט

Some has come from the studies quoted in this report but more needs to be generated before the relationship between the bird and its environment is more completely understood. Only with this information can the ultimate causes for the decline of the Gouldian Finch be determined and appropriate habitat management undertaken.

2.3 Habitat

This section of the report looks at the habitat of the Gouldian Finch. Breeding, feeding and drinking habitat is examined throughout Australia, in the Northern Territory and in Yinberrie I'lls.

2.3.1. Australia

The Gouldian Finch is a bird of the wet-dry tropics, occurring in Eucalyptus open forests and woodlands with a predominantly grassy understorey (Blakers, et al., 1984). The species breeds mostly in the hollows of some eucalypt species, placing a flimsy nest platform of dry grasses at the bottom of the hollow. It has also been observed breeding in the old nests of Crimson Finches (Neochmia phaeton) in Pandanus sp. (see Appendix I), but this is exceptional. They feed on the seeds of grasses which grow under eucalypts in tropical open forest and woodlands. They have been recorded eating insects (Immelmann, 1982).

They never occur far from water, visiting waterholes at least once per day, like most seed eating birds (Tidemann, 1987). During the wet season, water is widely available but during the dry season, it is restricted to a small number of waterholes and springs which are visited by flocks of large numbers of finches of a range of species, including the Gouldian Finch, where it occurs. (Evans and Bougher, 1987; Tidemann, 1987).

2.3.2 Northern Territory

In the Northern Territory, the Gouldian Finch has been reported breeding in a number of species of eucalypts. At Newry Station, Tidemann (pers. comm.) found 20 nests, all of which were in hollows of E. brevifolia. The parameters of these hollows are given in Table 2.

In the Yinberrie Hills, Gouldian Fir.ches have been recorded nesting only in the hollows of E.alba*. J. McKean (unpubl. notes) found two nests in sandstone ridge 35 kilometres south of Borroloola. One was in E. miniata and the other was in E. dichromophloia. A trapper (see Appendix I) found them nesting in species of eucalypt other than E. alba but could not identify the trees.

The food of the Gouldian Finch in the Northern Territory consists almost entirely of the seeds of grasses. A study of their diet in the Northern Territory by Tidemann (1987;

^{*} Note that E. alba is now known as E. tintinans. For the purpose of this report, the name has not been changed.

שטטט

in prep.) has found that the species eats seeds from a narrower range of species compared with other finches. They eat Sorghum plumosum and S. stipoideum. Only when these are not available do they take other species, notably Eriachne obtusa and Zerochloa sp. (Tidemann, pers. comm.). In a study of the occurrence of finches in relation to pastoral practices, Tidemann (in press) found that the seeds of Sorghum spp. were more abundant on the ground at sites where Gouldian Finches occurred than at sites where they were absent.

TABLE 2: parameters of Gouldian Finch nesting hollows in E. brevifolia at Newry Station, N.T. (20 nests) (Source: Tidemann, pers. comm.).

Parameter Value

Internal diameter of entrance 32 to 70 millimetres

External diameter at entrance 80 to 180 millimetres

Depth to nest 180 to 670 millimetres

Angle of entrance (from horiz.) -5 to +35 degrees

Tidemann (pers. comm.) has stated that the requirements of the Gouldian Finch appear to be the presence of suitable breeding hollows in trees and an abundant source of Sorghum spp. seed within four kilometres of the breeding sites. This is known to occur in only two places in the Northern Territory, one of which is the Yinberrie Hills.

Although it would be desirable to know the limits of various habitat parameters favourable to the Gouldian Finch (e.g. density of suitable hollows, abundance of Sorghum spp., etc.), to guide survey work and management practices, there are too few areas where the species now breeds to enable such generalisations. It is only possible to determine such limits within the suitable areas (Newry Station and Yinberrie Hills) based on the behaviour of the birds within them.

2.3.3 Yinberrie Hills

Figure 3 shows the distribution of the Couldian Finch in the Yinberrie Hills. In this area, they have been recorded breeding only in hollows of E. alba. The parameters of these hollows are given in Table 3. In this area, the species chooses a wider range of hollows than at Newry Station. The nests found by Woinarski occurred in both the western and eastern parts of the area (see Fig 3).

Gouldian Finches, including large numbers of young birds, were observed feeding in an area of Sorghum spp. on an area of ridge in the south-eastern part of the hills in 1988 and 1989, including during the current investigation. They have also been observed feeding in similar habitat in the flat lower lying undulating country between the two main ridges of hills in the area.

TABLE 3: Parameters of Gouldian Finch nesting hollows in E. alba in the Yinberrie Hills, N.T. (5 nests) (source: J. Woinarski, pers. comm.).

Parameter Value

Internal diameter at entrance 50 to 120 millimetres

External diameter at entrance N/A

Depth to nest N/A

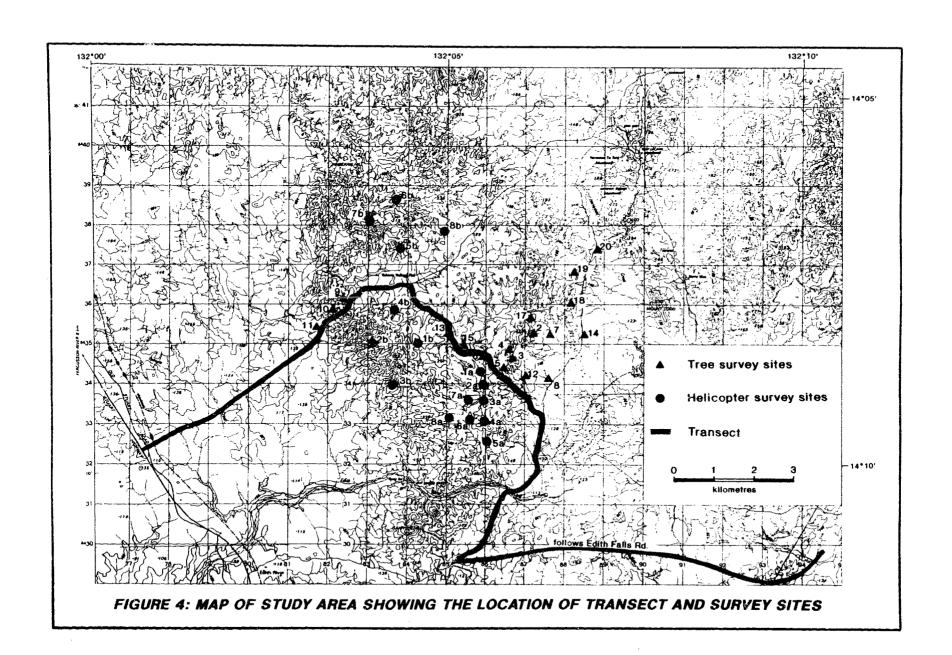
Angle of entrance (from horiz.) -35 to +90 degrees

The juxtaposition of ridges with suitable nesting habitat (E. alba) and abundant Sorghum spp. makes the area highly suitable. As habitat parameters were studied during the current investigation, the habitat preferences of the species in the Yinberrie Hills are dealt with in more detail in the next section.

3.0 FIELD STUDY

This section of the report details the aim, methods, results and conclusions of the field investigation. The aim of the investigation was to determine the distribution of suitable breeding habitat for the Gouldian Finch as a basis for assisting in the development of a mine design, management and rehabilitation plan which will minimise or eliminate significant effects on the species. This concentrated on two important habitat components: the availability of nesting hollows in E.alba and the presence of appropriate food resources (Sorghum spp.). The study area is marked on Figure 4.

The data and conclusions presented in this section of the report refer only to the species' breeding habitat in the Yinberrie Hills and may not abe relevant to the species' ecology outside this area or at other times of year.


3.1 Methods

A brief survey was done of the status of E. alba in the region. The percentage of E. . in the tree layer was determined at sites every kilometre ong the road between Edith Falls camping ground and the Stuart highway via the old Edith Falls Road through the Yinberrie Hills (see Figure 4). At each station, a sample of fifty trees was counted. The transect represented an environmental gradient from low, undulating country to foothills, then the highest ridges in the eastern part of the Yinberrie Hills and back into the lower country to the west.

Gouldian Finches have been observed breeding in the hollows of E. alba on ridges in the Yinberrie Hills area. relevant parameters of nests are presented in the previous section of this report. To determine the availability of nesting sites, 35 adjacent E. alba were inspected on twenty sites (see Figure 4). The size of the area containing these trees was estimated. Two of these (sites 1 and 16) were outside the area currently known to hold Gouldian Finches. The sites covered a range of settings, detailed in Appendix Vegetation descriptions were taken for each site, an estimate of the ground coverage was made and the percentage of this which was Sorghum spp. was also determined. The survey was conducted from 7th to 12th February and from 6th to 13th April 1989. During the survey, a watch was kept for Gouldian Finches.

The extent to which the sites chosen represent the density of E. alba and Sorghum spp. in their respective settings is not known. We believe that the results give a reasonable indication of the extent to which suitable breeding and feeding sites for the finch occur on the mine site compared with other areas.

On each tree on a site, the following measurements and observations were recorded: height in metres; circumference at breast height in centimetres; whether the tree was

hollow, based on tapping and listening; the angle of the branches (i.e. predominantly vertical versus some horizontal); the presence of dead branches, an index of hollow formation (none, few, some or many); and the presence of hollow entrances, their angles from horizontal and, where appropriate and practical, their internal diameters, and whether they were clogged with termite material.

3.2 Results

Data analysis concentrated on determining the availability of nesting sites in E. alba and the presence of suitable food resources. These are discussed separately below.

3.2.1 Distribution of Eucalyptus alba

Time constraints did not permit a detailed survey of the distribution of E. alba throughout the Yinberrie Hills and adjacent areas. The transect that was taken from Edith Falls into the ridges of the Yinberrie Hills and out again to the Stuart Highway (see Figure 4) indicated that the proportion of E. alba in the tree canopy was significantly higher in the Yinberrie Hills than in areas of lower relief (mean %: 16.55 vs 8.33; t = 2.94; df = 27; p < 0.01).

Table 4 gives, among other results, the density of E. alba at each of the tree survey sites.

There were no significant differences in the density of E. alba in different settings (ridges vs foothills vs flats). Neither was there a significant difference between survey sites in the percentage of E. alba in the canopy.

The density of hollow E. alba was generally higher on ridge sites than on foothill or flat sites, although the differences were not statistically significant. Similarly, the highest densities of hollows were found on ridge sites and the lowest on flat sites, but, again, the differences were not statistically significant.

At the three nest sites (sites 10, 12 and 15), the density of E. alba ranges from 8.75 to 35.00 per hectare. This was from one of the lowest densities to one of the highest of the twenty tree survey sites. Likewise, hollow densities at the three nest sites ranged from one of the lowest to the highest. This suggested that the density of E. alba and the density of hollows was not limiting the usage of an area by breeding Gouldian Finches.

TABLE 4: Density of E. alba and other parameters at each site surveyed.

SITE	NO.E.ALBA PER HA.	NO.HOLLOW E.ALBA PER HA.	NO.HOLLOWS PER E. ALBA	% E. ALBA WITH HOLLOWS	HOLLOWS PER HA.
1	43.7 23.3	7.47 9.32	4.5 5.0	17.1 40.0	33.6 46.6
2 3	23.3	15.31	4.0	65.7	61.2
4	23.3	11.98	3.3	51.4	39.5
5	12.0	4.67	4.5	40.0	21.0
6	35.0	17 .9 9	2.3	51.4	41.4
7	17.5	8.50	3.0	48.6	25.5
8	38.9	11.12	3.3	28.6	36.7
9	12.0	9.00	3.3	80.0	29.7
10*	8.8	4.50	3.4	51.4	15.3
11	7.0	3.80	3.0	48.6	11.4
12*	17.5	9.50	3.0	54.3	28.5
13	36.0	13.00	2.7	31.4	35.1
14	29.2	6.67	2.4	17.1	16.0
15*	35.0	17.00	3.9	48.6	66.3
16	17.5	9.00	2.4	48.6	21.6
17	6.0	3.33	2.8	51.4	9.3
18	7.0	4.20	3.1	57.1	13.0
19	14.0	6.80	3.5	46.7	23.8
20	29.2	6.67	3.1	22.9	20.1

(* = Gouldian Finch nesting site)

3.2.2 Sorghum spp. densities

At tree survey sites, the ground coverage of Sorghum spp. was estimated. For the first eight sites, an overall estimate was made for the entire site. For the remaining sites, surveyed during the second field trip, an estimate was made of Sorghum spp. ground coverage around each tree (4 m radius). For these, the values were averaged to obtain an estimate for the whole site. The results are presented in Table 5.

The density of Sorghum spp. varied. It was highest on the ridge and foothill sites and lovest on the flats. These differences were statistically significant (see Table 6).

The three nest sites all had above 60% ground coverage of Sorghum spp. They were above average in all cases. This suggested strongly that Gouldian Finches were chosing to breed in areas with a high availability of Sorghum spp.

שו וכ

TABLE 5: Ground coverage of Sorghum spp. at tree survey sites.

SITE	COVERAGE	OF	SORGHUM	SPP.	(%)	
1	c.	20				
2	c.	50				
3	c.	90				
4	c.	50				
5	c.	95				
6	c.	90				
7	c.	20				
8	c.	20				
9	53	3				
10*	64	1				
11	18					
12*	60					
13	77					
14	17					
15*	74					
16	65					
17	71					
18	48					
19	30)				
20	26	5				

(* = Gouldian Finch nesting site)

TABLE 6: Mean ground coverage of Sorghum spp. at sites in different settings.

SETTING	MEAN GROUND COVERAGE(%)	T-TEST
FLATS	24.0	
FOOTHILLS	55.3	4.05, df=8, p<0.01
RIDGES	72.5	2.57, df=6, p<0.05
	, 2	7.98, df=4, p<0.01
FLATS	24.0	

Viewed together with the results for E. alba and hollow densities, these findings indicated that Gouldian Finches were probably selecting breeding sites on the basis of food supply rather than on the basis of a high availability of nesting sites. Food supply is therefore probably more limiting to the species than nesting site availability. Furthermore, food availability was greater on ridges and foothills than on the flats. This would account for why Gouldian Finches have been found breeding only in the ridges and foothills in the area and not on the flats, despite the presence of densities of E. alba and hollows greater than those at one of the breeding sites.

Indeed, the eastern limit of occurrence of the species in the Yinberrie Hills based on information supplied by the Conservation Commission of the Northern Territory and the boundary between areas of less than and greater than 60% ground coverage of Sorghum spp. generally coincided. Information on the ground coverage of Sorghum in the western part of the Yinberrie Hills was not detailed enough to show if this were the case elsewhere.

