EXPLORATION LICENCE 8717 "INGALLAN CREEK"
(Mount Peake 1:250 000 sheet)

ANNUAL REPORT ON EXPLORATION
FOR THE YEAR ENDED
14th July 1995

OPEN FILE

Distribution:
NTDME (1)
ARL Melbourne (1)
ARL Adelaide (1)

Prepared and Issued By:
C G Drown
Senior Geologist

August 1995
ARL Report No. Ingallan Creek 1

A wholly owned subsidiary of Aberfoyle Limited.
CONTENTS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>TENURE</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>WORK COMPLETED</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Past Work Search</td>
<td>2</td>
</tr>
<tr>
<td>3.2</td>
<td>AAPA Site Clearance</td>
<td>5</td>
</tr>
<tr>
<td>3.3</td>
<td>Regional Geophysical Data Acquisition and Imaging</td>
<td>5</td>
</tr>
<tr>
<td>3.4</td>
<td>Airborne Magnetics and Radiometrics Survey</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>EXPENDITURE</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>PROPOSED PROGRAMME AND BUDGET</td>
<td>8</td>
</tr>
</tbody>
</table>

APPENDICES

<table>
<thead>
<tr>
<th>Appendix 1</th>
<th>Copy of AAPA Correspondence and Authority Certificate issued to Aberfoyle Resources Limited covering EL 8717</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix 2</td>
<td>Geoterrex Airborne Magnetic and Radiometric Equipment Specification</td>
</tr>
<tr>
<td>Figure No.</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>Figure 1</td>
<td>EL 8717 “Ingallan Creek” Location Plan</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Gravity Image (produced from BMR reconnaissance survey)</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Total Magnetic Intensity (produced from 1976 BMR 1.5km spaced survey)</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Geoterrex Preliminary Magnetic Contours Sheet 1</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Geoterrex Preliminary Magnetic Contours Sheet 2</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Geoterrex Preliminary Magnetic Contours Sheet 3</td>
</tr>
</tbody>
</table>
1. **INTRODUCTION**

EL 8717 “Ingallan Creek” is located to the west of the Stuart Highway on the Mount Peake 1:250 000 mapping sheet (Figure 1). It occurs on the Anningie Pastoral Lease 622 in an area to the north of the ‘Old Mount Peake’ settlement.

Aberfoyle Resources is exploring the gold potential of EL 8717, with mineralisation of the type developed to the west in the Granites/Tanami inlier seen as having the potential to exist on the licence. The existing deposits within the Granites/Tanami are generally intimately associated with magnetic anomalies and as such, our exploration is targeted towards the testing of magnetic features.

Work in the first year of tenure has included a search of past exploration over the licence area, the application for, and subsequent issuing of an AAPA Authority Certificate detailing the location of sites of Aboriginal significance, procuring and imaging of existing geophysical datasets; and the flying of a 500m spaced airborne magnetic and radiometric survey over the licence area.

2. **TENURE**

EL 8717 “Ingallan Creek” (1065 sq.kms) was granted on the 15th July 1994 to Aberfoyle Resources Limited for a period of six years.

An annual exploration expenditure commitment of $42,000 applied to EL 8717 for the first year of tenure.
3. WORK COMPLETED

3.1 Past Work Search

A search at the NTDME’s Darwin office conducted by Bichard Exploration Administration Services Pty Ltd on behalf of Aberfoyle Resources has revealed the following history of company exploration in the general area of EL 8717.

- CRA carried out uranium exploration in the southwestern part of EL 8717 in the early 1970’s (NTDME reports CR73/8; CR74/31). Their exploration concentrated on an area of extensive calcrete shown on the Mount Peake 1:250 000 geological sheet. They completed geological mapping at 1:80 000 scale, conducted airborne and ground radiometric surveys and analysed ground waters. A total of 33 RAB holes were drilled to shallow depths and samples analysed for uranium. Borehole logging (scintillometer?) was also carried out.

