NORTHERN TERRITORY GOLD MINES N.L.

EXPLORATION LICENCE 8170
McKINLAY RIVER EAST
FIRST ANNUAL REPORT - FOR YEAR ENDING 15/7/94
REPORT NUMBER: NTGM/8170/1

Prepared by:
AJ Hosking
AJ Hosking and Associates Pty Ltd
Darwin

November 1994
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>3</td>
</tr>
<tr>
<td>LOCATION AND ACCESS</td>
<td>4</td>
</tr>
<tr>
<td>SURFACE TENURE</td>
<td>4</td>
</tr>
<tr>
<td>PHYSIOGRAPHY</td>
<td>5</td>
</tr>
<tr>
<td>REGIONAL GEOLOGY</td>
<td>7</td>
</tr>
<tr>
<td>LOCAL GEOLOGY</td>
<td>8</td>
</tr>
<tr>
<td>KNOWN MINERALISATION</td>
<td>10</td>
</tr>
<tr>
<td>PREVIOUS GEOLOGICAL STUDIES AND EXPLORATION ACTIVITIES</td>
<td>16</td>
</tr>
<tr>
<td>EXPLORATION CRITERIA</td>
<td>17</td>
</tr>
<tr>
<td>WORK COMPLETED IN YEAR 1 OF TENURE</td>
<td>18</td>
</tr>
<tr>
<td>EXPENDITURE STATEMENT FOR YEAR 1</td>
<td>18</td>
</tr>
<tr>
<td>PROPOSED EXPLORATION PROGRAM AND BUDGET FOR YEAR 2</td>
<td>20</td>
</tr>
<tr>
<td>REFERENCES</td>
<td></td>
</tr>
<tr>
<td>APPENDICES</td>
<td></td>
</tr>
<tr>
<td>1. NTGS MINE DATA SHEETS</td>
<td></td>
</tr>
<tr>
<td>- Localities within EL 8170</td>
<td></td>
</tr>
<tr>
<td>2. NTGS MINE DATA SHEETS</td>
<td></td>
</tr>
<tr>
<td>- Localities in close proximity to EL 8170</td>
<td></td>
</tr>
</tbody>
</table>
FIGURES

Figure 1 Location
Figure 2 Physiographic and Cultural Features
 - from Division of National Mapping
Figure 3 Aerial Photograph of Licence Area
Figure 4 Soil Types
 - from Hooper (1969)
Figure 5 Vegetation Types
 - from Story (1969)
Figure 6 General Geology of the Central Part of the Pine Creek Inlier
 - from Nicholson and others (1994)
Figure 7 Stratigraphy of the Central Part of the Pine Creek Inlier
 - from Nicholson and others (1994)
Figure 8 Regional Geology of the McKinlay River Area
 - from Stuart-Smith and others (1986)
Figure 9 Aeromagnetic Contours (BMR)
 - from Goodeve (1966)
Figure 10 Highlights of Previous Exploration
 - from various sources
SUMMARY

The licence was granted to Northern Territory Gold Mines N.L. on 16/7/93 for a period of six (6) years.

The licence area contains low-grade metasediments and metavolcanics of Palaeoproterozoic age which have been folded strongly and intruded extensively by pro-orogenic dolerite. The area has potential for gold mineralisation, particularly of the large tonnage, low grade type in quartz stockworks or complex vein systems. While no specific gold occurrences or old workings are known, small tin, manganese (-iron) and lead (-zinc) vein-type deposits do occur and appear to be fault-controlled.

Research and data compilation comprised the main exploration activities in the first year of tenure. All data were processed digitally per a Geographic Information System. Open-file records of Commonwealth and Territory government agencies were the main sources of data. A considerable amount of historical geological and exploration data was processed.

The activities in the first year have demonstrated that subsequent exploration for gold should be focussed upon structural targets with particular emphasis given to soil-covered areas in the south and anticlines plus faults in the north where outcrop is good.
INTRODUCTION

Exploration Licence (EL) 8170 of 42 one minute by one minute graticular blocks was granted to Northern Territory Gold Mines N.L. (NTGM) by the Northern Territory Department of Mines and Energy (NTDME) on 16/7/93 for a period of 6 years. The first licence year expired on 15/7/94.

The licence area is one of 11 comprising the McKinlay River project area of NTGM. The main administrative details of the licences are provided in Table 1 below.