A final observation further supports the hypothesis that in the Hills nesting site availability is not limiting the breeding range of Gouldian Finches. There was no correlation between the density of E. alba and the ground coverage of Sorghum spp. at the tree survey sites (r = -0.10, n = 20, NS). The two factors are distributed independently. Nesting occurred in sites where only one of these factors, Sorghum spp. ground coverage, was different from the range present in the area.

3.2.3 Helicopter Survey

In the light of these results, a helicopter survey was done on 11th and 12th May 1989 to extend the coverage of the habitat survey. It was possible to determine from the low flying helicopter the following parameters: percentage of E. alba in the canopy, the number of E.alba in a 100m by 100m square and the ground coverage of Sorghum spp. at unburnt sites.

Sixteen additional sites were surveyed in this way. As well, five sites surveyed on the ground (2 to 6 inclusive) were covered from the air for validation purposes. The location of the helicopter survey sites is shown on Figure 4 and the results are presented in Table 7.

The results of the ground and helicopter survey results at the five validation sites are presented in Table 8.

The helicopter survey results differed from the ground survey results in the following ways. Estimates of the percentage of E. alba in the canopy differed by between -29 and +43 percent. Those of the number of E. alba per hectare differed by between -29 and +50 percent. Estimates of the percentage ground coverage of Sorghum differed at the three sites where comparison was possible by between -20 and +44 percent. The range of actual values given a possible error of -30% and +50% is shown in brackets in Table 7.

Even allowing for up to 50% difference in estimates, the helicopter survey results still provide a broad picture of changes in these parameters across the region surveyed. Figure 5 maps the area which includes sites with greater to all 8 E. alba per hectare and more than 60% ground coverage Sorghum spp.. These values have been chosen as they were the minima for known breeding sites.

TABLE 7: Results of the Helicopter survey. (Numbers in brackets are possible ranges of values; see later).

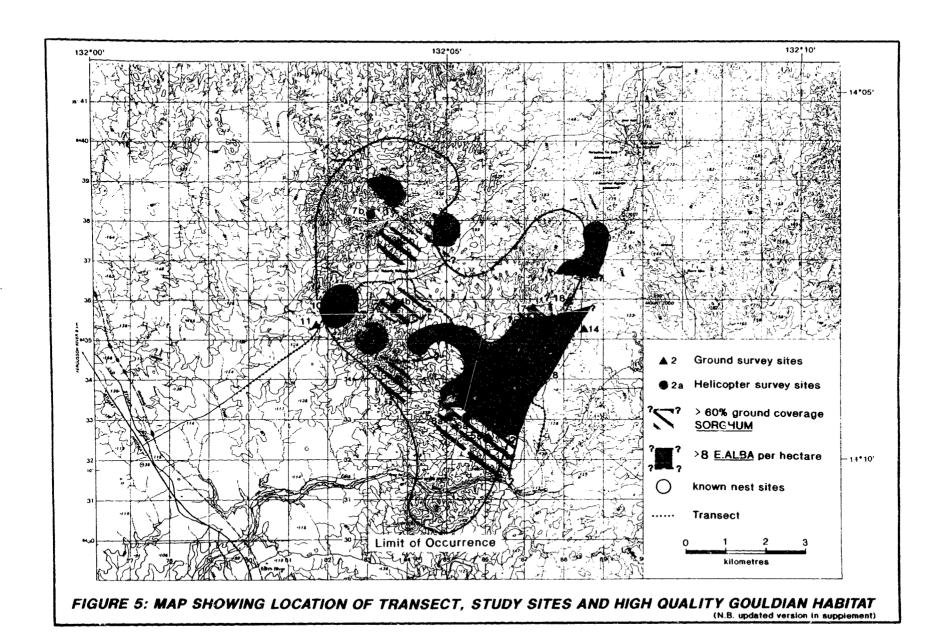

SITE	%E.ALBA IN	NO. E.ALBA	%GROUND COVERAGE
	CANOPY	PER HA.	SORGHUM SPP.
1a	20 (21 - 45)	22/16-24\	80(56-100)
	30 (21-45)	23 (16-34)	,
2a	30(21-45)	21(15-31)	77 (54-100)
,3a	15(10-22)	26(18-39)	90(63-100)
4a	15(10-22)	10(7-15)	60 (42-90)
5a	35 (24-52)	7 (5-10)	77 (54-100)
6a	5(3-7)	4 (3-6)	80(56-100)
7a	15 (10-22)	11(8-16)	86(60-100)
8a	5 (3-7)	9(6-13)	77 (54-100)
1b	40 (28-60)	15(10-20)	80(56-100)
2b	15 (10-22)	7(5-10)	90(63-100)
3b	15(10-22)	5 (3-7)	90(63-100)
4b	5 (3-7)	3 (2-5)	90(63-100)
5b	5 (3-7)	2(1-3)	95(66-100)
6b	10(7-15)	9 (6-13)	95 (66-100)
7b	10(7-15	6(4-9)	56 (39-84)
8b	10 (7-15)	7(5-10)	86(60-100)

TABLE 8: Results of ground and helicopter survey at validation sites. (Site numbers are the same as those for the ground survey).

SITE PARAMETER		2	3	4	5	6
% E. ALBA IN CANOPY	(G)	35	35	30	10	35
	(H)	40	50	25	10	25
NO. E. ALBA PER HA.	(G)	23.3	23.3	23.3	12	35
	(H)	20	18	18	18	22
% GROUND COV. SORGHUM SPP.	(G)	50	90	50	95	90
	(H)	72	*	*	86	72

(* = site burnt, ground coverage estimate not possible)

The area where these two parameters overlapped was considered to be the area of highest quality Gouldian Finch breeding habitat. As can be seen from Figure 5, this occurs in an east-west strip across the southern part of the hills. This was broader at its eastern end. It is from this area that Gouldian Finches, and especially breeding, have been most frequently reported. During the habitat survey, the species was seen in this area but not in other areas. This area probably supports the greatest numbers of breeding Gouldian Finches. High quality habitat does not occur throughout the species' range in the Yinberrie Hills. There was also an area of high quality habitat in the north-western part of the Hills but this had not been visited on the ground during the survey.

Outside the region surveyed but within the Gouldian Finch's known range in the Hills, there may be more high quality habitat. Based on general observations outside the habitat survey region, this is unlikely to be a large area, as E. alba appeared to occur in very low densities across large tracts of lower, flatter country in the northern part of the Hills. Notwithstanding this, the species is likely to move to areas with low E. alba densities but with high ground coverage of Sorghum spp. to feed.

3.3 Conclusions

The availability of suitable nesting sites for the Gouldian Finch varied at both a regional and local scale in the Pine Creek - Katherine area. There were more E. alba in the Yinberrie Hills than in surrounding areas. The pattern of variation in density of E. alba within the Yinberrie Hills was not clear. Although higher densities of this tree and of potential nesting hollows tended to occur on the ridges and foothills than on flat country, the differences were not statistically significant.

Food resources (Sorghum spp.) were significantly greater on ridges and foothills. It is likely that this is a more influential factor in the finch's choice of a breeding site within the Yinberrie Hills than the availability of tree hollows which does not appear to be limiting. The observed distribution of Sorghum spp. probably accounts for the preference of the Gouldian Finch to nest in trees on ridges and foothills rather than on flat country.

The highest quality habitat (suitable densities of E. alba and ground coverage of Sorghum spp.) occurred in the southern part of the Yinberrie Hills.

4. OTHER BIRDS

Two other birds of significance have been recorded from the Yinberrie Hills and surrounding areas: the Hooded Parrot (Psephotus dissimilis) and the Crested Shrike-tit (Falcunculus frontatus). These are discussed below.

4.1 Hooded Parrot

The Hooded Parrot is classed as an endangered species by the Royal Australasian Crnithologists Union.

It was recorded throughout the areas visited during the field trips in February and April 1989, from Edith Falls to the western part of the Yinberrie Hills. It was found feeding on the seeds of low grasses and herbs in pairs and small family groups beside roads and tracks, or drinking from many pools and streams in the area. It was estimated that in the Edith Falls - Yinberrie Hills area 50 to 60 birds may occur, although a comprehensive survey was not conducted.

The species occurs in northern and central Arnhem Land, from the Katherine River east to the mouth of the Roper River, south to Daly Waters and west to about the Stuart Highway. It was once more widespread, with records from early this century coming from the MacArthur River near the south coast of the Gulf of Carpentaria and from Melville Island, north of Darwin (Blakers, et al., 1984).

It has been heavily trapped for the bird trade but the reasons for its decline are not fully understood. Forshaw (1982) suggested that this decline was more likely to be due to changes in dry season food availability due to grazing and changed fire regimes in the Top End.

The Katherine-Pine Creek region is clearly one of the species' strongholds. It breeds in holes which it excavates in termitaria. There are comparatively few termitaria in the proposed mine site, suggesting that the area may not be significant for breeding. However, the presence of good numbers in April, when breeding commences (Forshaw, 1982), and the fact that most were in pairs or family parties suggests that the area may be important for breeding. More survey work would be needed to determine the significance of the area for the species.

4,2 Crested Shrike-tit

There are three sub-species of Crested Shrike-tit. The least known is the northern sub-species, whitei. This was recorded in two localities near the mine-site during the April 1989 field trip: one was recorded in foothills about one kilometre to the south of the proposed mine pit and the other in ridges about one kilometre west of the pit site. In both areas, alba, Ε. dichromophloia and Ε. Eucalyptus Ground cover consisted of dense Sorghum spp. predominated. This vegetation type is widespread in the Yinberrie Hills.

'UU 15

There has been concern for the status of this sub-species in the Northern Territory. The Atlas of Australian Birds (Blakers, et al., 1984) gives only two records from between 1977 and 1981: one near Pine Creek and the other near Timber Creek. It was not recorded during the recent fauna survey of Kakadu Stage 3 (Woinarski, et al., 1989).

Earlier records come from Larrimah in the Northern Territory and a number of areas in the Kimberley region and a second population of whitei occurs between Cairns and Townsville in north Queensland (Blakers, et al., 1984).

Very little is known about the bird in the Northern Territory and it is rare and may be restricted to a handful of isolated populations. The significance of the current sightings is difficult to gauge without more information on its status. The two sites where the bird was recorded are not going to be affected by the proposed mine.

4.3 Implications for Development

The Hooded Parrot is a seed eater, feeding predominantly from the ground. Every effort should be made to minimise the destruction of ground cover during the development and operation of the mine. The Crested Shrike-tit is a tree dweller and the clearance of trees should be restricted to the minimum necessary for the development.

0044

5. POTENTIAL IMPACT OF PROJECT

The design of the mine has been altered. This section of the report deals only with the modified mine design.

5.1 Area Affected

Of the total area of the Yinberrie Hills used by Gouldian Finches during the breeding season, about 6.5% will be lost with the development of the mine pit and the raw-water storage areas. Of the area of high quality habitat in the southern part of the hills, 6.5% will be lost as a result of the mine pit. The waste rock dump, low grade stockpiles, treatment plant and tailings dam have been moved out of the Hills on to the lower lying areas outside the habitat used by the Gouldian Finch.

The raw-water storage areas are located in areas with very low densities of E. alba. Ground coverage of Sorghum spp. in these areas is patchy but quite high in places. These developments will reduce available feeding habitat in the hills by about 4 percent. The storages will provide a year-round supply of clean water for drinking.

The impact on the population of the Gouldian Finch in the Yinberrie Hills of the 6.5 percent loss of habitat is difficult to predict. It could result in a corresponding decline in the breeding population in the area. This is more likely to result from a loss of food resources than from a loss of nesting sites as the latter do not appear to be limiting. This assumes that the population in the Hills is currently at carrying capacity level, and it is not possible to know it this is the case without further research (see later).

5.2 Mine Management

This brief section outlines measures which could be taken to minimise the effect of the mine on the birds of the area.

By keeping access road, pipelines and other mine infrastructure to the east of the Hills, disturbance of remaining Gouldian Finch habitat will be minimised.

Noise and dust from the mine will probably render a small, additional area around the pit unsuitable for Gouldian Finches. The extent of the effect of noise on the species is difficult to gauge but in the past, Gouldian Finches have been recorded feeding and drinking very close to roads and settled areas, indicating a degree of tolerance to noise and human activity. It is not possible on available evidence to quantify this effect.

0020

Tree clearing and ground disturbance the immediate areas to be developed good tree coverage will assist not noise levels in nearby habitat but i limiting the dispersion of dust.

Areas already disturbed by explorat on activities should be rehabilitated with planted Sorghum $\operatorname{sr} \rho$, and E. alba propagated from seed collected locally. Similar measures should be taken in other areas which must be disturbed temporarily in the course of mine development, such as around the raw-water storage dams.

Every effort should be made to reduce the area of standing water in the tailings dam. Water is very scarce in the dry season and the contaminated water in the tailings dam would represent one of the few water sources available to fauna at this time of year. Accordingly, measures should be taken to prevent access to any contaminated water by wildlife. A very effective method for doing this is stringing fencing wire across the relevant area at intervals of about 10 metres and hanging squares of Nylex "Paraweb" from them. The edges of wet areas should also be fenced with "Paraweb" on wire and This treatment prevents access by birds and star pickets. other fauna from the shore and from above. It has the added advantage of being easy to move about as the tailing disposal area within the dam is moved. Alternative clean drinking sites could be provided near the tailings dam to attract birds away from it.

UUC

6. RESEARCH NEEDS

Mt. Todd Gold has donated money to World Wildlife Fund Australia for research into the biology and conservation needs of the Gouldian Finch. This provides the opportunity to expand knowledge of the species and, if spent appropriately, its requirements. This has the potential to lead to an explanation of why the species has declined over that last two decades or so. Only once the factors which have contributed to this decline have been identified can remedial measures be taken to restore the population to a secure position.

The Conservation Commission of the Northern Territory has conducted a number of research programmes on the species since 1986. These are summarised below.

The Commission has conducted detailed surveys of the northern third of the Northern Territory to determine the current distribution of the Gouldian Finch. These have shown that the species has declined in range and numbers and only two regular breeding sites are now known. Information given to us (H. Thompson, perc. comm.) suggests that there may be other breeding populations in the Northern Territory (see Appendix 1). Furthermore, almost nothing is known of the status and distribution of the Gouldian Finch in central Arnhem Land.

Banding studies have been conducted to determine population numbers through capture-recapture techniques and to gather food samples from the crops of captured birds. Recapture rates were not sufficient to enable accurate estimates of population size. Furthermore, the majority of birds caught using the mist-netting technique were juveniles. The more experienced, wary adults were probably not caught in numbers representative of their proportion in the wild population using this technique. This has been found to be the case in numerous bird species, both in Australia and in other countries.

Some of the Gouldian Finches caught have been banded on the leg with unique combinations of plastic bands and the metal one. Much valuable information on life-history can be obtained from known individuals. To be worthwhile, this requires a considerable effort following up birds and observing their behaviour in the field for at least a whole year. Currently, resources do not stretch to getting the most out of this technique.