- In the early 1980’s CRA also held ground immediately southeast of EL 8717 (NTDME reports CR82/189; CR83/1). Stream sediment and rockchip sampling were conducted with analyses for base metals, tin and gold completed. Stream sediment samples were also screened for kimberlitic indicator minerals with chromite occurring in one sample.
Of most significance were two drainage samples which assayed 0.65ppm and 0.75ppm Au. These were followed up with detailed rockchip sampling and prospecting. One rockchip sample of 'haematitic shale' assayed 1.10ppm Au and an adjacent soil sample up to 4.64ppm Au in one size fraction. Further work on this prospect however, could not substantiate the original results and analytical error was suggested. Lander Rock Beds crop out in the vicinity of this sampling.

- In the mid 1980's BHP held an EL roughly coincident with the 'window' in EL 8717 (NTDME report CR84/141). They investigated a large magnetic 'bullseye' anomaly, flying a small airborne magnetic survey over their licence, and conducting ground magnetics and gravity surveys. A coincident magnetic/gravity anomaly was tested by three shallow precollared diamond drillholes. Assay results were disappointing, however gold was not determined.

- Stockdale held the area in the late 1980's (NTDME report CR89/625), conducting regional scale geochemical sampling to test for the presence of kimberlitic indicators. None were found and the area relinquished.
• Poseidon held a licence directly east of the northern part of EL 8717 (NTDME reports CR93/581; CR94/692) in the early 1990’s. They targeted ‘Granites’ style gold in the Lander Rock Beds and completed TM imagery interpretation, BMR magnetics interpretation, orientation RAB drilling, BLEG sampling, soil sampling and costeaneing. No significant results were reported with all Au assays less than 1ppb.

• The southern part of EL 8717 was held by WMC in the early 1990’s (NTDME report CR94/184). They targeted Au and Cu in iron-rich rocks. They held discussions with NTDME geologists involved in DME mapping projects of Barrow Creek and Mount Doreen sheets, produced regional stratigraphic correlations, undertook lineament studies and interpreted regional aeromagnetic and gravity datasets. On the ground they conducted a semi-regional gravity survey.

Published data relevant to EL 8717 includes:-

• BMR 1958 flown airborne magnetics and radiometrics.
• 1:250 000 scale airphotography flown by the Division of National Mapping in 1971.
• 1:24 000 scale colour airphotography flown over the southern part of the Mount Peak sheet by Tanganyika Holdings Limited in 1972.
• A second BMR flown airmagetic/radiometric survey in 1976. The BMR also completed a regional gravity survey of the Mount Peake sheet in the 1960’s.
3.2 AAPA Site Clearance

Aberfoyle Resources applied to the Aboriginal Areas Protection Authority (AAPA) for an Authority Certificate covering the entire area of EL 8717. The application was made on the 13th October 1994 and the Certificate was issued on the 28th March 1995.

Seven places of significance to Aboriginal peoples were identified. A copy of the AAPA's correspondence (including a copy of the Authority Certificate) is included in this report as Appendix 1.

3.3 Regional Geophysical Data Acquisition and Imaging

Aberfoyle Resources have acquired existing geophysical datasets relevant to EL 8717. These include a BMR 1.5km line spaced aeromagnetic survey of the Mount Peake 1:250 000 sheet area flown in 1976, and regional BMR gravity data.

These datasets have been grided and imaged using ERMapper software. Figure 2 is an image of the gravity data of the licence environs and Figure 3 shows Total Magnetic Intensity for the same area.
Within the area of EL 8717 several relatively low magnitude, linear magnetic trends are evident. In the southern part of the EL these magnetic anomalies coincide with limited outcrops of Lander Rock Beds indicated on the Mount Peake 1:250 000 geological map. We believe the Lander Rock Beds to be a potential host to gold mineralisation, particularly where they contain magnetite (c.f. Mount Charles Beds of The Granites/Tanami inlier to the west). Structural activity in the vicinity of the southern anomalies is also apparent from the BMR magnetics data with NW and WNW trending linear features evident. These in part are also evident in the regional gravity data where a regionally extensive gravity high appears to be offset in the vicinity of these structures.

