CRA EXPLORATION PTY. LIMITED

EL7934 McDERMOTT'S CREEK
Northern Territory

Partial Relinquishment Report
For Period Ending 2nd December, 1995

Submitted by: DJ Louwrens

Date: February 1996

Accepted by: SJ Hulton

Copies: N.T. Department of Mines & Energy, Darwin
CRA ET&I Group, Melbourne
CRA Exploration Pty. Limited, Darwin

Map Reference: Calvert Hills SE 53-08

Report No.: 21520

"All rights in this report and its contents (including rights to confidential information and copyright in text, diagrams and photographs) remain with CRA Exploration and no use (including use of reproductions, storage or transmission) may be made of the report or its contents for any purpose without the prior written consent of CRA Exploration. © CRA Exploration Pty. Limited 1995."
CONTENTS

1. SUMMARY 1
2. CONCLUSIONS 1
3. INTRODUCTION 1
4. REGIONAL GEOLOGY 2
5. YEAR 1 EXPLORATION ACTIVITIES 3
 5.1 Reconnaissance Gravel Sampling 3
 5.2 Reconnaissance Stream Sediment Sampling 4
 5.3 Rock Sampling 4
6. YEAR 2 EXPLORATION ACTIVITIES 4
 6.1 Airborne Geophysical Survey 4
 6.2 Ground Magnetics 5
 6.3 Sampling Programme 5
 6.3.1 Loam Sampling 6
 6.3.2 Soil Sampling 6
7. REHABILITATION 6
8. REFERENCES 7
9. KEYWORDS 7
10. LOCATION 7
11. LIST OF DPO'S 7
12. LIST OF PLANS 8
LIST OF APPENDICES

APPENDIX 1 Stream Sediment Sample Assay Results
APPENDIX 2 Rock Sample Ledger and Assay Results
APPENDIX 3 Ground Magnetic Profiles
APPENDIX 4 Soil Sample Ledger and Assay Results

LIST OF TABLES

Table 1 Stratigraphy of EL 7934
Table 2 Gravel Sample Results
Table 3 Loam Sample Results
1. SUMMARY

EL 7934 McDermotts Creek is situated within the Wearyan Shelf tectonic domain of the SE McArthur Basin. The 50% statutory reduction of licence area was completed at the end of Year 3. This report details exploration activities in the relinquished portion of the tenement.

During the first year of tenure, reconnaissance density gravel and concurrent stream sediment sampling was completed. Gravel sample results were negative for kimberlitic indicator minerals. Low order geochemical values were returned from stream sediment samples.

During the second year, a detailed airborne magnetic and radiometric survey was completed. Two magnetic anomalies were followed up with ground magnetometry and loam and soil sampling. A single chromite was recorded.

No field work was undertaken in the relinquished portion of EL 7934 during the third year of tenure.

2. CONCLUSIONS

Exploration results to date have been negative and the relinquished area is not considered prospective for kimberlitic diatremes or base metal mineralisation.

3. INTRODUCTION

EL 7934 McDermotts Creek is situated in the SE McArthur Basin approximately 225km SE of Borroloola, and adjacent to the Northern Territory - Queensland border (Plan NTd 6220). Wollogorang Station Homestead is located near the northern boundary of the licence area. The exploration licence, originally covering an area of 784km² (240 blocks), was granted to CRA Exploration Pty. Limited on 3rd December 1992 for a six year period. EL 7934 was acquired due to the perceived potential for kimberlitic diatremes and base metal mineralisation.

Topography is dominated by an escarpment (max. elevation of 266m AMSL) in the southern portion of the licence area. The extensive, dendritic drainage is dominated by Settlement Creek and Branch Creek which drain to the NE.

An old vehicle track located during recent field activities provides access to the north of the relinquished portion of the EL. The majority of the tenement is accessible by helicopter only.

At the end of Year 3, the tenement was reduced by 50% to 196km² (60 blocks). This report details exploration activities in the relinquished portion of the tenement.
4. REGIONAL GEOLOGY

EL 7934 McDermotts Creek is situated within the Wearyan Shelf tectonic domain of the SE McArthur Basin. The tenement covers a sequence of sediments and volcanics of the mid-Proterozoic Tawallah Group which flank the northern margin of the Lower Proterozoic Murphy Metamorphic Inlier. The geological succession within EL 7934 is summarised in Table 1.

The geology of the southern McArthur Basin is comprehensively described by Jackson, et al (1987), while the metallogeny of the Calvert Hills 1:250000 mapsheet is reported by Ahmad and Wygralak (1989).