<table>
<thead>
<tr>
<th>EL no.</th>
<th>No. of blocks</th>
<th>Date of grant</th>
<th>Term (years)</th>
<th>Expenditure commitment</th>
<th>Title year</th>
</tr>
</thead>
<tbody>
<tr>
<td>7155</td>
<td>4</td>
<td>05/12/90</td>
<td>6</td>
<td>$ 8000</td>
<td>4</td>
</tr>
<tr>
<td>7674</td>
<td>17</td>
<td>31/03/92</td>
<td>6</td>
<td>$ 5000</td>
<td>3</td>
</tr>
<tr>
<td>8055</td>
<td>9</td>
<td>27/07/93</td>
<td>6</td>
<td>$20000</td>
<td>1</td>
</tr>
<tr>
<td>8056</td>
<td>14</td>
<td>15/09/93</td>
<td>6</td>
<td>$30000</td>
<td>1</td>
</tr>
<tr>
<td>8069</td>
<td>36</td>
<td>27/04/93</td>
<td>6</td>
<td>$35000</td>
<td>1</td>
</tr>
<tr>
<td>8161</td>
<td>1</td>
<td>20/09/93</td>
<td>6</td>
<td>$ 5000</td>
<td>1</td>
</tr>
<tr>
<td>8170</td>
<td>42</td>
<td>16/07/93</td>
<td>6</td>
<td>$35000</td>
<td>1</td>
</tr>
<tr>
<td>8184</td>
<td>62</td>
<td>10/12/93</td>
<td>6</td>
<td>$30000</td>
<td>1</td>
</tr>
<tr>
<td>8228</td>
<td>24</td>
<td>31/12/93</td>
<td>6</td>
<td>$23000</td>
<td>1</td>
</tr>
<tr>
<td>8424</td>
<td>34</td>
<td>24/12/93</td>
<td>6</td>
<td>$20000</td>
<td>1</td>
</tr>
<tr>
<td>8425</td>
<td>3</td>
<td>24/12/93</td>
<td>3</td>
<td>$10000</td>
<td>1</td>
</tr>
</tbody>
</table>

Transfers of the title for ELs 7155 and 7674 from the original holder, Robert Biddlecombe were approved by NTDME on 29/10/93. Statutory areal reductions also have occurred as follows:

EL 7155 15 blocks originally; first reduction 5/12/92 with 8 blocks retained; second reduction 17/1/94 with 4 blocks retained

A.J. Hosking & Associates Pty Ltd
EL 7674 - 34 blocks originally; first reduction 15/7/94 with 17 blocks retained

The total number of blocks in the project area is 246 of which EL 8170 comprises approximately 17 per cent.

The initial expectation of the company was that a very substantial field program in the project area would have been completed in the 1994 dry season, including a substantial component for EL 8170. However, unforeseen problems with the public float of NTGM’s parent company, Australian Gold Mines No Liability (AGM) on the Australian Stock Exchange caused major delays and difficulties in funding the proposed exploration program. Consequently, only research, administration and data management activities have occurred in Year 1. Considerable time, effort and expenditure has been devoted to digitising relevant technical data and establishing a Geographic Information System (GIS) for ongoing storage, processing, interpretation and presentation of such data per Ekos Research (NT) Pty Limited of Darwin. Details of the GIS are contained in the First Annual Report for EL 8069.

The main exploration target of the company is large-tonnage, low-grade, open-pitiable gold mineralisation similar to that which occurs at major deposits at Union Reefs and Mount Todd. The potential for high grade gold deposits amenable to underground mining, and for base-metals deposits also will be assessed routinely during exploration. Small tin, manganese (-iron) and lead (-zinc) deposits occur in the area.

This report contains details of the geology of the licence area, the results of previous exploration plus the research and data management activities which have occurred in Year 1 and part of Year 2 (to 30/9/94).