Further linear magnetic anomalies are evident in the central and northern areas of EL 8717 however the source rocks are unknown as very limited pre-Tertiary units are mapped in these areas. It is considered likely that these anomalies are also sourced by Lander Rock Beds.

One of the most readily apparent aspects of the BMR magnetics is the poor quality of the data. North-south stripping and artificial features (such as a subtle 'honeycomb' pattern evident in the eastern central region of the EL) are apparent. These are thought to be due to poor data levelling and problems in interpolation of coarse spaced data points. We do not consider the quality of the BMR magnetics to be sufficiently high to target geochemical programmes of exploration.
3.4 Airborne Magnetics and Radiometrics Survey

As the poor quality of existing magnetics data does not allow accurate targeting of surface or sub-surface (vacuum/RAB) geochemical exploration, it was considered necessary to gather higher quality data using modern geophysical equipment.

Geoterrex were contracted to fly the entire area of EL 8717 to gather magnetic and radiometric data on a 500m line spacing. This line spacing, together with the high sampling rate offered by modern equipment, is considered adequate for the accurate location of magnetic anomalies, and is equivalent to recent NTDME/AGSO flown airborne surveys to the east (Barrow Creek 1:250 000 sheet) and west (The Granites, Mount Solitaire, Highland Rocks, Mount Theo 1:250 000 sheets).

The survey was flown in late June 1995. At the time of reporting Aberfoyle had been presented with only preliminary magnetic contour and flight path maps of the survey. Geoterrex are currently completing processing of the data, including micro-levelling. Delivery of the final data is anticipated by end of September 1995.

Plots at the scale of 1:50 000 of the preliminary magnetic data are included in this report as Figures 4, 5 and 6. Geophysical equipment specifications and information are presented in Appendix 2.
4. EXPENDITURE

Aberfoyle Resources expended a total of $44,349.01 on exploration of EL 8717 during the first year of tenure. A breakdown of this expenditure appears in the following page.

5. PROPOSED PROGRAMME AND BUDGET

While it is difficult to determine the magnitude of our year 2 exploration programme prior to receipt of the final magnetic and radiometric data from Geoterrex, the following programme of work is anticipated.

1. Interpretation of Geoterrex geophysical datasets $3,000
2. Purchase and interpretation of Landsat TM (to assist in regolith mapping) $2,000
3. Surface geochemical sampling, assaying $25,000
4. Vacuum drilling $25,000
TOTAL $55,000

We may determine that vacuum drilling is an inappropriate drilling technique on parts of EL 8717 with sub-surface geochemical sampling using RAB more suited. If this is the case we would expect a higher level of exploration expenditure.
ABERFOYLE RESOURCES LIMITED
EXPLORATION DIVISION

EXPLORATION LICENCE 8717 "INGALLAN CREEK"

SUMMARY OF EXPENDITURE
FOR THE TWELVE MONTHS
ended 14th July 1995

<table>
<thead>
<tr>
<th>Category</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOLOGY</td>
<td>$ 2,048.67</td>
</tr>
<tr>
<td>GEOPHYSICS</td>
<td>31,559.89</td>
</tr>
<tr>
<td>TENURE</td>
<td>3,700.00</td>
</tr>
<tr>
<td>LEGAL</td>
<td>1,347.70</td>
</tr>
<tr>
<td>OTHER SERVICES</td>
<td>30.00</td>
</tr>
<tr>
<td>ADMINISTRATION</td>
<td>5,662.75</td>
</tr>
<tr>
<td>TOTAL COSTS</td>
<td>$44,349.01</td>
</tr>
</tbody>
</table>
APPENDIX 1

Copy of AAPA Correspondence and Authority Certificate

issued to Aberfoyle Resources Limited and covering EL 8717
ABORIGINAL AREAS PROTECTION AUTHORITY
AUTHORITY CERTIFICATE

Issued in accordance with Section 22 of the Aboriginal Sacred Sites Act

REFERENCE: D89/199; 89/2045; (Doc No. 12449)
APPLYING TO: Exploration Licences, 8716, 8717, and 8718.