Studies have found that the most serious proximate cause of mortality in the species is likely to be infestation with Air-sac Mite. More than 70% of birds in the Yinberrie Hills were infested, and more than 40% in the Kimberley region. This epidemic probably poses the greatest immediate threat to the species. Aviculturalists have extensive experience with Air-sac Mite, and most of those whom we spoke to said that it was widespread in captive populations and that it became a very serious problem when captive birds

UUEC.

were under some form of stress. The species may have become vulnerable to the disease after an environmental change placed stress on them. Once the disease took hold, numbers crashed and infested birds have found it more difficult to obtain the food they need and numbers have continued to decline. Unfortunately, there is no way of confirming this as historical data on the wild population are lacking.

Breeding season surveys at Newry Station and in the Yinberrie Hills have been undertaken since 1986. Characteristics of nesting hollows have been described, and detailed vegetation descriptions have been taken of the sites where the species has been found breeding and feeding. These data await analysis. Sorghum seed has been collected for energetic and nutritional analysis. The vegetation descriptions and the seed analysis are the first steps in describing the food availability and choice of feeding site.

An important and crucial question requiring more research is how the bird exploits the resources available to it in the areas in which is choses to feed. We are not aware of any research being done on the detailed foraging ecology of There has been correlational research on the the species. occurrence of the species in different areas compared with a range of natural and human factors. The causes of these correlations are not known. Finding the answer to the above question will illuminate the causes. It is important that the connection between the finch's behaviour and the phenology and productivity of its food sources is more fully understood. This may help to identify potential bottlenecks in annual food supply which can then be related back to the growing literature on the impact of grazing and fire on tropical grasses. Such research will also clarify if the species is living in numbers approaching the carrying capacity of its habitats and if, therefore, opportunities exist for improving this habitat through management.

The following research recommendations are made:

- i. More surveys of areas which might hold breeding populations of the Gouldie: Finch should be conducted. This should include those areas mentioned in Appendix 1 and central Arnhem Land and areas of Western Australia and Queensland where the species may occur.
- ii. Efforts must be made to determine the foraging ecology of the Gouldian Finch as it relates to the productivity and phenology of its food.
- iii. Individually banded birds should be followed up, both in the breeding and non-breeding seasons as a basis for determining the population dynamics of the species (i.e. reproductive rate, survival/mortality rates) and its movements.
- iv. Any management work, such as exclusion of grazing, prescribed burning and planting of food resources in an area should be preceded and followed by detailed studies of their effects on vegetation, food resources

and foraging behaviour of the Gouldian Finch and measurements of the same parameters on control sites.

The above studies necessitate a funding commitment beyond one year. All relevant organisations should investigate ways of jointly providing this security for research. Only with continuity of research personnel, expertise and data collection techniques over more than one year can a fuller picture of the biology of the Gouldian Finch emerge, one upon which effective management measures can be based. The involvement of volunteer bird-watchers from all over Australia should be investigated through the Royal Australasian Ornithologists Union. Their involvement would be particularly relevant to tasks 1 and 3.

UUCH.

7. ACKNOWLEDGEMENTS

This investigation has benefited greatly from detailed discussions on the status and ecology of the Gouldian Finch with Dr. Sonia Tidemann of the Conservation Commission of the Northern Territory. We are grateful to her for her time and interest in our investigation. She also provided yet to be published papers and notes from her file on CCNT Gouldian Finch research.

Rob and Jenny Elvish of the Conservation Commission of the Northern Territory provided detailed information about the location of Gouldian Finch nests and feeding areas - the 1989 field trip. We very much appreciate their time and help.

John Woinarski has provided information on the nesting hollows of Gouldian Finch in **E. alba** and a number of yet to be published papers. We are most grateful for this contribution.

We are very grateful to Hilary Thompson for allowing us access to his records on the status, distribution and behaviour of the Gouldian Finch in the Northern Territory.

John McKean kindly provided his unpublished notes on the species throughout its range.

The Civil Aviation Authority kindly made available information on bird deterrent techniques.

We appreciate the help of John Thorpe of Kinhill Engineers Pty. Ltd. for organising much of the logistics of the field survey and for his help in many ways when in Darwin.

UUC5

8. REFERENCES

Blakers, M; S J J F Davies & P N Reilly (1984) The Atlas of Australian Birds. Melbourne University Press: Melbourne.

Collar, N J & P Andres (1988) ICBP World Checklist of Threatened Birds. ICBP Technical Paper No. 8.

Evans, S M & A R Bougher (1987) The Abundance of Estrildid Finches at Waterholes in the Kimberley (W.A.). Emu 124-127.

Evans, S & M Fidler (1986) The Gouldian Finch. Blandford Press: London.

Heumann, G A (1926) Birds in the Northern Territory and the New Finch. Emu 25:134-136.

Immelmann, K (1982) Australian Finches in Bush and Aviary. Angus and Robertson: Sydney.

Pizzey, G (1980) A Field Guide to the Birds of Australia. Collins: Melbourne.

Stocker, G C & J J Mott (1981) Fire in the Tropical Forests and Woodlands of Northern Australia. In Gill, A M; R H Groves & I R Noble (Eds.) Fire and the Australian Biota. Australian Academy of Science: Canberra.

Storr, G M (1977) The Birds of the Northern Territory. Western Australian Museum Publication: Perth.

Tidemann, S C (1987) Gouldian Finches in the Wild. Bird Keeping in Australia 30:145-153.

Tidemann, S C (in press) Relationships between Finches and Pastoral Practices in Northern Australia. In Pinowski, J & J D Summers-Smith. Granivorous Birds and Agricultural Systems. PWN - Polish Scientific Publications: Warsaw.

Tidemann, S C; J C Z Woinarski & W J Freeland (in press)

Heavy Parasitism of Wild Gouldian Finches <u>Erythrura</u>

Gouldiae by the Air-sac Mite <u>Sternostoma</u> <u>Tracheacolum</u>.

Aust. J. Zool.

Woinarski, J C Z (in press) Effects of Fire on the Bird Communities of Tropical Woodlands and Open Forests in Northern Australia. Aust. J. Ecol.

Woinarski, J C Z, N. Gambold, K Menkhorst & R W Braithwaite (1989) Wildlife Survey of Stage III, Kakadu National Park. Preliminary report to Australian National Parks and Wildlife Service by CSIRO Division of Wildlife and Ecology, Winellie, Northern Territory.

UUCC

APPENDIX I

Notes from various sources on the status of the Gouldian Finch in areas other than the Yinberrie Hills

John McKean's personal notes have many records of the Gouldian Finch between 1973 and 1985. He recorded then in an area from Windjana Gorge in Western Australia, east to Georgetown in Queensland.

In the Northern Territory, he reports sightings from Katherine, Darwin, Edith Falls, Fergusson River (52 kilometres north of Katherine), Horse's Hole (16 kilometres west of Katherine), Kapalga (in western Kakadu National Park), on the Western Australian border, Newry Station, Borroloola and from 332 kilometres south-east of Borroloola. Most of his sightings come from Borroloola and Horse's Hole, possibly because there were resident bird-watchers in these areas for several years. He reports them breeding near Borroloola (see main report, section 2.3.2).

Barnard (cited in Matthews, 1910-1927) reports sighting Gouldian Finches on the banks of the MacArthur River in the south-western part of the Gulf of Carpentaria.

Brian Deslandes (a local birdwatcher, pers. comm.) has remarked that Gouldian Finches were common in Maningrida in Arnhem Land in the 1970's and also at the nearby Liverpool River. His opinion is that the birds are almost certainly breeding there but this remains to be confirmed. He has reported sightings of "hundreds" in the Pine Creek - Katherine region in the 1970's and of "dozens" near Pine Creek 2 to 3 years ago.

An ex-trapper reports a population north-east of Hayes Creek (Hilary Thompson, pers. comm.). This is possibly a discrete breeding population as 70 percent of these birds have red heads. Black headed birds predominate in all other flocks (Blakers, et al., 1984).

Another ex-trapper has seen odd birds at Mount Wells, Bast of Hayes Creek (Hilary Thompson, pers. comm.). Some of these reports may be isolated sightings given the nomadic movements of the species.

Summarized below are records obtained during surveys of the Northern Territory by Sonia tidemann and John Woinarski of the Conservation Commission of the Northern Territory from 1986 to 1988.

Sizeable populations of Gouldian Finches were located at only two sites: between the Fergusson River and Katherine ($\underline{\text{Yinberrie}}$ Hills), and on $\underline{\text{Newry}}$ station.

Between 30 and 50 birds were found in <u>Kakadu</u> Stage III, 15 kilometres <u>west of Katherine</u>, in the <u>Keep River</u> National Park and in the area around <u>Timber Creek</u>.

UUC

Less than ten birds were seen along the old highway between <u>Adelaide River and Hayes Creek</u>, on <u>Willeroo Station</u> and at the <u>Manbulloo</u> CSIRO Research Station.

No birds were detected around <u>Adelaide River</u> (10 kilometre radius), <u>Hayes Creek</u> (10 kilometre radius), <u>Pine Creek</u> (20 kilometre radius), <u>Borroloola</u>, between <u>Moline</u> and the head of the Edith River, on the <u>King River</u> 20 kilometres west and 50 kilometres north of Katherine, in <u>Katherine Gorge</u>, between <u>Beswick and Barunga</u>, on <u>Legune</u>, <u>Spirit Hills</u>, <u>Rosewood</u>, <u>Auvergne</u> or <u>Scott Creek</u> Stations, or in the <u>Gregory National Park</u>.

UUCO

APPENDIX II

Records of the Gouldian Finch in the Yinberrie Hills

The following observations of Gouldian Finches have been made by the authors and others in the Yinberrie Hi ls in recent years.

D. Goodfellow and H. Thompson saw six Gouldian Finches on the Fergusson River in May 1986. They saw none there on visits in September and December 1988. D. Goodfellow and B. Lane observed three Gouldian Finches at Site 5 in February 1989 during the field work for this investigation. They were in an E. alba and appeared to be searching for hollows. All were black headed birds.

J. McKean has records for the area ranging from a flock of 200 birds, including many juveniles, on the Edith River Road, to 2 adults on the Fergusson River, 35 kilometres north of the Edith Falls turnoff. Phil Maher (pers. comm.) saw a flock of about 200 on the Fergusson River in 1988 (see section 2.2.1).

APPENDIX III

Description of Survey Sites

SITE DESCRIPTION

- North side of Edith Falls Road, c.5 km. west of Edith Falls; gentle slope; canopy spacing 0 to 10 metres; tree spacing 2-15 metres; canopy species, Eucalyptus alba (20-30%), E. tectifica, E. dichromophloia, E. confertiflora, Erythrophloeum chlorostachys. Understorey includes shrubs of Terminalia ferdinandiana, Calv'r'xachaeta, Petalostigma quadriculare, Helicteres sp., as well as juvenile E. alba, E. confertiflora and E. chlorostachys. Ground cover consists of grasses, including Themeda sp. and herbs.
- Undulating foothills just east of mine site; canopy 2 spacing 0 to 10 metres; tree spacing 2-10 metres; species, Erythrophloeum canopy chlorostachys, Eucalyptus alba (30-40%), E. dichromophloia, and E. clavigera tectifica with occasional foelscheana. Under-storey consists of low grasses, sorghum spp. and some Themeda sp., and low herbs, Galactia sp., Ampellocissus sp. and Helicteres sp.; juvenile Brachychiton paradoxum present.
- Steep, westerly sloping side of ridge where mine is to be located; canopy spacing 3 to 10 metres; tree spacing 5 to 15 metres; canopy species, E. alba (30-40%), E. dichromophloia, E. tectifica, E. clavigera, E. foelscheana and E. bleeseri. Few shrubs; ground cover mostly Sorghum spp. to 1.5 metres tall and some Ampellocissus sp., Galactia sp. and Commelina ensifolia.
- Gently undulating site west of mine site; canopy spacing, 0 to 10 metres; tree spacing, 2 to 15 metres; canopy species, Erythrophloeum chlorostachys, Eucalyptus alba (c.30%), E. clavigera, E. tectifica, E. foelscheana and Terminalia carpentariae. Understorey included juvenile B. Paradoxum and T. carpentariae. Ground cover consisted of Ampellocissus sp., Themeda sp., Helicteres sp., Heteropogon triciteus and Galacia sp.
- Steep westerly sloping gully side west of mine site; canopy spacing, 0 to 10 metres; tree spacing 2 to 15 metres; canopy species Erythrophloeum chlorostachys, Eucalyptus alba (10%), E. tectifica, E. dichromophloia, E. bleeseri. Grassy ground cover including Sorghum spp., and some Themeda sp., and occasional herbs such as Helicteres sp., Ampellocissus sp. and Galactia sp.
- Gently southerly sloping site west of mine site; canopy spacing 0 to 10 metres; tree spacing, 2 to 25 metres; canopy species, small Erythrophloeum chlorostachys, Eucalyptus alba (30 to 40 %) and E. clavigera. Little

חבטם

7

8

9

10

11

understorey but ground cover predominantly grasses of **Sorghum** spp. with some **Themeda** sp. and many herbs, including **Petalostigma quadriculare**, **Helicteres** sp. and **Galactia** sp.

Flat site to the east of the proposed mine site, canopy spacing, 0 to 15 metres; tree spacing, 0 to 20 metres; canopy species, small Erythrophloeum chlorostachys and T. ferdinandiana, as well as Eucalyptus alba (50-60%), E, dichromophloia, E. foelscheana and some E. setosa. Shrubs and herbs include Owenia vernicosa, Grevillia decurrens, B. paradoxum, Breynia cernua, Ampellocissus sp. and Marsdenia viridiflora, as well as seedlings of E. chlorostachys and E. alba.

Flat site to south-eash of proposed mine site; canopy spacing, 0 to 7 metres; tree spacing, 2 to 10 metres; canopy species, Erythrophloeum chlorostachys, Eucalyptus alba (30 to 35%), E. dichromophloia and E. tectifica, T. ferdinandiana and B. paradoxum. Herbs and ground cover includes Ampellocissus sp., Petalostigma quadriculare and grasses.

Gently northerly sloping site in western part of Yinberrie Hills; canopy cover 10 to 15%; tree spacing 1 - 10 metres; canopy species, Erythrophloeum chlorostachys, Eucalyptus alba (16%), E. tectifica, E. clavigera, T. ferdinandiana, Acacia platycarpa and Xanthostemon paradoxus. Understorey included shrubs of Grevillea decurrens, small X. paradoxus and T. ferdinandiana. Small shrubs and herbs include P. quadriculare, Desmodium sp., Tephrosia spp., Galactia sp., Helicteres sp., Buchnera linearis and seedlings of E. chlorostachys and E. alba.