Two small areas within the EL are excluded from tenure. These areas cover the old Rosemary Tin Mine and an unnamed lead-silver prospect to the near north of this mine. Details of the tenements which are held by other parties are as follow:

A.J. Hosking & Associates Pty Ltd
Rosemary Tin Mine

a) Mining Lease North (MLN) 37
 Holder: Michael McNally
 Area: 16.19 ha
 Date of Grant: 13/06/67
 Date of Renewal: 30/12/87
 Date of Expiry: 30/12/97

b) MLN 50
 Holder: Jimmy Ah Toy and Edward Ah Toy
 Area: 9 ha
 Date of Grant: 08/09/71
 Date of Renewal: Pending (application lodged 20/12/90)

Unnamed Lead-Silver Prospect

MLN 43 - 46
 Holder: As for MLN 50
 Area: 9 ha each
 Date of Grant: 21/06/71
 Date of Renewal: Pending (application lodged 20/12/90)

No sacred/significant sites are registered or recorded with the Aboriginal Areas Protection Authority.

LOCATION AND ACCESS

The location of EL 8170 is shown in Figure 1. The area occupied by the other ELs which with EL 8170 comprise the company's McKinlay River project area also is shown. The licence area, which has an inverted “L” shape, occurs in the central part of the total area which is held.

The approximate centrepoint of the licence area, the Rosemary Tin Mine locality, is situated approximately 50 km northnorthwest of the township of Pine Creek. Vehicle access to the area is gained most conveniently from the south via the Stuart Highway, thence via the good, unsealed road adjacent to the old
railway line and thence via the good, unsealed Burrundie Siding - Mount Wells - Mount Harris road. Part of this road traverses the central portion of the licence area. The old Mount Wells Mining Centre lies approximately two kilometres to the west of the most southern portion of the area. Access can be gained also from the west via an approximately east-west track between Ban Ban Springs homestead and the McKinlay Gold Mine (within the contiguous EL 8069) and thence south to the licence area. However, access from the west is complicated by the fact that, for much of its route, this track passes over a black-soil plain which is difficult, if not impossible, to traverse by vehicle in the wet season (particularly over the central portion of the licence area between Compass Creek in the northwest and McKinlay River in the east).

The central-northern part of the licence area can be reached by a track which leads north from Jessops Tin Mine.

SURFACE TENURE

The licence area lies wholly within Ban Ban Springs Perpetual Pastoral Lease 1111 (NT Portions 695 and 1344). This property supports beef raising.

PHYSIOGRAPHY

The principal physiographic and cultural features of the licence area are shown in Figure 2. An aerial photograph of the area constitutes Figure 3. The licence area occurs in the catchments of the McKinlay and Mary rivers as shown by McGowan (1989). Tributaries of these rivers mark the southern-central and northern parts respectively. In the southern part of the area, drainage is to the north via the McKinlay River and one of its major tributaries, Watts Creek. In the central part of the area, drainage is to the west via tributaries of the McKinlay River. In the northern part of the area, drainage is to the north via Douglas Creek and "Douglas Creek East" and to the east via tributaries of the Mary River in the vicinity of the old Mount Harris Battery.

A major physiographic study of the region bordered by the Alligator and East Alligator rivers was undertaken by CSIRO in the period 1965 - 1969 This study
covered the licence area. Several authors, notably Williams (1969), Story (1969) and Williams and others (1969), contributed papers to a major publication which is the principal source of physiographic data in this report. Additional data have been obtained from the Vegetation Map of the NT published by the Conservation Commission of the NT ((Wilson and others, 1991)). The distributions of soil and vegetation types are shown in Figures 4 and 5.

Two major land units are recognised by Williams and others (1969). These are the dissected foothills and alluvial floodplains. The former unit occurs mainly in the northern part of the licence area and is characterised by, low hills and rubble-covered rises formed by metasedimentary rocks with intervening alluvial flats. Strike ridges also are present. Woodland and/or stunted woodland (Box and Bloodwood) occur on the hills and rises with a grassland under-story, with grassland on the flats. Soils vary from leached, skeletal types to yellow, loamy types on the elevated areas to alkaline types on the flats. The latter unit occurs in the southern-central part of the licence area and is marked by floodplains, deeply incised channels, levees and billabongs. Sands and silts occur on floodplains and in channels while areas of loamy to sandy alkaline and/or acid soils also are present. Paperbark (Melaleuca) woodland and open savannah grassland are distinctive features of this land unit.

The licence area has a monsoonal climate with an average annual rainfall in the order of 1500 mm, with most rain falling in the summer months. No waterbores are known to exist within the licence area.