The Seigal Volcanics is the oldest exposed formation of the Tawallah Group, outcropping along the southern margin of EL 7934. It consists of basic lavas with numerous interbeds of sandstone and siltstone.

The conformably overlying McDermott Formation comprises a succession of shallow-water marine sediments including arenite, dolostone, siltstone and chert.

The McDermott Formation is conformably overlain by the Sly Creek Sandstone which forms a prominent escarpment in the southern portion of the EL. It consists of quartz arenites and numerous conglomerate interbeds. Basal portions of the formation are reported to be dominantly conglomeratic.

The overlying Aquarium Formation consists of glauconitic sandstone, shale and dolomite. The Aquarium Formation is considered transitional between the marine Sly Creek Sandstone below and the continental Settlement Creek Volcanics above. It is characterised by abundant glauconite, upward-fining, and dolomite and halite at the top of the sequence (Jackson, et al, 1987).

Minor siltstone and sandstone of the Mullaman Beds (Early Cretaceous) overlie Tawallah Group sediments in the south of the tenement.

Soils, alluvium and lateritic deposits of Tertiary and Quaternary age mask underlying Proterozoic lithologies along major drainages.
Table 1: Stratigraphy of EL 7934

<table>
<thead>
<tr>
<th>Cretaceous</th>
<th>Mullaman Beds</th>
<th>Siltstone, sandstone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid-Proterozoic</td>
<td>Aquarium Formation</td>
<td>Glauconitic sandstone, shale and dolomite</td>
</tr>
<tr>
<td>Tawallah Group</td>
<td>Sly Creek Sandstone</td>
<td>Quartz arenite, conglomerate interbeds</td>
</tr>
<tr>
<td></td>
<td>McDermott Formation</td>
<td>Arenite, dolomite, siltstone and chert</td>
</tr>
<tr>
<td></td>
<td>Seigal Volcanics</td>
<td>Basic lavas; sandstone and siltstone interbeds</td>
</tr>
</tbody>
</table>

5. YEAR 1 EXPLORATION ACTIVITIES

5.1 Reconnaissance Gravel Sampling

Helicopter-supported stream gravel sampling was conducted at a reconnaissance density of approximately one sample per 17km². Nine -2mm samples were collected from heavy mineral trap sites. All samples were processed at the CRAE laboratory in Perth for kimberlitic indicator (KI) mineral observation. One sample (966789) was processed for micro-diamonds. Gravel sample co-ordinates and results are listed in Table 2. Sample locations are presented on Plan NTd 6223.

All samples reported negative for KI’s. No microdiamonds were recorded.

Table 2: Gravel Sample Results

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>AMGE</th>
<th>AMGN</th>
<th>Sample Weight (kg)</th>
<th>KI Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>3206809</td>
<td>815700</td>
<td>8090100</td>
<td>19.20</td>
<td>Negative</td>
</tr>
<tr>
<td>3206810</td>
<td>813200</td>
<td>8086450</td>
<td>18.60</td>
<td>Negative</td>
</tr>
<tr>
<td>3206811</td>
<td>813650</td>
<td>8085500</td>
<td>20.60</td>
<td>Negative</td>
</tr>
<tr>
<td>3206812</td>
<td>813300</td>
<td>8085250</td>
<td>20.00</td>
<td>Negative</td>
</tr>
<tr>
<td>3206829</td>
<td>795050</td>
<td>8081150</td>
<td>20.20</td>
<td>Negative</td>
</tr>
<tr>
<td>3206834</td>
<td>804750</td>
<td>8074000</td>
<td>21.40</td>
<td>Negative</td>
</tr>
<tr>
<td>3203835</td>
<td>804150</td>
<td>8073900</td>
<td>21.20</td>
<td>Negative</td>
</tr>
<tr>
<td>3206836</td>
<td>804400</td>
<td>8072950</td>
<td>19.60</td>
<td>Negative</td>
</tr>
<tr>
<td>966789</td>
<td>818500</td>
<td>8087400</td>
<td>14.20</td>
<td>Negative</td>
</tr>
</tbody>
</table>
5.2 Reconnaissance Stream Sediment Sampling

Stream sediment samples were collected concurrent with the gravel sampling programme. Eight -80# fraction samples were collected. Approximately 100 grams of sample were dry sieved in the field and submitted to Amdel Laboratories, Darwin, for assay by the AAS technique for Ag, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn.

No anomalous geochemical results were recorded.