Undulating, predominantly westerly facing site in western part of Yinberrie Hills; Gouldian Finch nesting site; canopy cover, 15%; tree spacing, 4-8 metres; canopy species include Erythrophloeum chlorostachys, Eucalyptus alba (8%), E. dichromophloia and X. paradoxus; Herbs and ground cover includes P. quadriculare, Vigna sp., B. linearis, Helicteres sp. and seedlings of G. decurrens and X. paradoxus as well as grasses, mostly Sorghum spp.

Generally flat site with some slopes and rises on western slope of Yinberrie Hills; canopy cover, 10-15%; tree spacing, 4-15 metres; dominant trees are Erythrophloeum chlorostachys, Eucalyptus alba (16%), E. dichromophloia with some E. foelscheana; middle stratum is sparse and consists mainly of T. pterocarya, A. platycarpa and T. ferdinandiana; ground cover is sparse and patchy.

Undulating southerly sloping foothills south of mine site; Gouldian Finch nesting site; canopy cover 15-20%; tree spacing, 8-10 metres; canopy species include Erythrophloeum chlorostachys, Eucalyptus alba (20%), E. tectifica, E. clavigera and E. confertiflora;

shrubs include C. fraseri, A. acetosa, B. paradoxum, Tacca leontopetaloides and Galactia sp.; grass predominantly Sorghum spp.

- Gently westerly sloping site west of mine site; canopy cover, 10-15%; tree spacing, 10-15 metres; canopy species include Erythrophloeum chlorostachys, Eucalyptus alba (20%), E. tectifica, E. clavigera, E. confertiflora with some E. foelscheana and E. setosa; little understorey; ground cover mostly Sorghum spp.
- 14 Flat site with sandy soils north-east of mine site; canopy cover 20%; tree spacing, 8-15 metres; dominant canopy species are Erythrophloeum chlorostachys, Eucapyptus alba (18%), E. tectifica, E. dichromophloia and some E. latifolia and E. clavigera; middle stratum consists of T. ferdinandiana, G. megasperma and occasional A. hemignosta. Ground cover is sparse and presence of sedges suggests some seasonal inundation.
- Ridge top and adjacent westerly slope west of mine site; Gouldian Finch nesting site; canopy cover, 15-20%; tree spacing, 5-10 metres; dominant trees are Erythrophloeum chlorostachys, Eucalyptus alba (20%), E. clarigera, E. tectifica and some E. setosa and E. confertiflora; middle stratum consists of broad-leaved trees such as C. fraseri and G. megasperma; ground cover is dense and senescent Sorghum spp.
- Southerly sloping hillside near intersection of old and new Edith Falls Roads; canopy cover, 5-10%; tree spacing, 4-10 metres; mostly young trees; canopy species include Erythrophloeum chlorostachys, Eucalyptus alba (8%), E. tectifica, E. clavigera, E. dichromophloia, X. paradoxus and T. ferdinanciana; middle stratum consists of T. ferdinandiana, C. fraseri and G. decurrens; ground cover mostly dry, senescent sorghum spp.
- Steep slopes and ridges north of mine site; canopy cover, 10-15%; tree spacing, 4-10 metres; dominant canopy trees are Erythrophloeum chlorostachys, Eucalyptus tectifica, E. dichromophloia, E. latifolia and X. paradoxus as well as some E. alba (5%); middle layer consists 'B. paradoxum, C. arnhemicus and C. fraseri. Most or ground cover is Sorghum spp.
- Undulating site with some steep slopes, north-east of mine site; canopy cover, 20-30%; tree spacing, 8-15 metres; dominant canopy species, Erythrophloeum chlorostachys, Eucalyptus dichromophloia and some E. tectifica and E. alba (6%); middle stratum dense in places, X. paradoxus and T. ferdinandiana; dense grass and herb understorey in places.
- Steep to undulating site on west side of small ridge north-east of mine site; canopy cover, 15-20%; tree spacing, 4-10 metres; canopy species include Erythrophloeum chlorostachys, Eucalyptus alba (5-10%),

E. tectifica, E. dichromophloia, X. paradoxus and some E. foelscheana; middle stratum includes T. ferdinandiana, G. megasperma and saplings of the canopy species; ground cover is patchy and consists mostly of Sorghum spp.

20

Flat site near watercourse, well north of mine site; canopy cover, 30%; tree spacing, 6-8 metres; canopy species include Erythrophloeum chlorostachys, Eucalyptus alba (6%), E. tectifica, E. dichromophloia and E. confertiflora; middle stratum consists of T. ferdinandiana, G. megasperma, A. hemignosta, G. decurrens and saplings of canopy species; ground cover, mixed grasses and herbs, little Sorghum spp.

SUPPLEMENT

MOUNT TODD GOLD PROJECT

GOULDIAN FINCH HABITAT IN THE YINBERRIE HILLS, NORTHERN TERRITORY

SUPPLEMENTARY HELICOPTER SURVEY - JUNE 1989

Prepared by:

Brett A. Lane Pty. Ltd. and Denise Goodfellow

for:

KINHILL ENGINEERS PTY. LTD. BILLITON AUSTRALIA GOLD PTY. LTD.

date:

JULY 1989

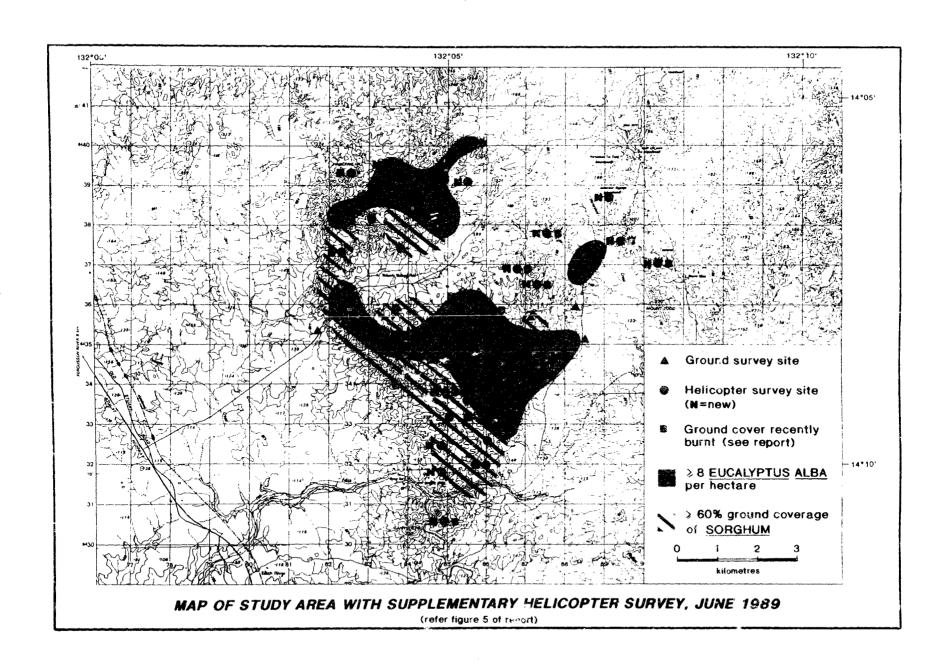
BUE

SUPPLEMENTARY HELICOPTER SURVEY - JUNE 1989

This brief report supplements previous reports on the Gouldian Finch and its habitat near the Mount Todd Gold Prospect. It contains the results of a further helicopter survey of habitat parameters in the Yinberrie Hills and near Mount Todd and a revised map of suitable Gouldian finch habitat in the area.

The helicopter survey was conducted on 19th June 1989. It covered 21 new sites. These are shown on the attached map along with all past ground and helicopter survey sites. The current survey filled gaps in coverage of the area of the Yinberrie Hills identified by the Conservation Commission of the Northern Territory as holding Gouldian Finches. The method adopted for the survey was identical to that used in the earlier helicopter survey (see previous report, page 18). The table below presents the results of the latest survey.

SITE	E.ALBA PER HA.	GROUND COVERAGE OF SORGHUM SPP.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	5 (3-7) 2 (1-3) 6 (4-9) 5 (3-7) 7 (5-10) 10 (7-15) 14 (9-21) 6 (4-9) 4 (3-6) 5 (3-7) 0 0 1 (1-2) 5 (3-7) 12 (8-17) 4 (3-6) 15 (10-22) 11 (8-16) 12 (8-17) 5 (3-7) 10 (7-15)	BURNT 86 (60-100) 86 (60-100) 86 (60-100) BURNT 56 (39-84) BURNT BURNT BURNT BURNT BURNT 16 (11-23) 5 (3-7) 64 (42-90) 90 (63-100) 20 (15-30) BURNT BURNT BURNT BURNT BURNT 5 (3-7) 10 (7-15) BURNT
	, ,	


From this, it can be seen that the greatest limitation of the survey was the extent to which ground fires had burnt parts of the study area, making it impossible to quantify ground coverage. Such fires are not uncommon across the north part of the Northern Territory at this time of year. Fire had affected ten of the twenty-one sites covered. These are marked on the map.

Using the criteria established in the earlier investigations, a revised map of suitable Gouldian Finch he itat was prepared. A survey site was considered suitable if it held eight or more Eucalyptus alba per hectare, or if it had ground coverage of Sorghum spp. of 60 percent or more. These criteria cover nest-site and food availability.

The results of the helicopter survey confirm the broad pattern of distribution of high quality habitat identified during the earlier investigations in the Yinberrie Hills. It occurs in a broad east-west band in the southern part of the Hills and in a patch in the north-west of the Hills.

The area of high quality habitat may be larger than indicated because some sites with normally high ground coverage of **Sorghum** spp. may have been burnt.

The results of the current survey do not change significantly the assessment of the impact of the proposed mine and associated infrastructure on the Gouldian Finch and its habitat. About 6.5 percent of the high quality habitat will be lost because the ore body is located within it. All other infrastructure avoids high quality habitat. The raw water storages, together with the mine pit, will cause the loss of a total of 6.5 percent of all habitat used by the Gouldian Finch in the Yinberrie Hills during the breeding season. As stated in the earlier report, the impact of this loss of habitat on the species is difficult to predict.

MOUNT TODD GOLD MINE PROJECT

MINING HISTORY

08.4934

Prepared by:

Kinhill Engineers Pty Ltd 37 McMinn Street, Darwin, NT 0800 GPO Box 250, Darwin, NT 0801

> July 1989 A89034

CONTENTS

Secti	on	Pag
1	INTRODUCTION	1
2	MINERAL DISCOVERY AND EARLY DEVELOPMENT	4
3	MINING PRACTICES AND THE ROLE OF GOVERNMENT	7
4	THE CHINESE AND TERRITORY MINING	9
5	GENERAL MINING ACTIVITY IN THE REGION AROUND MT TODD	11
5.1 5.2 5.3 5.4	Woolngi Driffield Horseshoe Creek Yenberrie Hills	11 11 12 12
6	MOUNT TODD AREA THEN AND NOW	15
6.1 6.2 6.3 6.4	Jones' mine Morris' claim Tollis' reef Quigley's reef	15 20 20 22
7	SUMMARY	25
R	REFERENCES	26

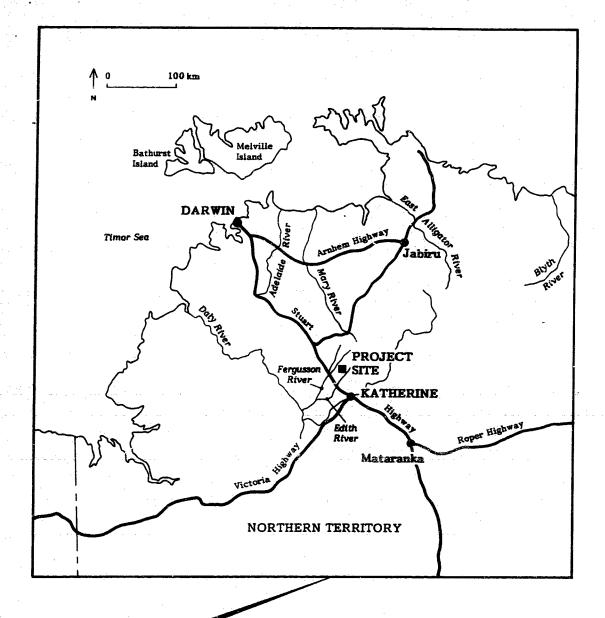
LIST OF FIGURES

Figure				Page
1	Locality Plan			2
2	Mines Within 15 km Radius of Mt Todd		• .	3
3	Workings on Jones Bros Reef 1937	t.		16
4	Workings on Morris' Reef			21
5	Workings on Quigley's Reef 1937			25

LIST OF TABLES

Table		Page
1	Jones Bros Production Details 1912	17
2	Jones Bros Shaft and Open Cut Depths at 1937	18
3	Assay Results from Jones Bros 1941	19
4	Geological Resource Summary at Quigley's 1987	24

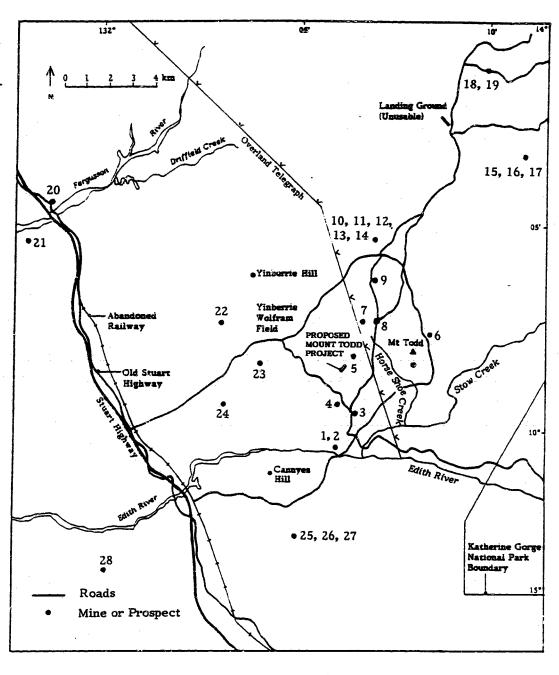
KIMHILL


1 INTRODUCTION

The Mount Todd Gold Project is a joint venture by Billiton Australia Gold Pty Ltd and Zapopan NL. The aim of this brief history of mining in the vicinity of the Project is to provide details of the extent of mining, the methods used, and the location and quantities of minerals realised.

Mount Todd is located on the old Katherine to Pine Creek government road, and is approximately 56 km by road from Katherine (Figure 1). The township of Pine Creek, which has a well documented history as a gold mining township of the late 19th century, lies 64 km to the north. The regional terrain changes from rough and difficult in the Horseshoe Creek tin field and Yinberrie Hills wolfram field, to more open and undulating around Mount Todd itself.