REGIONAL GEOLOGY

The licence area lies within the Pine Creek Inlier (or Geosyncline). This major tectono-sedimentary unit contains pelitic and psammitic sediments with minor volcanics of Palaeoproterozoic age which developed in a basinal setting on granitic basement of Late Archaean age. The sedimentary pile subsequently was deformed and metamorphosed (mostly to greenschist facies) by the Top End Orogeny which lasted for approximately 180 Ma (1870 - 1690 Ma). Pre-orogenic sills of mafic intrusives and syn- to post - orogenic granitoids intrude the metasedimentary and metavolcanic rocks. Most granitoids were emplaced in the waning stages of the tectonism.
A voluminous literature has developed for the Inlier over more than 50 years commencing with studies by the Aerial, Geological and Geophysical Survey of Northern Australia (AGGSNA) of mine areas and their surrounds. A considerable boost to the geological studies and to exploration followed the discovery of uranium at Rum Jungle in 1948. However, it is beyond the scope of this report to review this literature and only key publications have been referenced, notably those of Walpole (1968), Ferguson (1980), Stuart-Smith and others (1986), Needham and others (1988), Stuart-Smith and others (1993) and Nicholson and others (1994) which are particularly relevant to the licence area and its near surrounds. Geological maps at 1:63,360, 1:100 000 and 1:250 000 scales with accompanying reports produced by Commonwealth and NT government agencies are major components of this extensive database. A vast amount of data has accumulated from base-metal, gold and uranium exploration programs. Studies dealing with specific features of sedimentation, tectonism, magmatism and metallogenesis also have been features of the developing literature.

In this report, the regional geology and stratigraphic framework proposed by Nicholson and others (1994) are adopted (see Figures 6 and 7). These authors have advocated a three-fold lithostratigraphic subdivision rather than the four-fold subdivision advocated by earlier BMR authors and applied widely in recent years. The significance of rim faults around major granitic bodies also is highlighted by Nicholson and others (1994). Such faults also were postulated by authors reporting on airborne geophysical surveys of the McKinlay River area in the 1960s eg. Goodeve (1966).

The region contains mainly metasediments and metavolcanics of the Frances Creek Group namely Mundogie Sandstone, Koolpin Formation, Gerowie Tuff and Mount Bonnie Formation is ascending stratigraphic order. Pelitic and psammitic units of the overlying Finiss River Group are confined to a very small area near the Rosemary Tin Mine which is immediately adjacent to the western boundary of the licence area. BMR authors place the Mundogie Sandstone with the overlying Wildman Siltstone in the Mount Partridge Group
stratigraphically below the South Alligator Group. The latter group contains the Koolpin Formation, Gerowie Tuff and Mount Bonnie Formation in the earlier interpretation.

The Frances Creek Group is dominated by carbonaceous and commonly sulphidic shale with interbedded turbidites and varying amounts of chert, iron formation, tuff, carbonate rocks and non-carbonaceous shale of apparent pelagic origin, according to Ormsby and others (1994). Stratigraphic boundaries between the units of the group are determined by the relative abundances of the very distinctive chemical and volcanogenic sediments. Both crystal and vitric tuffs are known. The overlying Finniss River Group is a flysch sequence of greywacke, siltstone and shale. The units have undergone low-grade metamorphism (greenschist facies). Hornfelsing due to contact metamorphism associated with the components of the Cullen Bathylith, notably the Minglo Granite and the Frances Creek Leucogranite, is a prominent feature of the regional geology up to several kilometres from the margins of intrusive granitoids.

The metasediments and metavolcanics have undergone at least two phases of folding. The first phase produced tight to isoclinal, upright folds about NNW - SSE axes while a second, gentler phase produced broad, open folds about east-west axes.

Both strike-slip and cross faulting have affected units of the Frances Creek Group to significant degrees.

LOCAL GEOLOGY

The geology of the licence area is shown in Figure 8.

The area contains the full complement of units comprising the Frances Creek Group (predominantly the units of the South Alligator and Mount Partridge groups in the earlier interpretation of BMR). The units (Mundogie Sandstone, Koolpin Formation, Gerowie Tuff and Mount Bonnie Formation) are intruded extensively by the pre-tectonic sills of the Zamu Dolerite. However, for the most part, the sills are contained either within the Koolpin Formation or occur at the contact between the Koolpin Formation and the overlying Gerowie Tuff.
The main lithologies present are pelite and psammitic rock types, chert, banded iron formation, vitric and lithic tuffaceous rock types. Carbonaceous and sulphidic pelites are common throughout the sequence but occur notably in the Mundogie Sandstone (Wildman Siltstone level of BMR) and in the Koolpin Formation.