Sample locations are presented on Plan NTd 6281. Geochemical results are tabled in Appendix 1.

5.3 Rock Sampling

Two rock grab samples were collected from a vughy, brecciated, silicified horizon within McDermott Formation carbonates during helicopter-borne reconnaissance. The samples were submitted to Amdel Laboratories, Darwin, and assayed for Ag, As, Bi, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn (AAS); Ba, Th and U (XRF); and Au (Fire Assay/AAS).

No anomalous geochemical results were recorded.

Sample locations are presented on plan NTd 6279. Rock ledger and assay results are included in Appendix 2.

6. YEAR 2 EXPLORATION ACTIVITIES

6.1 Airborne Geophysical Survey

A detailed airborne magnetic and radiometric survey was flown over EL 7934 by Kevron Geophysics Pty. Ltd. during May 1994. Survey parameters are listed below.

Survey Name: McDermotts Creek
Flight Line Direction: 000-180 degrees AMG
Flight Line Spacing: 300 metres
Tie Line Direction: 090-270 degrees AMG
Tie Line Spacing: 2900 metres
Mean Terrain Clearance: 60 metres AGL
Navigation: Ashtech GPS
Aircraft: Rockwell Shrike Commander 500s
VH-EXS
Magnetometer: Stinger mounted, Scintrex Caesium Vapour magnetometer VIW 2321-H8
Magnetometer Resolution: 0.001 nT
Magnetometer Sensitivity: 0.001 nT
Sampling Rate: 0.1 seconds
Spectrometer: Geometrics GR-800D
Crystal Volume: 33.6 litres (down), 4.2 litres (up)
Sampling Rate: 1 second
Total Line Kilometres: 3094

Geophysical data processing was carried out by Kevron Geophysics in Perth. Stacked residual magnetic profiles, total magnetic intensity contours and flight path plans were produced. Total magnetic intensity contours are included as Plan NTd 6280.

Inspection of the magnetic survey profile data revealed two low amplitude, short wavelength (<1000m) dipolar responses which were selected for further work.

Airborne magnetic anomaly locations are presented on Plan NTd 6283. Anomaly nomenclature is the anomaly number prefixed by a two character abbreviation of the 1:100 000 sheet on which the anomaly falls.

Airborne radiometric data were collected concurrently with the aeromagnetic data. Radiometric data were digitally corrected and imaged.

6.2 Ground Magnetics

Two aeromagnetic anomalies, WO3 and WO6, were recovered with ground magnetometry. Access to the anomalies was gained by helicopter. Total magnetic intensity readings were recorded along magnetic N-S and E-W traverses at ten metre station intervals using Scintrex MP3 magnetometers. Diurnal corrections were not applied.

Stacked profiles of total magnetic intensity readings are presented in Appendix 3. The recovered ground magnetic profiles do not display magnetic dipole characteristics and were therefore not modelled.

6.3 Sampling Programme

Loam and soil sampling were conducted in conjunction with ground magnetic follow-up of two aeromagnetic anomalies, WO3 and WO4.
6.3.1 Loam Sampling

Single bag (approx. 20kg) -2mm loam samples were collected at interpreted magnetic anomaly centres. Samples were collected over areas of extensive outcrop with no indication of mafic intrusives. The samples were submitted to CRAE Laboratory, Perth, for processing and indicator mineral observation.

A single, small chromite grain was recorded at Anomaly WO6. Further studies reported the chromite to be of non-kimberlitic affinity.

Loam sample co-ordinates and results are listed in Table 2. Sample locations are presented on Plan NTd 6282.

Table 3: Loam Sample Results (DPO 71169)

<table>
<thead>
<tr>
<th>Anomaly</th>
<th>Sample</th>
<th>AMGE</th>
<th>AMGN</th>
<th>Results</th>
<th>Size (mm)</th>
<th>Chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO3</td>
<td>3748022</td>
<td>797000</td>
<td>8077965</td>
<td>Negative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO6</td>
<td>3748025</td>
<td>807205</td>
<td>8075075</td>
<td>1 Chromite</td>
<td>+ 0.25</td>
<td>Non-kimberlitic</td>
</tr>
</tbody>
</table>

6.3.2 Soil Sampling

Single soil samples were collected at each of the magnetic anomalies. Samples were sent to Amdel Laboratory for geochemical analysis of the following elements: Ag, As, Ba, Bi, Ca, Cd, Co, Cu, Fe, K, La, Mg, Mn, Mo, Na, Ni, P, Sb, Th, Ti, U, Zn (ICP-MS); Pb (XRF) and Au (Fire Assay). No anomalous geochemical results were recorded.