The open cut for the project being considered by the joint venturers is located approximately 3.5 km west of Mount Todd, and is part of an extensive and well-known gold and tin field which has been worked since late in the 19th century. Figure 2 shows mines within a 15 km radius of the Project.


LUDI

KINHILL ENGINEERS
MOUNT TODD GOLD PROJECT

Figure 1
LOCATION MAP

- Thistle
- Doolan
- Shamrock
- Edith River Recovery
- Tollis Reef
- Morris
- Jones Bros
- Mount Todd
- Quigley's
- 10 Marie
- 11 Stew
- 12 Surprise
- 13 Clean Sweep
- 14 Horshoe Creek
- 15 Creers

- 16 Lady May
- 17 Passys
- 18 Emerald Hill
- 19 Emerald Creek
- 20 Fergusson River
- 21 Woolgni
- 22 Southern Cross 23 Yenberri
- 24 Emerald River
- 25 Leap Year
- 26 Quartz Blow
- 27 Niagra
- 28 Tennyson

KINHILL ENGINEERS MOUNT TODD GOLD PROJECT

Figure 2 MINES WITHIN 15 km OF THE MOUNT TODD GOLD PROJECT

KINDSELL

2 MINERAL DISCOVERY AND EARLY DEVELOPMENT

It has been said that 'the discovery of gold permanently influenced the history of several colonies' (1) and this is true of the Northern Territory. Unfortunately, Australian history books have usually ignored mineral exploration in the north altogether, or given it only the most cursory attention, and there are few miners records.

There are three main reasons for the initial discovery of minerals in the Northern Terratory, and subsequently the Mount Todd area:

- The failure to find gold in South Australia and the loss to the South Australian
 economy of thousands of its working class and much revenue to the Victorian
 goldfields during the 1850s;
- The determination of the Victorian and South Australian Governments to seek extensive pastoral lands between the centre of Australia and the Gulf of Carpentaria, leading directly to the ill-fated Burke and Wills expedition in 1860-61;
- The survey and construction of the Overland Telegraph line from Adelaide to Darwin, which was built for the South Australian Government in less than two years by teams working from both ends. It was completed in 1872.

Up until 1863, northern central Australia was technically part of New South Wales. In that year South Australia took over what then became known as the Northern Territory, and set up its administrative centre in Darwin. In 1911, administration passed to the Commonwealth, which still retains control over certain aspects of government. Limited self-government was granted to the Territory in 1978.

Copper had been found in South Australia in 1842 (2), followed by several minor gold strikes, each causing pandemonium, although none of the discoveries led to the establishment of permanent, viable fields. From the 1850s Victoria and New South Wales were gripped by gold fever, and many thousands of men and women, from ne'er do wells to theatrical performers and shopkeepers, flocked to the goldfields in search of a better life.

The South Australian Government tried through the *Bullion Assay Act* in 1852 to bring home some of the revenue being lost to Victoria. The Act sought to prevent speculation in gold in Adelaide unless the proceeds were used for investment in South Australia ⁽³⁾. This response was inadequate in terms of revenue raised, and the Government saw a need to search for gold in the Territory, and to encourage the development of a mining industry.

Within a few years of the deaths of Burke and Wills, squatters were giving serious thought to occupation of the grazing land in the Gulf country and central Australia. Aided with the knowledge obtained by John McDouall Stuart, who had finished exploring a route from Adelaide to Darwin in 1862, these pastoralists were the first permanent European population of the Territory outside the small northern port of Palmerston (now Darwin). Stations near Alice Springs and Darwin were first stocked with cattle in 1872, the same year that the Overland Telegraph was completed.

In 1865 an exploration party led by F.H. Litchfield brought back specks of gold found on the Finniss River. In 1870 alluvial gold was found in the post holes being dug for the Overland Telegraph Line at Yam Creek, near Pine Creek, and in the same year, a Government Survey Party led by G.G.Mclachlan found a few specks of gold in the Fergusson River. (4)

In the early 1870s, rich gold reefs were being worked by scores of miners at Driffield, immediately to the north of Mount Todd. Some lucky prospectors had found about 19 ozs of gold near Stow Creek merely by gully raking in shallow grounds. (5)

By 1882 the gold rush to the Mount Todd area was well and truly underway — there were 700 Chinese working at the Stow Creek alluvial field. (6)

What an exciting, if at times extremely hard, life the people in the 50 square miles or so around Pine Creek and Mount Todd must have had. For almost 40 years, as new finds were confirmed, mineral prices rose and fell, and new technology was brought to the fields, literally hundreds of people moved their camps around constantly, often solely on the basis of a rumour.

Mineral discovery has always excited the Australian people and one can easily imagine the gleam in many a miner's eye as he slogged through the steaming bush of the Top End, remote from civilisation as he knew it, searching for valuable gold, wolfram, or tin. The heartbreak and joy that followed often depended on the availability of water during the Dry season and enough capital to keep going in the face of the adversities of the terrain.

Tom Gash found a silver-lead lode near Mount Todd in 1886 ⁽⁷⁾, and the Mount Todd Gold Field was discovered in 1889 by Walden and Rennett. ⁽⁸⁾ Tin was being mined at Mount Todd and Horseshoe by 1902 ⁽⁹⁾, and wolfram, molybdenite and copper ore with a trace of bismuth were being mined 5 miles west of the Project site by 1911. ⁽¹⁰⁾

It is not known when wolfram was discovered, but as it lay easily visible in the shed from several prominent Yinberrie hilltops (11), it may have been noticed in passing by miners and geologists on their way to and from the main wolfram field at Horseshoe Creek, 5 km to the north—east.

Up until the early 20th century, the miners worked virtually unsupervised and unassisted in the Mount Todd area. Speculative and almost nefarious activities in the Territory mining industry seem to have been common-place in the 1890s. (12)

A picture of development for the sole operator at the time can be sketched — shallow shafts dug to water level (only to be filled during the Wet by surface runoff), no roads

through the bush, no transport, no equipment, no supplies. Sorting ore and using foot-dollies, panning, then bagging it for transport in handcart or dray to the battery for crushing, followed possibly by roasting and cyanidation. If he could afford it, the claim holder might have labour to help, but it was more likely that he saved his money for the battery charges, explosives, firewood and supplies.

At a higher level of development were the genuine miners, such as George Buttle and his daughter Maud, described by Timothy Jones in Pegging the Territory (13):

'After severing his connection with Northern Territory Mining and Smelting in 1906, Buttle decided to do some mining on his own account and formed the Venture Syndicate. He bought Jolly's old ten-head battery at Wandi and arranged for Jack McCarthy to move it to Mount Todd,... during a heavy wet season when everyone else said it could not be done. At the field, Chinese outnumbered whites twelve to one and plenty of stone was available for crushing. R. Webb was called in from Wolfram Camp (in the Yenberrie Hills) and adjusted the plant to give a satisfactory recovery. It then crushed on, closing from time to time because of a shortage of water, and also treated wolfram ore with profit right through to 1910.' Maud Buttle ran the whole plant, gave the Chinese labourers their orders and supervised loading and despatch of concentrates by wagon to the railway when her father was ill in Pine Creek Hospital for three weeks.

Women on the fields were few and far between, and Maud Buttle must have been a brave and determined woman.

On the eastern lode of the Jones Bros mine an experimental cyanide plant was erected in 1908 ⁽¹⁴⁾. The cyanide process for the recovery of gold from low grade ores and ores containing minute, particle sized gold was first used in South Africa in 1890. ⁽¹⁵⁾. It was regarded as a major factor in the global supply of gold at the time. ⁽¹⁶⁾.

The use of the cyanidation at Mount Todd when so many aspects of life there were primitive indicates that miners were anxious to get the maximum return from the low grade ores often found there. The prompt use of new technology has been a hallmark of the exploitation of minerals in the Northern Territory, despite its remoteness and problems of transport and communication.

3 MINING PRACTICES AND THE ROLE OF GOVERNMENT

Exploration and mining in the Northern Territory have been as intertwined and as colourful as elsewhere in the world. Explorers, geologists and miners all faced the same problems — no roads for 5–6 months of the year during the Wet season, no supplies, and remote, primitive conditions. These were often accompanied by danger from the fierce storms and unfamiliar wildlife. Fortunately, problems such as foot fungus and fever can be easily treated now, and are regarded as a common by-product of working in the bush of the Top End during the Wet.

The legacy of early 'frontier' life is a paucity of surviving documentation from the miner's side of things with which to piece together a picture of their practices. Government reports do describe the methods, but not the conditions. It is evident that from very early on both the South Australian and Commonwealth Governments saw the necessity of assisting the development of the mining industry by identifying minerals, carrying out assay tests, drilling wells, building bridges, roads, and the railway.

The role of government has changed considerably and the industry is much more self-sufficient. The Department of Mines and Energy is more interested now in ensuring the use of safe mining practices and the orderly management of the industry than providing capital-intensive assistance.

In 1912, Dr. Woolnough, a geologist from Sydney University, travelled around the Pre-Cambrian fields of the Territory. Upon touring Irwin's claim about 3 km east of Horseshoe Creek, he noted the tenacity and purpose of the tin miner in working a shaft to 70 feet at a very steep angle, but recorded that 'the mine has been worked on the hand-to-mouth principle ...so marked a feature of Territory mining'. (17) The nearest well had been put in by the Government 1.5 km away, and the Government battery to which Irwin would have had to get his ore was 3.5 km away.

To the southeast, on the Mount Todd Fields, Woolnough noted that the Government was trying to sink a well, but had struck solid granite. Lack of water and difficulty of transport were holding up exploration of the lodes by several claim holders. (18)

In 1916, Government geologists Gray and Winter noted that 'mine workings and treatment methods [were] primitive' on the Yenberrie reefs. (19) When Dr Jensen, the Chief Geologist, visited the Horseshoe Creek field during the following year, they had already collapsed. This was due, in his view, to the system of tributing by the Chinese (20). By this he meant that there were no pumps being used, that shafts were not

KEMHILL

reinforced with timber, and that lodes were not worked in a systematic manner. The ground would have looked gouged and have been marked with shallow, uneven, open pits.

A similar state of collapse had been found to the northwest of Mount Todd at Woolngi, where the battery on the banks of the Fergusson River was already in disuse. Tunnels and shafts gave evidence of extensive working of gold reefs, although the field had been abandoned. At the time, the price of wolfram was high, and it was common for a field to be temporarily deserted by miners as they sought to exploit a more rewarding mineral. Dr Jensen urged the government to tunnel in search of what he felt was 'very rich (gold bearing) ore'. (21)

Mining in the early 20th century in the Mount Todd area is characterized by shallow scrapes, short shafts down to water level at 30-40 feet, alluvial panning and the presence of Chinese miners. No mention has been found of the presence of aborigines at that time, although their camps around Pine Creek and the work which they carried out for the miners there has been given some attention. (22)

Several lead shows were noted in the Mount Todd area in 1916. These also carried good gold values. It was anticipated that the lead treatment works then in operation at Mount Bonnie, near Yam Creek, could have been used to process the ore. (23)

Activity slumped for a time following the high prices experienced during World War I, and the loss of many of the miners to the war effort. The Australian economy had difficulty recovering from the after effects of the War, and the Great Depression was the inevitable consequence.

Men took to the roads trying to find work, and the government sought ways to employ people. Geological survey teams looked around the Territory and West Queensland hoping to revive the smaller mines.

In late 1936 a geological survey of the area was attempted by the Electrical Prospecting Co. of Sweden, but was hampered by the severe rainstorms of the Build-up season, difficulties of transport and a lack of supplies (24). Furthermore, the Chinese workings around the Jones and Tollis reefs prevented a survey being carried out at all.

4 THE CHINESE AND TERRITORY MINING

It would not be possible to write about mining in the Northern Territory without special attention to the contribution made by Chinese people, most of them originally from Singapore. It is generally known that the Chinese worked in the goldfields, having been brought in on contract during the gold boom at Pine Creek in 1872. By 1881 the population comprised 670 Europeans and 2,781 Chinese — no statistics are available for the Aboriginal population. Many of the Chinese went on to become storekeepers and property owners, their descendants forming an important part of the present population of the Top End.

The Chinese were in fact the backbone of the early mining industry. They often worked in stifling and hot conditions in pits which European miners found impossible. Some of the Chinese cut and carted wood for pits and fires, operated tiny stores, and could be found during the Wet carrying parts for broken machinery in their drays. They were often the only engineers available for taking down pit heads and building batteries (25).

Chinese miners worked in the diggings in three ways — as employees of the claim holder, as employees of a Chinese subcontractor, and as tributers. It is the tribute system that has attracted the most attention, but their role as employees was an important one too. In the early records of the Mount Todd area, there are many references to both the tribute system and the presence of Chinese day labourers.

There can be no doubt that the enormous numbers of Chinese in the Territory in the late 19th century caused concern amongst the white population and the Government. Legislation such as the *Chinese Exclusion Act* and amendments to the *Mining Act* were brought down to restrict the movement around the goldfields by Chinese people and prevent them from taking up leases to work gold reefs. However, during the 1890s many experienced white miners brought to the region returned home, unable to cope with the heat and isolation ⁽²⁶⁾.

The tribute system was essentially simple, but its critics have described it as the treatment of the Chinese as an exploited coolie workforce by parasitic Europeans at a time when the Chinese were vulnerable. The tributers went after everything, with no regard for existing or possible future mine workings. It was undoubtedly efficient, although it meant and end to systematic working of a field.

According to the records kept by Edwin Tamblyn (27), there were two types of tribute agreement:

- A percentage base where the proportion of tribute paid to the claim holder rose with the higher yield of gold to ore. Tributers also then paid a crushing charge for use of the battery;
- The halves system where the tributers raised what stone they could, the ore was
 crushed without charge by the claim holder, and the gold was divided equally
 between the parties.

There were also charges for the use of machinery, stores and firewood — it seems that the tributers felt able to abandon the workings if prices rose in another mineral and move to another field.

It is interesting that the system of tributing had a role in securing the capital investment which was as vital to the mining industry at the turn of the century as it is today. As a miner reached water level, the prospect of needing a pump was inevitable, although some Chinese miners went down to 130 feet using only a bucket and windlass (28). There was also the need for crushing and treatment plant, timber and of course cash for wages. The lack of progress in some lodes due solely to insufficient funds was often commented upon in the government reports. The tribute system meant that a quick and often valuable return from a field could be shown to shareholders. As Tamblyn records (29):

'Once a company, either through extravagant surface development, mismanagement or fraudulent dealing by its directors, ran short of capital so that remittances from England ceased, mine managers had no money to pay day wages but had to keep the mine working or face forfeiture. The only practical solution was to stop development and let tributes... [Further], if tributers could prove a mine productive, the syndicate could publicise returns to promote a sale leading to company flotation.'