PROPOSED WORK OR USE: Track clearing for access, surface geochemical soil sampling, RAB/vacuum drilling, surface geophysical surveys, and percussion/diamond drilling.

ISSUED TO: Aberfoyle Resources Limited
37 Fullarton Rd
KENT TOWN SA 5067

CONDITIONS:

1. It is the responsibility of the recipient of this Certificate to:

 (i) Include the conditions of this Certificate in any subsequent contract or tender document commissioning works described in this Certificate and,

 (ii) Otherwise inform agents and employees of the conditions of this Certificate and obligations under the Aboriginal Sacred Sites (N.T.) Act 1989

2. The proposed use or works covered by this Certificate must commence within 24 months of the date of issue.

3. The information on the map relates specifically to the area of the Certificate as marked and the fact that no sites/sites are shown in other areas should not be taken as a definitive indication of the existence or lack of existence of sites in these areas.

4. The map attached to the Certificate forms part of the Certificate. (The numbered areas shown on the map correspond with the numbered areas to avoid which are listed below.)

5. The following areas must be avoided in the course of work: [Where provided map co-ordinates are those from a G.P.S. Unit (checked against the site location on a map) and are not necessarily accurate to the metres indicated by the particular reading. Co-ordinates are not intended to delineate site boundaries but are provided as an aid in locating the areas to be avoided which are listed below. Maps referred to in the certificate are the latest editions of the 1:250,000 series (metric) maps, Mount Peake SF 53-5 and Barrow Creek SF 53-6.]

 Anningie Station.

 (i) Temporary waterhole on Ingallan Creek. The site is accessed by driving overland, (off the station track), 3.3 kilometres north from Limestone Bore. A 1,000 metre length of Ingallan Creek should be avoided in this area centering on the point 3.3 kilometres north of Limestone bore. No work should be carried out within 200 metres of the bed of Ingallan Creek. Co-ordinate reading (G.P.S.), (53) 282803(E) and 7625070(N).

 (ii) The temporary waterhole on Ingallan Creek adjacent and to the east of Crows Nest Bore (approx. 200 metres) should not be disturbed. Five hundred metres of Ingallan Creek, centred on a point opposite Crows Nest Bore should be avoided. In this area no work should be undertaken closer than 100 metres to the bed of Ingallan Creek. Co-ordinate reading (G.P.S.), (53) 279026(E) and 7629426(N).
(iii) This site is marked on the Mount Peake topographic map (SF 53-5) as "Duck Hole" (Duck waterhole). This site is north of Crowns Nest Bore on Ingallan Creek. Two and a half kilometres north of Crowns Nest Bore the station track to Twelve Mile Bore is joined by a track which comes from the east. This track crosses the main bed on Ingallan Creek after one kilometre and crosses the creek, and after a further 400–500 metres comes to a long waterhole. No work should be carried out in the vicinity of this waterhole, for 1500 metres either side of the point where the track arrives at the waterhole. There should be no work within 100 metres of the banks of the waterhole. Co-ordinate reading (G.P.S.), (53) 277783(E) and 7631700(N).

(iv) This site is a soakage, (a small depression) surrounded by a number of native "bean" trees (Erythrina vespertilio) on the plain approximately 19 kilometres east of Twelve Mile Bore. The approximate coordinates of this site are, (53) 287200(E) and 76445(N). No work should be carried out within 100 metres of any E. vespertilio ("bean") trees at or in the vicinity of this location.

(v) This site is a short quartz ridge (approximately 250 metres long) which trends N.E.—S.W. in the mulga scrub approximately sixteen kilometres north east of Twelve Mile Bore. The approximate coordinates of for this ridge are (53) 2883200 (E) and 76527(N). No work should be carried out within 200 metres of any quartz outcrop at or in the vicinity of this location.

(vi) This site is an outcrop of reddish coloured rock approximately ten kilometres east of Windjojo (Windjajong) Bore. This outcrop is a short distance south of the graded track which runs towards the east from Windjojo Bore. There are several such outcrops in the vicinity and all such outcrops between 8.5 and 10.5 kilometres east of the bore should be avoided. Co-ordinate reading (G.P.S.), (53) 290344(E) and 7661583(N).