The soil sample ledger and assay results are included in Appendix 4. Sample locations are presented on Plan NTd 6278.

7. REHABILITATION

Exploration programmes were of minimal disturbance nature and no rehabilitation was required.
8. REFERENCES

Ahmad, M and Wygralak, AS (1989) 1:250 000 Metallogenic Map Series
Explanatory Notes and Mineral Deposit
Data Sheets, Calvert Hills SE 53-08

Northern Territory (BMR Bulletin 220)

Palmer, DC (1993) EL 7934 McDermotts Creek, N.T.,
First Annual Report for the Year Ending
2nd December 1993 (Report No.19415)

Louwrens, DJ (1994) EL 7934 McDermotts Creek, N.T.,
Second Annual Report for the Year Ending
2nd December 1994 (Report No. 20457)

9. KEYWORDS

McArthur Basin, Tawallah Group, Proterozoic, Geophys Airborne Magnetics,
Geophys Ground Magnetics, Geophys Airborne Radiometrics, Gravel Sampling,
Loam Sampling, Diamonds, Kimberlitic Indicators, Geochem Stream Sediment,
Geochem Rock, Geochem Soil.

10. LOCATION

Calvert Hills SE 53-08 1:250 000
Wollogorang 6463 1:100 000

11. LIST OF DPO's

19482, 21382, 71057, 71104, 71106, 71169, 71246
12. LIST OF PLANS

<table>
<thead>
<tr>
<th>Plan No.</th>
<th>Title</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTd 6220</td>
<td>EL 7934 McDermotts Creek Location Plan (Reduction of Area)</td>
<td>1:250 000</td>
</tr>
<tr>
<td>NTd 6223</td>
<td>EL 7934 McDermotts Creek Sample Location Plan (Relinquished Area)</td>
<td>1:50 000</td>
</tr>
<tr>
<td>NTd 6278</td>
<td>EL 7934 McDermotts Creek Soil Sample Location Plan (Relinquished Area)</td>
<td>1:100 000</td>
</tr>
<tr>
<td>NTd 6279</td>
<td>EL 7934 McDermotts Creek Rock Sample Location Plan (Relinquished Area)</td>
<td>1:100 000</td>
</tr>
<tr>
<td>NTd 6280</td>
<td>EL 7934 McDermotts Creek - NT79MR Total Magnetic Intensity Contours (Relinquished Area)</td>
<td>1:100 000</td>
</tr>
<tr>
<td>NTd 6281</td>
<td>EL 7934 McDermotts Creek -80# Stream Sediment Sample Location Plan (Relinquished Area)</td>
<td>1:100 000</td>
</tr>
<tr>
<td>NTd 6282</td>
<td>EL 7934 McDermotts Creek Loam Sample Location Plan</td>
<td>1:100 000</td>
</tr>
<tr>
<td>NTd 6283</td>
<td>EL 7934 McDermotts Creek Magnetic Anomaly Location Plan</td>
<td>1:100 000</td>
</tr>
</tbody>
</table>
APPENDIX 1

EL 7934 McDERMOTT'S CREEK

Stream Sediment Sample Assay Results
CRA EXPLORATION PTY LIMITED
STREAM SEDIMENT SAMPLE ASSAY RESULTS