A Chinese man named Ah Que(e) was a persistent tributer at Zapopan and Eleanor at Pine Creek in 1897 according to the Tamblyn diaries. He also seems to have been a wood contractor and carter, and in 1909 ran the store at Mount Todd (30). Many Chinese miners had moved there in 1907 following rises in the prices of base metals.

KIMHILI

5 GENERAL MINING ACTIVITY IN THE AREA AROUND MOUNT TODD

Given the extent of mining within the vicinity of the proposed Mount Todd Gold Project, only a general history of the mines surrounding the Project area will be given. Greater detail will be provided for the mines closest to the Project site.

5.1 WOOLNGI

This field lies east of the railway line between the bridge over the Fergusson River and Yenberrie Creek. Refer Figure 2 for location. Gold was worked both in alluvia and reefs at Woolngi, mainly between 1896 and 1908. Gold production was first reported in the Chief Mining Warden's report of 1898, which stated that 20 oz of gold was recovered from a crushing of 82 tons of ore ⁽³¹⁾. There are several shafts, at least one to 90 feet, and two adits, 160 feet and 90 feet long.

Apparently the population on this field reached 1,000 at the turn of the century (32), but it had been abandoned by 1908.

When Dr Jensen visited in 1915, he recommended tunnelling to 100 feet to find what he anticipated would be rich ore. Activity on the field did not pick up after World War I however (33), and no further mining has been done apart from the occasional gougings by prospectors. (34). Recorded production of the field is incomplete, but in 1968 was about 4,600 oz of gold. (35)

5.2 DRIFFIELD

The Driffield gold field lies about 12 km north-east of the proposed Mount Todd Gold project (Figure 2). Gold was found at Mount Evelyn, about 3 km north-east, in 1870 by a Government Survey Party ⁽³⁶⁾. For 30 years from 1882, five major mines operated from numerous shafts and open cuts, the deepest to about 90 feet ⁽³⁷⁾. It hardly mattered that tributers worked on the Driffield mines — the lodes were uneven in the way they ran through the ore bodies and systematic development was almost impossible. Nevertheless, recorded production for the area is 5,500 ozs from 15,000 tons of ore. ⁽³⁸⁾

Production peaked in 1903, and the five-bead battery was in almost constant operation. The grade of ore decreased markedly after 1903, and the field was abandoned in 1911. (39)

In 1955, prospectors were occasionally sampling the quartz reefs, but were hampered by the lack of water during the dry season. (40)

When Commonwealth geologists surveyed the area in 1968, no work had been done at Driffield for many years. However, the Wandaroo Mining Corp. Pty Ltd held a gold mining licence from 1973 to 1977. Results of their works, if any, are not available. (41)

5.3 HORSESHOE CREEK

No work has been done at the Horseshoe Creek field since the late 1930s, it having been virtually abandoned in 1921. The many small mines peppering the hills were, however, well known between the turn of the century and the start of World War I (Figure 2).

The early history of the field is obscure as it seems to have been regarded as part of the Mount Todd field in early records. The Scotchman Mine formed part of the Horseshoe field, and yet records in 1941 referred to it as Mount Todd No.1.

Like the Driffield lodes, all the payable shoots were highly variable, ranging from '20 to 200 feet, and the width from a few inches to about 4 feet' (42). No wonder tributing was in vogue here (43) — it was possibly the most efficient method of exploitation of the resource (44). Between 1906 and 1910 high grade ores were recovered and several crushings averaged 30% metallic tin.

The deepest shafts are 150 feet and the lodes were worked out to the watertable, (at 30–40 feet), by World War I. The old battery for this field lay about 9 km north of the Mount Todd Battery (Figure 2).

Rattigan and Clark (45) reported that in 1953 one prospect was working a 'leader' for tin with aboriginal help.

In the 1950s, CSIRO tested the ore from the Scotchman Mine for the leaseholders — Young, Mazlin and Cousin — who also held the lease over the Morris workings. The sample supplied assayed 3.25% tin, 12.1% copper and 42.3% iron, with the balance insoluble, and CSIRO concluded that the recovery of tin and copper from the mine was barely worthwhile (46). Total recorded production for the Horseshoe Creek field is about 650 tons of tin concentrate.(47)

5.4 YENBERRIE

Now known as the Yinberrie Wolfram Field, this series of mines was originally called New Wolfram, and by 1912 was officially known as Yenberrie. (48)

It is not known when wolfram was first discovered at Yenberrie. By late 1911 several parties were actively engaged in 'surfacing', with evidence of workings over a distance of a half mile. (49) Gold had been discovered there earlier in the same year by H. Morris, of Morris' Mine next to Mount Todd. The area was gazetted as a goldfield on 12 May 1911. (50)

To assist the goldminers, the Government attempted to sink a well near the eastern lode to provide drinking water. However, they struck granite and were unsuccessful. (51)

By 1916, activity had increased considerably — wolfram and molybdenite were needed urgently for war materials. The effort in mining the molybdenite, which cut in just below water level, was justified by its rising price. There were still no pumps in use but excellent income could be had for a few weeks work — Gray and Winter met a miner who had earned 80 pounds for five weeks work on the Yenberrie wolfram field. (52)

Other minerals at Yenberrie included copper carbonates, arsenical pyrites, a little bismuth and enriched copper sulphides, especially bornite although with some covellite, but these were towards water level, owing to the complete oxidation of the sulphide minerals above that point. (53)

Mine workings and treatment methods were primitive — richer shoots were followed down by shafts and underhand stopes to water level and the ore raised by windlass. Quartz and richer patches were then sorted out, dollied and panned off. (54)

There were three main claims at Yenberrie in 1915:

- Hore's on lodes 1, 2 and 3;
- Guy's on lodes 4, 5 and 6; and
- Jones' on lodes 7, 8 and 9.(55)

These claims incorporated the three main elements in mining in the region at the time—hard working loners, lack of capital for expansion, and the Chinese tribute system.

Hore's claim had a number of shafts — half of them down to 30 feet — for 150 yards along lode 1 and 250 yards along lode 2. One shaft was equipped with a whip (and was known as the 'whipshaft'). There were also shallow workings. (56)

Guy's claim was being worked by Chinese. Their method of shallow pot-holes, trenches and surfacing was a direct result of the tribute system (57) — and meant that the claim would have looked like a 'rabbit warren [making it] well nigh impossible to trace the continuity of any particular leader or reef in the underground workings' (58).

Attempts were made by the Yinberrie Wolfram Co. NL to develop the field whilst tungsten was again at a high price during the Korean War after 1950, but it abandoned the field in 1953.⁽⁵⁹⁾

Recorded production to 1968 of the Yenberrie Mines was about 160 tons of wolfram, 2.5 cwt of molybdenite, and a small quantity of bismuth. (60) The reefs, which averaged 1 foot thick, had been worked in numerous shallow shafts and open cuts to 30–40 feet (water level).

From 1973 to 1978 Jimmy Ah Toy, of the well known Ah Toy family from Pine Creek, held a mining licence over the 9 ha at Yinberrie Hills known as Three Jays mine. He was

seeking copper, tin, and wolfram, but ceased in 1978, and transferred the lease to Christopher Moody.

The area has been at times included within the Exploration Licenses covering the Mount Todd fields since 1978. No further details of works done since that time are available.

KINHELL

6 MOUNT TODD THEN AND NOW

6.1 JONES' BROS MINE

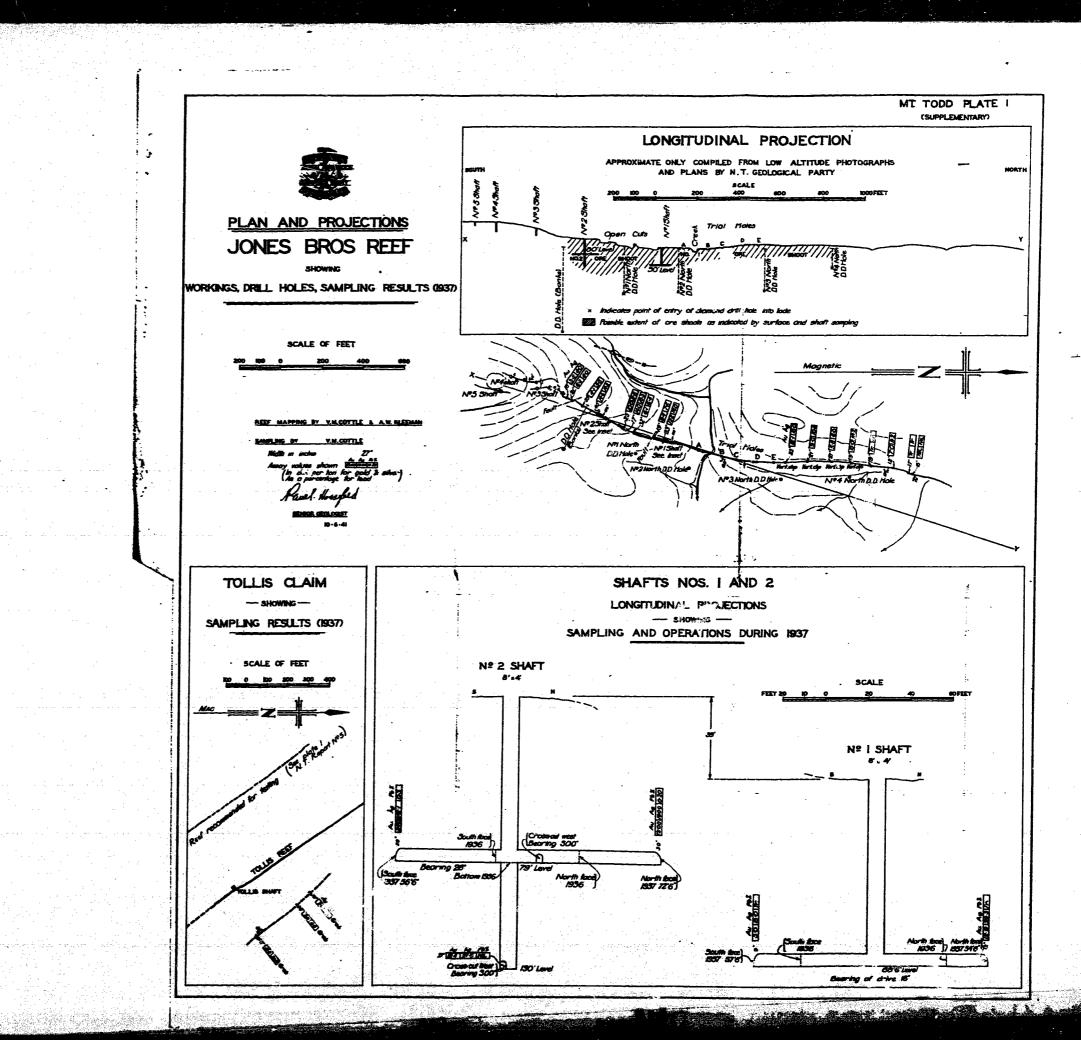
It is important to distinguish this area, which is part of the Mount Todd field, from the Jones' lode, which was part of the Yenberrie Hills field.

The government geologist's report in 1908 places this mine as '4 miles south-west of Mount Todd' (61) but there can be little doubt that this was incorrect. It lay south-west of the Mount Todd tin workings, and was identified in 1941 as being 3 km west of Mount Todd (62). The main lode was a true fissure vein 74 cm wide of gossany quartz (63), and ran parallel to another lode about 1.5 km south (Figure 3).

In 1908 the principal workings comprised a crushing and concentrating plant and a shaft to 30 feet — deeper exploratory work being prevented by lack of capital.

Thirty-four tons of ore taken to the Government battery at Horseshoe Creek ⁽⁶⁴⁾, and crushed yielded 9 tons of concentrated ore, which on treatment in the cyanide plant returned 8 oz gold. The inspecting geologist's view was that leaching had probably occurred. ⁽⁶⁵⁾ A sample assay yielded 2 oz 12 dwts per ton of silver and 24.4% lead. Gold was not visible in the quartz, but deeper sinking and systematic prospecting was recommended. ⁽⁶⁶⁾

The ore at Jones Bros was complex, and a second parcel was treated by cyanidation in 1908 after being roasted and hand broken. (67)


By 1912 the Foote Mining Company was working on the lodes and renting the battery. It had been specifically formed with local capital to work the Jones Bros reef. The Company commenced work on a new lode (68) which was about 2.5 m wide in outcrop with occasional developments of mica. The quartz carried about 10 dwts of gold per ton. (69) See Table 1 for production results, which show that 867.14 oz of gold were recovered from 879 tons of ore.

It was the view of the Government geologist that the nature of the ore and difficulty of treatment, hindered and finally caused a cessation of mining operations on the reef. This was despite assistance from the government in the form of shaft sinking and tunnelling. No further work was done after 1936.

By 1916 the cyanide works had fallen into disrepair, but the claim was being actively worked by the claim holder who had shafts down to water level along each lode, and

FIGURE 3

WORKINGS ON JONES BROS REEF 1937

shallow workings as well. Dumped material was also being picked over for wolfram. (70) Refer Figure 3 for details of the shafts, open cuts, and trial holes.

Table 1 Production — Jones Bros Reef 1912 (from Cottle op.cit p.1)

Year	Miner	Treatment	Cre tons	Gold oz
1908	Jones, P.A Mt Todd battery	Crushed, cyanided	80.25	56.87
1908	Jones, P.A	Roasted, hand- broken and cyanided at the mine	46.75	70.77
1909	Jones, P.A.	Roasted, hand- broken and cyanided at the mine	172.00	217.50
1910	Foote Gold M.C.	Crushed at Mt.Todd battery, probably roasted and cyanided	400.00	332.00
1911	Foote Gold M.C.		180.00	190.00
Total			879.00	867.14

There was quite a bit of disturbed ground typical of Chinese workings about 1.5 km to the north with reefs carrying gold which were believed to be continuations of the Foote lode. (71)

In 1937, five diamond drill holes for trial sampling were put down by the Mines Branch of the Northern Territory Administration in the northern portion of the reef, but in fact no ore was taken until the following year. (72) When CSIRO tested the assays from the site for E.G.Banks in 1937, it reported that 'the ore (from Mount Todd) is amenable to treatment by roasting and cyanidation, giving recoveries of the order of 98%'. (73) The sample of 60 lb gave a gold (Au) result of 18.7 dwts per ton. (74)

From 1938 to 1940 mining operations were conducted by the Mount Todd Mining Company NL, which sought to work the downward extension of the reef ⁽⁷⁵⁾. The Company deepened the No. 2 shaft from 50 feet to 80 feet ⁽⁷⁶⁾, but the results were disappointing. ⁽⁷⁷⁾

Table 2 provides details of the shaft depths and open cut sizes at completion of the Mount Todd Mining Company's work.