(vii) The area to be avoided is on the plain north east of Windjojo Bore. No work should be carried out within an area one kilometre in radius centred on a point one kilometre due north east of Windjojo Bore.

Stirling Station.

(i) This site is the prominent ridge eighteen kilometres north west of Mud Hut Well. The ridge is marked on the Mount Peake topographic map (SF 53-5) as height 538. The ridge is bisected by the Anningie—Stirling Station boundary fence. No work should be carried out upon this ridge.

(ii) This site is the large claypan/"swamp" (usually dry) in the vicinity of Mud Hut Bore. No earth disturbing works should be carried out upon this feature. Camping and soil sampling and other low impact activity may be conducted as desired.

(iii) This site is the area of hills approximately two kilometres north—north east of Mud Hut Bore. These hills are shown on the Mount Peake topographical map, SF 53-5. No work at all is to be carried out in this area upon any hills between one and three kilometres north—east from Mud Hut Bore. Co-ordinate reading (G.P.S.), (53) 326024(E) and 7617338(N).

(iv) This site is a group of hills nine and a half kilometres north—north-east of Mud Hut Bore. The hills are indicated on the Mount Peake topographical map, SF 53-5, and are shown with the height 500. No work should be carried out on any hills at this location. Co-ordinate reading (G.P.S.), (53) 328568(E) and 7624112(N).

(v) Site is a small sandstone hill five kilometres east of the site 11 above, and twelve kilometres north east of Mud Hut Bore. The site is south of the low ridge marked on the Mount Peake topographic map SF 53-5 adjacent (south) to the track running between Browns Yards and Mount Peake Creek Bore. This ridge is approximately seven kilometres south east of Mount Peake Creek Bore. No work should be carried out within 200 metres of this hill. Co-ordinate reading (G.P.S.), (53) 332062(E) and 7623273(N).

(vi) Site centres on the junction of the Hanson River and Mount Peake Creek which is adjacent to Wollagalalong Bore. No work should be carried out within 200 metres of the Hanson River over an area 200 metres south and 200 metres north of this point.
(vii) Site is the hill three kilometres west of Wollagalong Bore. This hill is shown on the Mount Peake topographic map SF 53-5. No work should be carried out on this hill.

(viii) Site is a clear area in scrub two kilometres north-east of Browns Yard. No work should be carried out between the Hanson River (west of Browns Yard) and a point one kilometre to the north-east. Approximate co-ordinates are 342200(E) and 7618200(N).

(ix) Site is the ridge thirteen kilometres east of Browns Yard which is marked on the Barrow Creek topographic map SF 53-6, as height 548. No work should be undertaken on this feature.

(x) No work should be undertaken within 200 metres of the junction of the Hanson River and Nine Mile Creek.

(xi) No work should be carried out and above all no damage done to any mature trees, in the vicinity of Nine Mile Creek north of where the track from the Stuart Highway to Junction Well Crosses Nine Mile Creek. This restriction applies to an area north of the creek crossing for 500 metres. There should be no work carried out within 100 metres of Nine Mile Creek. Co-ordinate reading (G.P.S.), (53) 358001(E) and 7607475(N).

(xii) Site is a hill eight and a half kilometres north east of Junction Well, and approximately one kilometre west of the gas pipeline to Darwin. This area to be avoided is marked with the height 495 on the Barrow Creek topographic map SF 53-6. No work should be carried out upon this hill.

(xiii) No work should be carried out on or in the vicinity of Nine Mile Waterhole on Nine Mile Creek eight kilometres north east of Mount Stirling. On the Barrow Creek topographic map SF 53-6, Nine mile Waterhole is marked as two distinct waterholes. No work should be carried out within 200 metres of these two features.

(xiv) Site is a temporary waterhole on an unnamed creek seven kilometres north west of Five Mile Bore. The creek (but not the waterhole itself) is shown on the Barrow Creek topographic map SF 53-6. The approximate coordinates for the location of this site are 368450(E) and 7619000(N), SF 53-6. No work should be carried out within 100 metres of any creek at or near this location and no mature bloodwood trees (Eucalyptus opaca) damaged. Co-ordinate reading (G.P.S.), (53) 368469(E) and 7619035(N).