<table>
<thead>
<tr>
<th>Tenement</th>
<th>McDermotts Creek EL7934</th>
<th>1:250 000 Sheet:</th>
<th>Calvert Hills SE53-08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geologist</td>
<td>DC Palmer</td>
<td>1:100 000 Sheet:</td>
<td>Wollogorang 6463</td>
</tr>
<tr>
<td>Date:</td>
<td>1993</td>
<td>Laboratory:</td>
<td>Amdel, Darwin</td>
</tr>
<tr>
<td>DPO:</td>
<td>71104, 71106</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>AMGE</th>
<th>AMGN</th>
<th>Ag</th>
<th>Cd</th>
<th>Co</th>
<th>Cr</th>
<th>Cu</th>
<th>Fe</th>
<th>Mn</th>
<th>Ni</th>
<th>Pb</th>
<th>Zn</th>
<th>As</th>
</tr>
</thead>
<tbody>
<tr>
<td>3206809</td>
<td>815700</td>
<td>8090100</td>
<td>0.05</td>
<td>0.05</td>
<td>3</td>
<td>46</td>
<td>24</td>
<td>22995</td>
<td>270</td>
<td>9</td>
<td>11</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>3206810</td>
<td>813200</td>
<td>8086450</td>
<td>0.05</td>
<td>0.05</td>
<td>13</td>
<td>53</td>
<td>36</td>
<td>30135</td>
<td>210</td>
<td>23</td>
<td>7</td>
<td>27</td>
<td>10</td>
</tr>
<tr>
<td>3206811</td>
<td>813650</td>
<td>8085500</td>
<td>0.05</td>
<td>0.05</td>
<td>8</td>
<td>53</td>
<td>32</td>
<td>30450</td>
<td>220</td>
<td>17</td>
<td>6</td>
<td>21</td>
<td>10</td>
</tr>
<tr>
<td>3206812</td>
<td>813300</td>
<td>8085250</td>
<td>0.05</td>
<td>0.05</td>
<td>7</td>
<td>39</td>
<td>21</td>
<td>21630</td>
<td>170</td>
<td>11</td>
<td>5</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>3206829</td>
<td>795050</td>
<td>8081150</td>
<td>0.05</td>
<td>0.05</td>
<td>8</td>
<td>35</td>
<td>25</td>
<td>46515</td>
<td>680</td>
<td>10</td>
<td>11</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>3206834</td>
<td>804750</td>
<td>8074000</td>
<td>0.05</td>
<td>0.05</td>
<td>4</td>
<td>24</td>
<td>11</td>
<td>14910</td>
<td>550</td>
<td>5</td>
<td>5</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>3206835</td>
<td>804150</td>
<td>8073900</td>
<td>0.05</td>
<td>0.05</td>
<td>16</td>
<td>58</td>
<td>48</td>
<td>40005</td>
<td>1300</td>
<td>24</td>
<td>12</td>
<td>33</td>
<td>10</td>
</tr>
<tr>
<td>3206836</td>
<td>804400</td>
<td>8072950</td>
<td>0.05</td>
<td>0.05</td>
<td>5</td>
<td>30</td>
<td>34</td>
<td>19320</td>
<td>1390</td>
<td>14</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D.L.</th>
<th>0.1ppm</th>
<th>0.1ppm</th>
<th>2ppm</th>
<th>2ppm</th>
<th>1ppm</th>
<th>5ppm</th>
<th>2ppm</th>
<th>2ppm</th>
<th>2ppm</th>
<th>1ppm</th>
<th>20ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>METHOD</td>
<td>AAS</td>
</tr>
</tbody>
</table>

STR_REL3.XLS
APPENDIX 2

EL 7934 McDERMOTT'S CREEK

Rock Sample Ledger And Assay Results
CRA EXPLORATION PTY LIMITED
ROCK SAMPLE LEDGER

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>AMGE</th>
<th>AMGN</th>
<th>Sample Type</th>
<th>Geological Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3204123</td>
<td>804228</td>
<td>8074022</td>
<td>Grab</td>
<td>Red-brown, laminated to brecciated, silicified, vugly carbonate rock with goethite and manganese-lined fractures with drusy 'dog-tooth' quartz.</td>
</tr>
<tr>
<td>3204124</td>
<td>804228</td>
<td>8074022</td>
<td>Grab</td>
<td>Red-brown, laminated to brecciated, silicified, vugly carbonate rock with goethite and manganese-lined fractures with drusy 'dog-tooth' quartz (as above).</td>
</tr>
</tbody>
</table>
CRA EXPLORATION PTY LIMITED
ROCK SAMPLE LEDGER

Tenement: EL 7934 McDermotts Creek
Geologist: DC Palmer
Date: 1993

| Sample No. | AMGE | AMGN | Ag | As | Au | Ba | Bi | Co | Cr | Cu | Fe | Mn | Ni | Pb | Th | U | Zn |
|------------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 3204123 | 804228 | 8074022 | <1 | 60 | 0.002 | 820 | <10 | <4 | 195 | 17 | 3.3 | 350 | <4 | 13 | 4 | 10 | 4 |
| 3204124 | 804228 | 8074022 | <1 | <50 | 0.001 | 1400| 10 | <4 | 140 | 33 | 2.26| 170 | <4 | 13 | 5 | 6 | 4 |

<table>
<thead>
<tr>
<th>Method</th>
<th>AAS</th>
<th>AAS</th>
<th>FA</th>
<th>XRF1</th>
<th>AAS</th>
<th>AAS</th>
<th>AAS</th>
<th>AAS</th>
<th>AAS</th>
<th>AAS</th>
<th>AAS</th>
<th>XRF1</th>
<th>XRF1</th>
<th>AAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.L.</td>
<td>1</td>
<td>50</td>
<td>0.001</td>
<td>10</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Unit</td>
<td>PPM</td>
</tr>
</tbody>
</table>