KIMBELL

Table 2 Shaft and open cut details at Jones Bros reef 1937 (from Cottle ibid)

Shaft no.	Depth (feet)	Drives		Length (feet)
1	90	north south		30 30
2	80	north south		30 3
3	50			-
4	40			
5	15			
Open cut	Length (feet)	Width (feet)		Depth (feet)
north	100	2		6–8
central	90	2–3	30 ft. the so	rising to uth
south	40	2–3		12

In 1941, the area was again surveyed, and assays taken. In the No. 2 shaft, the north drive of 72 feet returned 13.0 dwt of gold per ton across 30 inches, and the south drive of 50 feet returned 34.0 dwt of gold across 29 inches. Refer Table 3 for full assay results from the samples taken on this trip.

This was, of course, during World War II. Darwin was bombed in 1942, and the consequent takeover of the railway line for troop transportation, the roads for aircraft landing strips, and evacuation of some of the civilian population, meant that no further works or inspections were done until 1949 — well after the War.

In 1946 the mining industry in the Territory had slumped to the point where there were only thirty-nine gold mining leases, and forty-five mineral leases. As might be expected, production was at a very low level. When the geologist L.C. Noakes surveyed the area in 1949, he believed that the lack of mining was directly attributable to the lack of venture capital, the remoteness, and the availability of easy employment elsewhere. (78)

Nevertheless, Mount Todd Gold Mine NL leased the areas covering Jones Bros from 1947-1951. They allowed the leases to lapse, perhaps for the reasons identified by Noakes.

In 1953, the YMC syndicate removed the old Mount Todd Battery to a site on the Edith River and used it to treat dumps from old workings for tin (79) at Boylings and Morris.

To 1968, the recorded production of the Jones Bros Reef was 915 oz of gold. (80) The main reef has been traced on the surface for about 70 m, ranging in width from 30 cm to 1.25 m.

Table 3 Assay results Jones Bros. Reef 1938 (from Hossfeld and Nye op cit p.4 ff)

Assay site	Result dwt of gold	Width inches per ton	
Between No. 1 shaft	13.28	21.0	
and a point 50 ft.	8.4	19.0	
south of No.2 shaft	6.1	32.0	
	14.0	17.0	
	10.0	23.0	
	14.6	-	
Between the above	4.1	23.0	
point and No. 3 shaft	6.2	21.0	
•	3.6	18.0	
North of No.1 shaft	16.1	23.0	
	9.0	21.0	
	5.8	21.0	
(820 ft. north)	15.0	19.0	
Further north of No.1.	19.0		
Trace shaft	7.0	12.0	
Trace	17.0		
	Nil	15.0	

Australian Ores and Minerals Ltd was interested in the Mount Todd mines from 1973 to 1975, and took out a number of gold mining leases in joint venture with Wandaroo Mining Corporation and Esso Standard Oil. These may have been purely speculative, as the Commonwealth refused at least one licence application made by the Company. Despite determining that the gold potential of the reefs in the area was most promising, Australian Ores and Minerals ceased working around Mount Todd. The Arafura Mining Corporation, CRA Exploration, and Marnaz Pty Ltd, all had a look at Mount Todd No 1 at different times between 1975 and 1983.

From 1977 to 1983 Destiny Prospecting Pty.Ltd held Exploration Licence No. 1510 over Jones 1 and Jones 2. Under the self-reporting requirements of the *Mining Act*, Destiny was required to lodge particulars of its activities with the Department of Mines and Energy, however the information is regarded by the Department as confidential.

The same situation is true of CRA Exploration Pty.Ltd, which held Exploration Licence No. 3283 covering 13 sq.km abutting the Destiny lease, from 1981 to 1967.

Pacific Goldmines NL worked the Jones Bros Reef for almost 7 months from July 1987, but appear to have been unsuccessful, and left the area. See the notes on the Quigley reefs for more particulars.

6.2 MORRIS' CLAIM

In 1916, when the Chief Geologist Dr Jensen toured the fields, tin was still being mined on the Morris claim, whereas the Horseshoe field had been abandoned. (81) Tin was also being taken at the Scotchman mine immediately to the north (Figure 2). The tin ore found was associated with malachite and native copper. Figure 4 indicates workings on the reef.

Again the lodes were uneven and difficult to mine in a systematic manner. Total recorded production is 180 tons of tin concentrate, about 5 tons of which have been won since 1958.

During 1952-53 the YMC syndicate trucked material from the ore dumps at the Morris workings for recovery of tin at the Mount Todd battery (82). These dumps were reported to carry up to 1% tin.

The licence holder for the area originally known as the Morris Workings, and now known as Morris No.1 from 1953–1974 was Group Suppliers Pty Ltd, which was looking for tin.

6.3 TOLLIS' REEF

This reef lies about 1.5 km south of the Jones Bros mine and has been worked on a small scale with the shaft to 35 feet. This mine was in operation in about 1911, along with several other small holdings in the area, Chinese and Clean Sweep.

No details of production have been recorded, although it seems that some ore may have been sent to the Pine Creek battery very early on.

When the Government Geologist sampled the shaft in 1936, an a-erage as ay value of 14.39 dwt of gold per tone across an average width of 23 inches was found. (83)

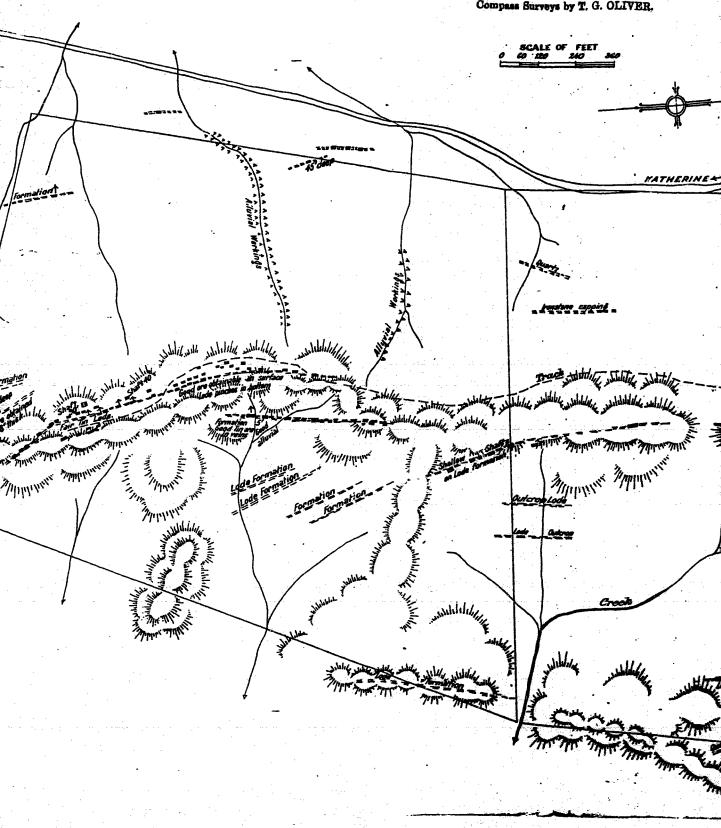

Refer Figure 3 for layout of reef.

FIGURE 4

WORKINGS ON MORRIS REEF

Mt. Todd,—Morris

Compass Surveys by T. G. OLIVER.

KINHULL

6.4 QUIGLEY'S REEF

In the early part of the century these reefs were known as New Mount Todd, and were discovered before 1919, probably by Jones (84). They lie almost 2 km north-east of Jones Bros. The reef runs for over 1 km and has a maximum width of 2 m. Refer Figure 5 for layout.

There are many openings — a 110 foot adit, numerous small open cuts, and several shafts, the deepest to 80 feet. The adit and the deeper shaft tested the central part of the of the southern portion of the reef where it appeared to be more than 6 feet wide. Four samples taken from the adit in 1940 gave an average grade of 13.7 dwt of gold over a width of about 20 inches. (85)

The Commonwealth geologists in 1940 suggested that adits driven in from valleys to the west of the reef could be worked together with the Jones Bros reef to provide a satisfactory return (86), although at the time there was no connecting road to the Mount Todd gold mine.

Certainly, the Quigley family at least took notice of this advice, because in October 1940, Gavin Quigley took out gold mining leases over both the 9 ha area known as Quigleys and the adjoining area known as Quigley's North. He kept these going until 1950.

In July 1987 work resumed on the Quigley reef and three nearby sites known as Golf West, Golf, and Regatta. Pacific Goldmines NL undertook a comprehensive exploration programme, and thought that the area had significent potential. See Table 4 for a geological resource summary.

The Company's Annual Report indicates that heap leaching at Mount Todd did not bring at high a yield as processing in the carbon-in-pulp plant owned by Pacific at Moline, and so all ores were carted to the plant. This continued will December 1987, when the ore grade fell, and transporting became uneconomic.

Mining continued, creating a stockpile of 15,000 tons of ore, but Pacific Goldmin s ceased operations in the area in February 1988. (87)

FIGURE 5

WORKINGS ON QUIGLEY'S REEF 1937

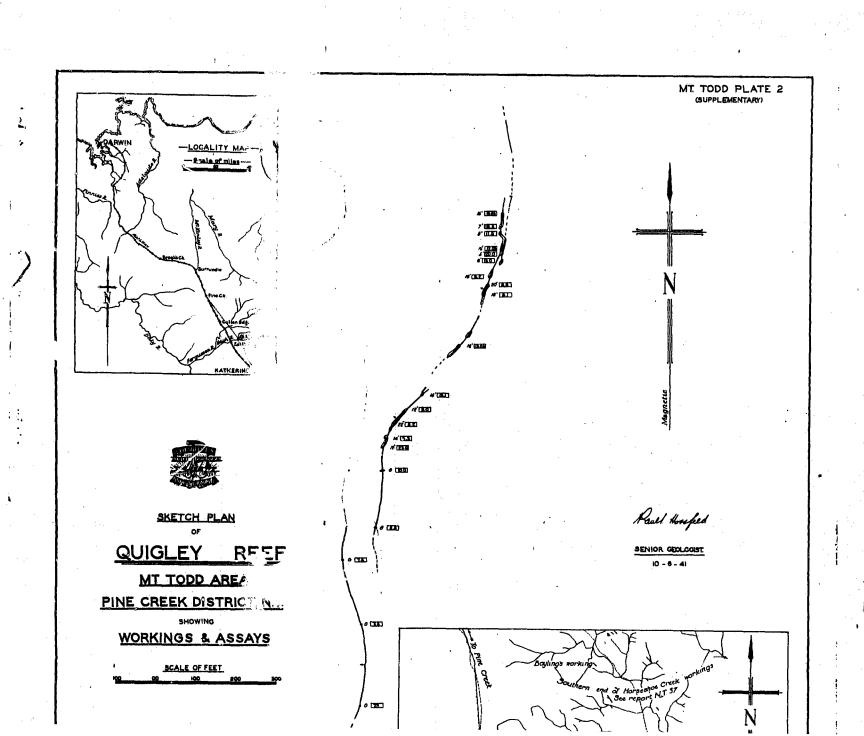


Table 4 Resource summary (from Pacific Goldmines NL op cit)

Area	Tonnes	Grade (g/t)	Resource	Depth Status (m)
Golf West	121,000	1.22	Indicated	30
Golf Results inc	complete (sulphide ore)	•		
Quigley's South	71,000	4.4	Measured	30
Quigley's North	6,920	4.7	Measured	15
Quigley's North ext'd	14,680	3.77	Measured	15
Regatta	14,150	9.8	Indicated	30
Total	227,750	3.04		

7 SUMMARY

It can be said that mining in the Mount Todd region has been extensive in the past and has always held interest for gold miners. Its history encompasses all of the influences upon mining which occurred throughout the Northern Territory.

Until recently, times were indeed hard in the bush of the Top End, and the spirit of those people who struggled to extract some wealth from the earth around Mount Todd may still be felt at the old battery, the sites of the Chinese workings, and the old shafts.

The area is presently experiencing a revival of interest. It is unlikely, however, that these modern times will bring back the aura created by the whinnying of horses pulling drays, the smell of woodsmoke from the miners fires, the clink of pickaxe against rock, and the hubbub of the tributers.

8 REFERENCES

- 1 Clark, M. 1969. A Short History of Australia (revised edn) Mentor p.135.
- 2 Encyclopaedia Britannica. 1974 edn Vol. 13.
- 3 Clark, M. op.cit. p.136.
- 4 Balfour, I.S. Chronicle of Mines and Minerals Discovery of the Northern Territory (unpub.) 1985.
- 5 ibid.
- 6 Northern Territory Times and Gazette 8.7.1882
- 7 ibid. 20.2.1886
- 8 ibid. 9.3.1889
- 9 *ibid*. 30.5.1902
- 10 Balfour op.cit.
- Woolnough, W.G. Report on the Geology of the Northern Territory Bulletin No.4 Commonwealth 1912 p.17.
- Lie Jones T.G. Pegging the Northern 1 1997 p 144 100 Ways from Sun 1997 p 144 100 Ways and Men Northern Territory Mines Money and Men Northern Territory Mining 1893 1022 (2022) (2022)
- 13 Jones, T.G. *ibid.* p.143.
- 14 Jensen, H.I. Geology of the Agicondi Province of the 1 orthern Territory Bulletin of the Northern Territory of Australia. No.19 Commonwealth 1919 p.22.
- 15 Encyclopaedia Britannica op.cit.
- 16 ibid.
- 17 Woolnough, W.G. op.cit. p.14.

KIMBILL

- 18 *ibid*.
- 19 Gray, G.J., and R.J. Winters. Report on Yenberrie Wolfram and Molybdenite Field_Bulletin of the Northern Territory of Australia No.15 Commonwealth 1916 p.3.
- 20 Jensen, H.I. op.cit. p.21.
- 21 ibid.
- 22 Tamblyn, M. op.cit. passim.
- 23 Jensen, H.I. op.cit. p.22.
- 24 Rayner, J.M., and P.B.Nye. Geophysical Report on the Mount Todd Auriferous Area, Pine Creek District. Aerial, Geological and Geophysical Survey of Northern Australia. Report Northern Territory No. 6. Commonwealth 1937 p.4.
- 25 Tamblyn, M. op.cit. p.154.
- 26 ibid. p.143.
- 27 ibid. pp.151-152.
- 28 ibid. p.146.
- 29 ibid. p.150.
- 30 ibid. p.149.

2.7

- 31 Rattiga, J.H., and A.B.Clark. The Geology of the Katherine, Mount Todd and Lewin Springs Sheets, Northern Territory (unpub.) BMR Record 1955/54 p. 19.
- 33 Jensen, H.I. op.cit. p.21.
- 34 Rattiga, J.H., and A.B. Clark. op.cit. p.19.
- 35 Walpole, B.P., P.R. D. M.A. Randal. Geology of the Ketherine-Durwin Region, Northern Territory BMR Bulletin 82, 196, p.216.
- 36 Balfour op.cit.
- 37 Walpole, B.P., P.R. Dunn, and M.A. Randal. op.cit. p.214.
- 3 Ratti TH and B.Clark. op.cit p.21.

