CENTRAL PACIFIC MINERALS N.L.

REPORT NO. N.T. 290

JUNE 1995

G.J. POPE

Distribution:

CPM Bne 2
NTDME 1
CONTENTS

1. INTRODUCTION 1
2. TENURE 1
3. GEOLOGICAL SETTING 1
4. GENERAL GEOLOGY OF THE GHEKO PROSPECT 2
5. CURRENT PROGRAMME 2
6. REFERENCES & BIBLIOGRAPHY 3

FIGURES

1. Locality Plan
2. Gheko Prospect - Geology & Drillhole Locations
1. INTRODUCTION

The copper, lead and zinc gossan of the Gheko Prospect is located approximately 50km north-east of Alice Springs, in the Northern Territory (Figure 1). The summit of Bald Hill is the nearest topographic feature, about 1.6km to the north. The mineralisation was discovered in 1969 as a result of stream sediment geochemical sampling in the area of former Authority to Prospect 1721.

Subsequently, forty "Cobra" drill samples were collected, induced polarisation surveys, geological mapping and a four-hole percussion drill programme were completed. Grades of 7.8% zinc and 8.5 g/t silver over a 1.5m interval (PH2) were the best obtained.

2. TENURE

The area was initially held as part of AP 1721. MCs 38 (formerly MC 463H) of 33 hectares was granted to Central Pacific Minerals N.L. on 22nd March 1984. An application for renewal of MCs 38 for a further 10 years was lodged with the N.T. Department of Minerals & Energy in September 1993. Formal notification of the renewal of MCs 38 for a period of 5 years ending 31 December 1999 was received from the NTDME on 9th February 1996.

3. GEOLOGICAL SETTING

The rocks of the prospect area consist of crystalline basement assigned to Early Proterozoic? Division Two rocks of the Arunta Block near the north-eastern margin of the Late Proterozoic to Late Palaeozoic, Amadeus Basin (Alice Springs 1:250 000 Geological Sheet SF 53-14). Gneiss, schist, amphibolite, marble and calc-silicates of the Sliding Rock metamorphics are the principal rock types. The metamorphic grade is as high as the almandine amphibolite facies. Small pegmatite and microdiorite intrusions are common but no large igneous intrusions are present. A retrograde schist zone, possibly related to similar more widespread zones to the north, transects the Prospect.

Further to the north, the Late Proterozoic Heavitree Quartzite and the Bitter Springs Formation, which are the two lowermost formations of the Amadeus Basin are infolded into the Arunta Block to form the Arltunga Nappe Complex.

4. GENERAL GEOLOGY OF THE GHEKO PROSPECT

Gossans crop out on the flanks of lenticular developments of garnetiferous metaquartzite. The metaquartzite occurs along the contact of a sequence of biotite gneisses with a sequence of fine-grained, even-textured amphibolite (Figure 2). The relatively simple lithological relationship is complicated by extremely complex and tight folding, particularly in the north-east corner of the area mapped. The
MCs 38
GHEKO PROSPECT

SCALE
5 10 15 km

CENTRAL PACIFIC MINERALS N.L.

MCs 38
GHEKO PROSPECT
LOCALITY PLAN

DATE
June 1988

S. A. C.

1:250,000
similarity of the position of the gossan and the presence of similar gneisses and amphibolite strongly suggests that the Gheko Prospect is a stratigraphic equivalent of the Rankin’s Prospect mineralisation (7km to the west-northwest).

The lead-zinc mineralisation was found to be principally sphalerite, with some galena and chalcopyrite associated with magnetite and quartz. The mineralisation appears to be stratigraphically controlled as it occurs in gossanous haematite-actinolite rocks marginal to garnetiferous quartzite with the actinolite rocks presumably replacements of former calcareous lenses. The garnet quartzite is intensely recrystallised; no quartz grain boundaries can be discerned and the quartzite superficially resembles a garnetiferous quartz vein. In several places decomposed amphibole and pyrite occur in the quartzite.

5. CURRENT PROGRAMME

Potential

As in previous years, the potential of the Prospect was again reviewed in 1995. However, the location and small size of the currently known mineralisation coupled with the prevailing metal prices of the commodities involved is such that the property is to continue for the time being on a care and maintenance basis.
6. REFERENCES AND BIBLIOGRAPHY

Clarke, D., 1969
Geological Report - A to P 1721
(Northern Territory) CPM Report
No. NT 12.

Fidler, R.W., 1989
MCs 38, 1989 Annual Report, Gheko
Prospect, Northern Territory, CPM
Report No. NT 271.

Fidler, R.W., 1992
MCs 38, 1991 Annual Report, Gheko
Prospect, Northern Territory, CPM
Report No. NT 277

Mclver, R.G., 1988
MCs 38, 1987 Annual Report, Gheko
Prospect, Northern Territory, CPM
Report No. NT 268.

McPhar Geophysics, 1970
Report on the Induced Polarisation and
Resistivity Survey on Several Areas in
A to P 1721, Northern Territory,
Australia, for Central Pacific Minerals
N.L.

Paine, G., 1971
Report for Winnecke, Percussion
Drilling Programme at the Gheko
Prospect, CPM Report No. NT 3.

Pope, G.J., 1993
MCs 38, 1992 Annual Report, Gheko Prospect,
Northern Territory. CPM Report No. NT 280.

Pope, G.J., 1994
MCs 38 1993 Annual Report, Gheko Prospect,
Northern Territory. CPM Rpt. NT 283.

Ransom, D.M., 1970
"Geology of the Gheko Prospect",
CPM File Note NT 04.

Scerri, F.M., 1991
MC 38, 1990 Annual Report, Gheko
Prospect, Northern Territory, CPM
Report No. NT 274.