Map Reference: Calvert Hills SE5308
Laboratory: Amdel, Darwin
DPO: 71004
APPENDIX 3

EL 7934 McDERMOTT'S CREEK

Ground Magnetic Profiles
APPENDIX 4

EL 7934 McDERMOTTS CREEK

Soil Sample Ledger And Assay Results
CRA EXPLORATION PTY LIMITED
SOIL SAMPLE LEDGER

Programme: Magnetic Anomaly Follow-up
Tenement: McDermotts Creek EL7934
Geologist: DC Menzies
Date: 16-Jul-94

1:250 000 Sheet: Calvert Hills SE53-08
1:100 000 Sheet: Wollogorang 6463
Laboratory: Amdel, Darwin
DPO: 71246

<table>
<thead>
<tr>
<th>Anomaly</th>
<th>Sample No.</th>
<th>AMGE</th>
<th>AMGN</th>
<th>Sample Type</th>
<th>Colour</th>
<th>Depth (cm)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>W03</td>
<td>3748038</td>
<td>797000</td>
<td>8077965</td>
<td>-80# Soil</td>
<td>Yellow-Brown</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>W06</td>
<td>3748048</td>
<td>807205</td>
<td>8075073</td>
<td>-80# Soil</td>
<td>Brown</td>
<td>15</td>
<td>Sandstone outcrop</td>
</tr>
</tbody>
</table>

TAO: MCD.CLO:GEOCH.SOILREL3
CRA EXPLORATION PTY LIMITED
SOIL ASSAY RESULTS

<table>
<thead>
<tr>
<th>Anomaly</th>
<th>Sample No.</th>
<th>AMGE</th>
<th>AMGN</th>
<th>Ag</th>
<th>As</th>
<th>Au</th>
<th>Ba</th>
<th>Bi</th>
<th>Ca</th>
<th>Cd</th>
<th>Co</th>
<th>Cu</th>
<th>Fe</th>
<th>K</th>
<th>Mg</th>
<th>Mn</th>
<th>Mo</th>
<th>Na</th>
<th>Ni</th>
<th>P</th>
<th>Pb</th>
<th>Sb</th>
<th>Th</th>
<th>Ti</th>
<th>U</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>W03</td>
<td>3748038</td>
<td>797000</td>
<td>8077965</td>
<td><0.1</td>
<td>2</td>
<td>0.001</td>
<td>95</td>
<td>0.2</td>
<td>370</td>
<td>0.3</td>
<td>5.8</td>
<td>20</td>
<td>22500</td>
<td>3100</td>
<td>19</td>
<td>550</td>
<td>380</td>
<td>0.6</td>
<td>220</td>
<td>8</td>
<td>150</td>
<td>6</td>
<td>1</td>
<td>7.4</td>
<td>6600</td>
<td>1.94</td>
</tr>
<tr>
<td>W06</td>
<td>3748048</td>
<td>807205</td>
<td>8075073</td>
<td><0.1</td>
<td>3.5</td>
<td><0.001</td>
<td>90</td>
<td>0.5</td>
<td>410</td>
<td>0.2</td>
<td>4</td>
<td>17</td>
<td>22000</td>
<td>2700</td>
<td>30</td>
<td>580</td>
<td>280</td>
<td>1</td>
<td>185</td>
<td>10</td>
<td>160</td>
<td>7</td>
<td>1</td>
<td>6.6</td>
<td>3850</td>
<td>1.66</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit</th>
<th>ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>DL</td>
<td>0.1</td>
<td>0.5</td>
<td>1</td>
<td>5</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>1</td>
<td>100</td>
<td>0.05</td>
<td>10</td>
<td>5</td>
<td>0.2</td>
<td>10</td>
<td>2</td>
<td>10</td>
<td>1</td>
<td>0.5</td>
<td>0.02</td>
<td>10</td>
<td>0.02</td>
<td>0.2</td>
</tr>
</tbody>
</table>

| Scheme | IC3M | IC3M | FA3 | XRFIL | IC3M |

Programme: Magnetic Anomaly Follow-up
Tenement: McDermott Creek EL7934
Geologist: DC Menzies
Date: July-94
1:250 000 Sheet: Calvert Hills SE53-08
1:100 000 Sheet: Wollogorang 6463
Laboratory: Amdel, Darwin
DFO: 71246