The COMMON SEAL of the
ABORIGINAL AREAS PROTECTION AUTHORITY
was hereto affixed on the day of
24th
1995

DAVID RITCHIE
Chief Executive Officer
APPENDIX 2

Geoterrex Airborne Magnetic and Radiometric

Equipment Specifications
PART B
Equipment specifications

5) Aircraft
Type/Manufacture: Rockwell Shrike Aero Commander 600S.
Survey Speed: 220 kilometres per hour
Type of fuel: AVGAS (Aviation Gasoline)

6) Airborne Magnetometer
Model: Scintrex or Geometrics Cesium vapor optical absorption magnetometer
sensor mounted in a Stinger.
Resolution: 0.001 nanoTesla
Sensitivity: 0.001 nanoTesla
Compensation: AADC
Sampling Rate: 0.1 second (nominally 7 metres)
Recording: Digital to tape and displayed on aircraft chart recorder.

7) Base Station Magnetometer
Sensor: Proton Precession magnetometer.
Recording: Internal memory (backed up daily)
Sensitivity: 0.1 nanoTeslas
Sampling Rate: 5.0 seconds

The base station magnetometer will be run during flying hours to monitor the diurnal field. The sensor will be placed in a suitable position which minimizes the effects of high magnetic gradients and man-made interference. The base station location will be documented in the survey logistics report. The data will be presented as profiles which will be annotated with date, flight number, vertical scale, time marks and the start and end of flight.

8) Gamma-Ray Spectrometer
Model: Exploranum GR 820 System (self-calibrating)
Crystal Volume: 33 litres (NaI crystals - Thallium activated)
Channels: 256 channel conversion
Sample Rate: 1.0 second (nominally 65 metres)

<table>
<thead>
<tr>
<th>Windows</th>
<th>0.4 - 3.0 MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Count</td>
<td></td>
</tr>
<tr>
<td>Potassium (K40)</td>
<td>1.35 - 1.57 MeV</td>
</tr>
<tr>
<td>Uranium (Bi214)</td>
<td>1.63 - 1.89 MeV</td>
</tr>
<tr>
<td>Thorium (T1208)</td>
<td>2.42 - 2.82 MeV</td>
</tr>
<tr>
<td>Cosmic</td>
<td>3.00 - 6.00 MeV</td>
</tr>
</tbody>
</table>

Recording: The four defined windows and one cosmic channel will be displayed on the aircraft chart recorder. This data, spectrometer live time and all of the raw channels representing the gamma-ray spectrum above 0.4 MeV will be recorded on digital tape.
9) Altimeters

Radio Altimeter:
Type: Sperry Stare AA200
Accuracy: +/- 1.5%
Sampling Rate: 1.0 second

Barometric Altimeter:
Type: Rosemount 8404 F
Sensitivity: 1 mv per foot
Range: 0 - 20,000 feet
Sampling Rate: 1.0 second

Temperature
Type: Omega HX-12V temperature/relative humidity sensor mounted externally away from direct sunlight
Accuracy:
Temperature 0.6°C
Relative humidity 2%

The aircraft radio altitude will be recorded on digital tape as well as displayed on the aircraft chart recorder. The recorded value will be the average of the altimeter output during the previous second so that the value used in terrain correction procedures is not a spot value. The current altimeter calibration tests will be presented in the Survey Logistics Report.

10) Video Tracking System

Equipment:
Sony DXP 101P Camera with wide angle lens
Panasonic AG6400 VCR
Sony PVM 6030ME Monitor

The video tape is synchronised with the geophysical record by a digital fiducial display which is recorded on the video tape and displayed on the bottom left of the video screen. Times are recorded from the digital information provided by the data acquisition system. Video is recorded in PAL format.

11) Positioning / Navigation Equipment - Doppler/GPS

Doppler Equipment:
Singer Kearfott AN/ASN 128
Sperry VG-14 Vertical Gyroscope
Sperry C-12 Compass
Pilot Steering Indicators.