- 39 ibid.
- 40 ibid.
- 41 Walpole, B.P., P.R. Dunn, and M.A. Randal. op.cit. p.215.
- 42 *ibid*.
- 43 Jensen, H.I. op.cit. p.21.
- 44 Walpole, B.P., P.R. Dunn, and M.A. Randal. op.cit. p.215.
- 45 Rattiga, J.H., and A.B.Clark. op.cit p.20.
- 46 CSIRO and the Mining Department, University of Melbourne. Table Concentration of a tin-copper Ore from the Scotchman Mine, Horseshoe Creek, NT Investigation No. 472. Commonwealth Mines Branch.
- 47 Rattiga, J.H., and A.B.Clark. op.cit. p.20.
- 48 Woolnough, W.G. op.cit. p.16.
- 49 Woolnough, W.G. op.cit. p.16.
- 50 Gray, G.J., and R.J. Winters. op.cit. p.1.
- 51 *ibid*.
- 52 Gray, G.J., and R.J. Winters. op.cit. p.3.
- 53 ibid. p.2.
- 54 *ibid.* p.3.
- 55 *ibid*.
- ≤ if id.
- 57 Hossfeld, P.S. Pine Creek Goldfield No.1 (unpub.) 1941 p.2.
- 58 *ibid*.
- Fairige, J.H., and A.B.Clark. op.cit. p. 1.
- 50 Walpole, B.P., P.R. Dunn, and M.A. Randal. op.c.. p.216.
- 61 L.O'Loughlin MP Government Geologists Reports of Recent Mineral Discoveries, and Further Record of Northern Territory Boring Op. ns Commonwealth 1908.

- 62 Hossfeld, P.S., and P.B. Nye. Second Report on the Mount Todd Auriferous Area, Pine Creek District Aerial, Geological and Geophysical Survey of Northern Australia Report Northern Territory No. 31 (Supplementary to NT.No. 5) Commonwealth 1941 p.3.
- 63 Jensen, H.I. op.cit. p.22.
- 64 Woolnough, W.G. op.cit. p.14.
- 65 O'Loughlin, L. op.cit.
- 66 ibid.
- 67 Cottle, V.M. The Mount Todd Auriferous Area, Pine Creek District Aerial Geological, and Geophysical Survey of Northern Australia. Report N.T. No.5 Commonwealth 1937 p.3.
- 68 Jensen, H.I. op.cit. p.22.
- 69 Cottle, V.M. op.cit. p.3.
- 70 Jensen, H.I. op.cit. p.21.
- 71 Woolnough, W.G. op.cit. p.14.
- 72 Hossfeld, P.S., and P.B. Nye. op.cit p.4.
- 73 CSIRO and the University of Melbourne Metallurgical Laboratory. Preliminary Investigation of a Partially Oxidized Gold Ore from Mount Todd, Northern Territory. Investigation No. 50. Commonwealth Mines Branch 1937.
- 74 ibid.
- 75 Walpole, B.P., P.R. Dunn, and M.A. Randal. op.cit. p.215.
- 77 V. alpole, B.P., P.R. Dunn, and M.A. Randal. op.cit. p. 115
- Noakes, L.C. A Geological Reconnaissance of the Katherine Darwin Region, Northern Territory with notes on the mineral deposits BMR Bulle in No. 15 Commonwealth 1949 p.45.
- 78 Rattiga, J.H., and A.B.Clark. op.cit. p.19.

Monted of within

- 80 Walpole, B.P., P.R. Junn, and M.A. Randel. p.cit. p.2
- 81 Jensei, H.I. op.cit. p.22.

- 82 Rattiga, J.H., and A.B.Clark. op.cit. p.20.
- 83 Cottle, V.M. op.cit. p.8.
- 84 ibid. p.1.
- 85 Hossfeld, P.S., and P.B. Nye. op.cit. p.8.
- 86 ibid.
- 87 Pacific Goldmines NL Review of Operations Annual Report 1988 p.2.

NT TODO COLO PROJECT
REVIEW OF ALTERNATIVE
TAILLINGS DAM SITES

08.4692

Prepared by:

Rinhill Engineers Pty Ltd 645 Harris Street, Ultimo NSW 2007 Tel. (02) 2:2 1244; Telex AA25519; Fax (02) 2126252

May 1989

The second secon

ਠ

MT TODO GCLO PROJECT
REVIEW OF ALTERNATIVE
TAILINGS DAM SITES

COMIEMIS

- 1. DESCRIPTION
- 2. ASSUMPTIONS
- 3. COMPARISON OF STITES
- 4. CONCLUSION
- . Sketches of Dam Sites
- . Elevation/Capacity Curves for Dam Sites

4. CONCLUSION

- All three sites could be developed for tailings disposal provided geotechnical conditions are suitable.
- Site 3 requires the most earthworks for dam embandments however because of availability of materials and accessibility, unit costs for construction could be less than other sites which is not refelected in Table 1.
- The ability to expand beyond 30 M.T. is similar in each site.
- Operation and control of water is easier on Sites 1 and 3 than on Site 2.
- From test results tailings are expected to settle well and will be similar to Pine Creek and Goodall projects. Suitability for upstream construction has not been investigated at this stage.

5319001

MT TODD COLD PROJECT
REVIEW OF ALTERNATIVE

TAILINGS DAM SITES

1. DESCRIPTION

Three alternative tailings disposal sites are compared in broad terms for 30 mil tonnes of tailings.

The sites are:

- 1. In mountain areas to the north of the mine.
- 2. The presently proposed site in the mountains to the south of the mune.
- 3. A site to the east of Mt Todd.

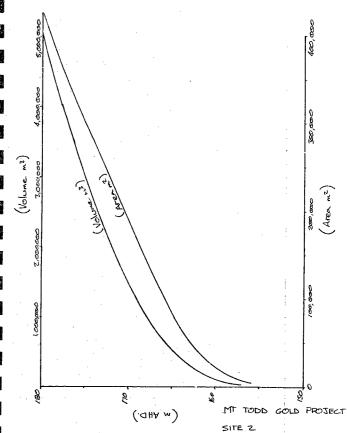
The comparison is based on the criteria listed below. No attempt has been made to refine layouts or operation details or method of dam construction because such refinements will effect all alternatives similarly.

2. ASSUMPTIONS

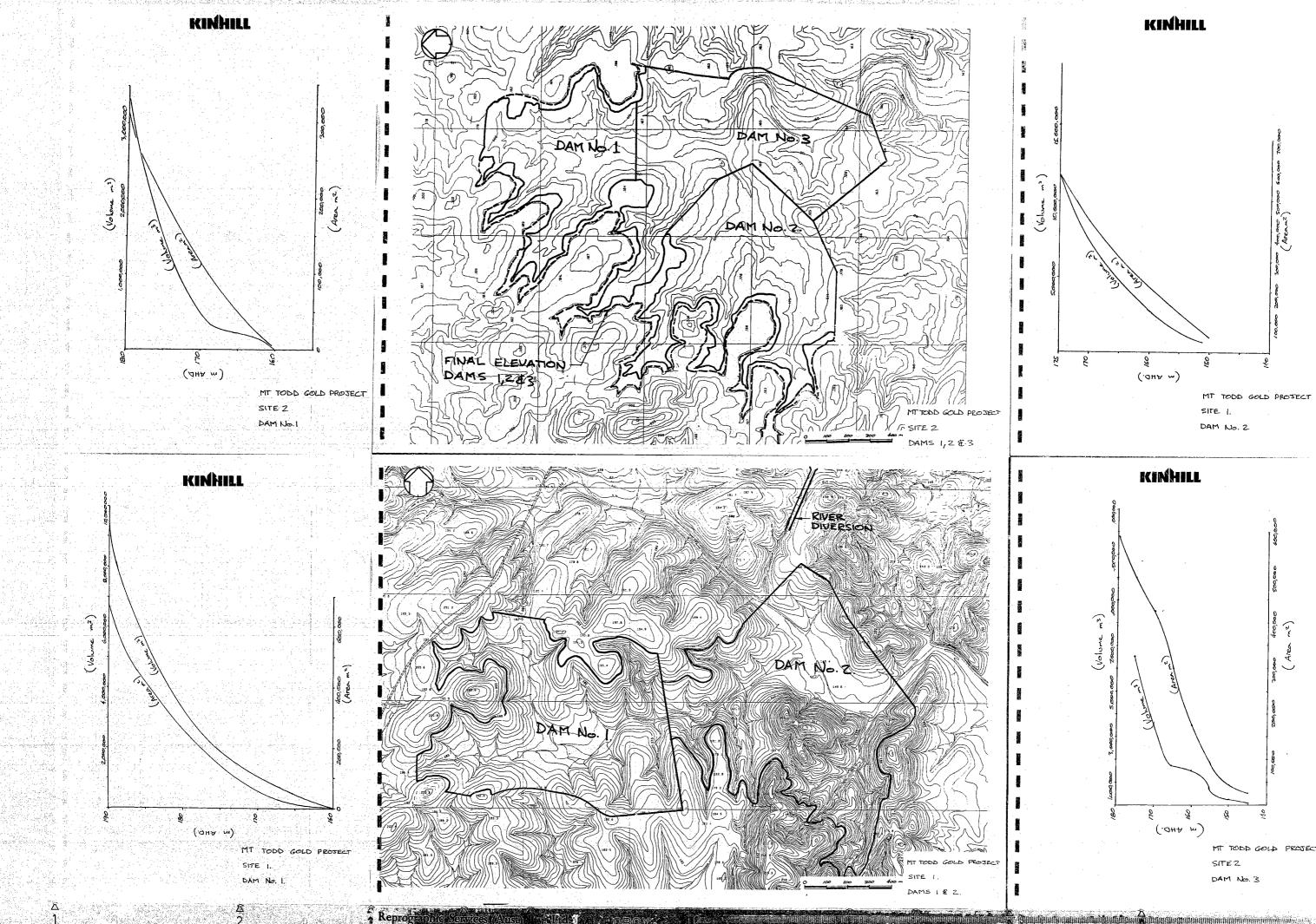
Assumptions made for the comparison are:-

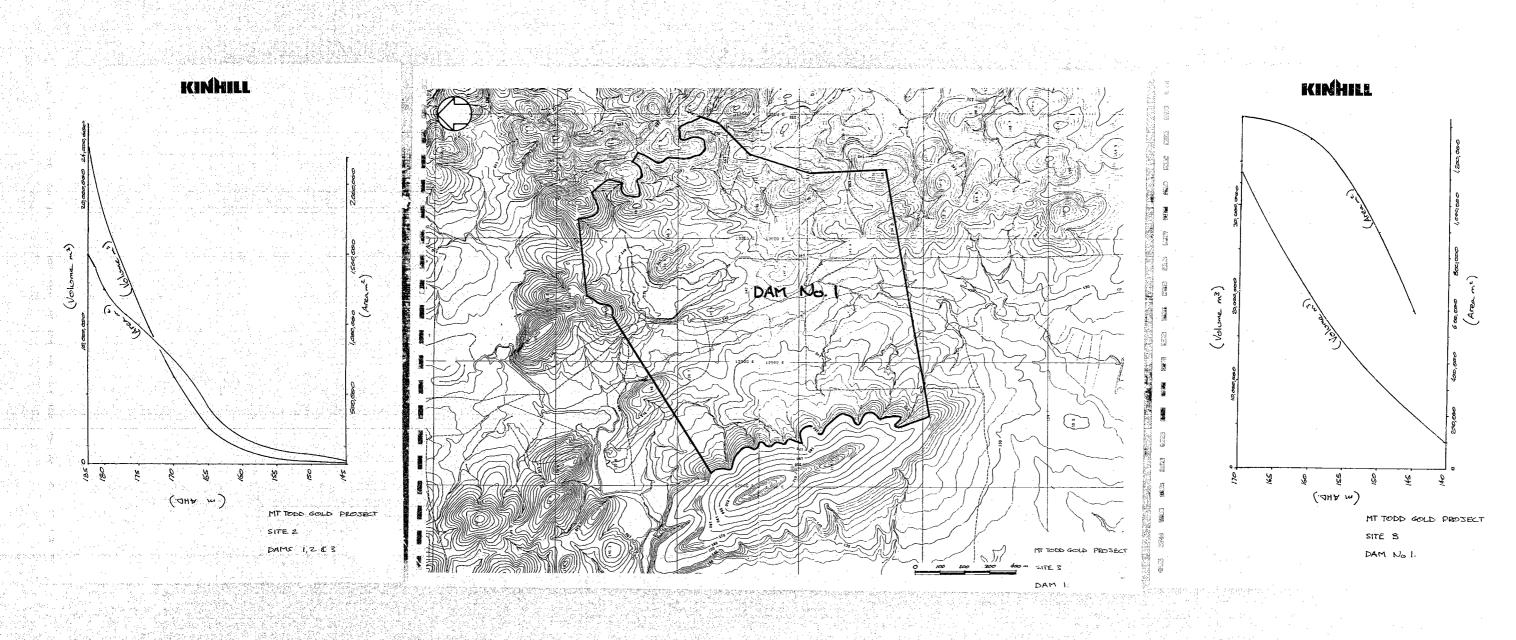
- (i) Dam capacity is based on level tailings surface.
- (ii) Embankment construction is based on downstream construction.
- (iii) Embankment costs \$5/n3.
- v) Pipeline costs \$150/m.
- (v) Relative power costs are calculated on the relative static heads for 3.0 M.T.Y. at 8000 hrs. per year x 12 cents/unit.
- (vi) A plant site elevation of RL 130.

3. COMPARTSON OF STIES


Table 1 shows the comparison of broad details. The following points should be noted:-

- (i) initial dams and initial pipeworks could be reduced but are based on works required to provide about 10 mil m³ capacity
- (ii) during operations there is likely to be pipe relocation and extensions required. The probable ranking of most to least is:


Site 2 Site 1 Site 3


- (iii) for a production of 3.0 M.T.Y. a tailings surface area of 100 to 120 Ha should be aimed for to achieve drying and for 5.0 M.T.Y. and area of 150 to 200 Ha. Site 3 area could be increased but Sites 1 and 2 could not readily be increased.
- (iv) All sites can be operated so that run-off from upstream catchments does not pass over the disposal area.
- (v) Dams required for process water or reclaim water storage are not included in the comparison. Sites are available for each alternative.
- (vi) Unit cost for embankment construction is likely to be lower for Site 3 than other sites because of easier access.

KINHILL

DAM No. Z