GPS Equipment:
Sercel NR 103 GPS Receiver and antennae
Pilot Steering Indicators.

Recording:
Digital to tape, once per second for both systems.

GPS Base Station:
Sercel NR103 GPS Receiver and antennae
Lap top data logger
12) Data Acquisition System

Model: Geoterrex Pty Ltd GEODAS
Equipment: 486 PC Computer with 4Mb of memory
 2 x 212 Mb disc drives, QIC 150Mb cartridge system

The GEODAS is a computer based software system using a 486DX/25 field PC. It runs multiple
DOS programs in a multi-tasking environment. The modular design of the GEODAS allows for
reconfiguring the system to record different types of surveys by adding, removing or changing task
modules.

The GEODAS is currently installed on a rugged, totally enclosed, moisture and dust proof system,
originally designed for military use. Currently it uses a 486DX CPU on a plug-in module card which
can be upgraded. Data is recorded on 220 Mb hard disks.
13) Analogue Chart Recorder

Model: RMS GR33 Thermal Dot Matrix Printer

Chart Speed: Selectable

Chart Width: 12 inches (31 cm)

Recorded data:
- Total magnetic field (fine and coarse scales)
- Magnetic field fourth difference - noise monitor
- Radar altitude
- Barometric altitude
- Five channels of corrected radiometric data
- Fiducial

Scales: Selectable

14) Field Processing System

Hardware:
- Unix workstation
- QIC 150 Mb cartridge system
- A1 multipen plotter
- Printer

Software: GEOTERREX developed GMAPS software

15) Office Processing System

Hardware:
- UNIX workstation network and peripherals (SUN and DEC equipment)
- 5 multi density tape transports
- 1 5.0 Gb Exabyte tape drive
- 2 High speed printers
- 2 Calcomp AO Colour Electrostatic Plotters
- 2 AO multipen plotters
- Graphics terminals
- AO Digitiser tablet

Software: GEOTERREX developed GMAPS software
- ERMapper image processing software
PART C
Calibration procedures

16) Magnetometer System Calibrations

The following tests are conducted on a regular basis by GEOTERREX and the results of the most recent tests will be presented in the survey logistics report:

i) Manoeuvre Test to minimise aircraft manoeuvre noise.

ii) Parallax Test to determine magnetometer/camera parallax.

iii) Heading Test to monitor the variation in magnetometer response with variation in aircraft heading.

17) Spectrometer System Calibrations

The following tests will be conducted and results will be made available to THE COMPANY in the survey logistics report:

i) Pre and Post Flight Source Checks Thorium and uranium hand sample checks will be run on the gamma-ray spectrometer before and after each flight. Each hand sample will be computed by the acquisition system and the data will be recorded by the RMS printer. Samples will be positioned in the same place relative to the crystals every day and where possible the aircraft will be parked in the same position for each check. The spectrum of each hand sample and the background spectrum will be accumulated and plots of both the raw spectra and background corrected spectra will be recorded by the RMS printer.

ii) Background Determination Radiometric backgrounds to be subtracted from the spectrometer data will be determined from the cosmic channel according to equations established from prior high altitude testing.

iii) Height Attenuation Height attenuation coefficients have been previously determined for the system being used as installed in the aircraft.

iv) Resolution System resolution will be determined from a spectral plot before the commencement of the survey and at intervals of one week using a 71208 source.

A test line will be flown at survey altitude for 5 kilometres before and after each flight and the data will be recorded in analogue and digital mode. The test area will be a relatively flat area with a suitable feature to assist navigation. The area should have some radioactive relief along its length. The location of the test line will be marked on a large scale map of the area and included in the survey logistics report.

In-flight recording of temperature will be done by the operator at regular intervals during each flight. Significant weather conditions will also be recorded by the operator on the flight log.

No survey flying will be commenced or resumed within 24 hours of heavy rain in the survey area unless the effects of the rain are monitored by reflying the test line or a flight line from a previous day's survey and the total count recorded on the reflown line is within the required contract specifications.