All units have undergone tight to isoclinal folding about NNW-SSE axes which are subhorizontal and plunge mainly to the north. Drag folds on the limbs near fold noses are common. The units also have undergone low-grade metamorphism and now display greenschist facies effects.

Both strike-slip and cross-faulting have affected the units considerably. Extensive hornfelsing within the contact metamorphic aureole of the Cullen Bathylith also has occurred.

The units are intruded extensively by quartz and brecciated, quartz-haematite (ex-sulphide) veins. In the latter category, both tectonic and collapse types are evident, with collapse brecciation due to the oxidation of sulphides (mainly pyrite and arsenopyrite) and consequent volume changes.

To the immediate north and west of the northwest corner of the EL lies a prominent, fault-bounded outlier of near-horizontal arenites and rudites of Mesoproterozoic age (Kombolgie Formation of Katherine River Group) which overlie unconformably the Palaeoproterozoic metasediments and metavolcanics.

Outcrop of Gerowie Tuff at grid reference 027263 was sampled by the BMR for the purpose of radiometric dating (sample number 79125004). However, a more suitable sample of a similar lithology collected elsewhere was used for the purpose ultimately and gave the date which allows a precise fix upon the crystallisation age of the volcanics which comprise the Gerowie Tuff, namely 1884 ± 3 Ma, according to Needham and others (1988).

KNOWN MINERALISATION

The former Mount Wells Policy Reserve occupied part of the licence area. This reserve, which was created in 1964 to encourage small-scale mining, was
revoked in May, 1988. The workings of the Mount Wells Mining Centre lie to the near west of the southern portion of the licence area.

The Mount Wells Tin Mine was discovered in 1879 and worked intermittently until 1929, with recorded production being approximately 100,000t grading 1% Sn. A few tonnes of hand-picked ore grading 37% Cu also were produced in 1917. The Mount Wells Battery was established in 1961 as an aid to prospecting and small-scale mining in the Pine creek district. Subsequently, the battery was upgraded and then sold eventually in 1981 to Jingellic Minerals N.L., a company which acquired title to the Mount Wells Tin Mine in 1970. Ownership of the mine and facilities then passed in 1983 to Territory Resources N.L. and a further upgrading of the plant occurred in 1985, followed by further production from three of the six lodes (approximately 5,000t of ore with grades in the range 0.3 - 0.8% Sn). Underground ore reserves in 1985 in probable and possible categories stood at some 360,000t and 375,000t of 1.5% Sn and 1.3% Sn respectively while an open-cut reserve of 400,000t of 0.4% Sn was indicated.

The nature and genesis of tin deposits in the Mount Wells region are discussed at length by Ahmad (1993).

The Rosemary Tin Mine occurs in the central part of the licence area and has been drill-tested. Six core holes were drilled by the Northern Territory Geological Survey which downgraded the potential, according to Newton and Shields (1977) and Newton (1979).

The Northern Territory geological Survey also drilled one core hole at the Lewis Manganese Mine to the near south of the Rosemary Tin Mine, again without significant encouragement according to Newton (1977).

A large claim block (68 titles) lies to the near southeast of the southern part of the licence area. The area covered by this block has been tested extensively in the recent past by costeaning and reverse circulation drilling by Kable Resources Pty. Ltd and Dominion Mining Limited.

Gold production has occurred recently from Mineral Claims covering the Touhys North and Touhys South prospects to the near northeast and east respectively of the Rosemary Tin Mine.
Sketchy information only exists for the unnamed lead prospect to the near north of the Rosemary Tin Mine. The deposit is small and of vein type (as are most of the known mineral occurrences within and/or near the licence area which invariably are localised within fault or shear zones).

No information is available on the lead-zinc prospect shown at grid reference 071311 in Figure 8. The prospect may be of considerable significance in light of the information available for the George Creek and Mary River (Gubberah Gossan) lead-zinc prospects to the near east of the Mary River which are contained within altered basalt and sulphidic-carbonaceous pelites respectively. The significant zinc contents of these prospects distinguish them from the more common quartz-galena veins in the general region (of which the PJ prospect to the immediate north of the northeast portion of the licence area is one example).

Recent drilling at the Jessops Tin Mine intersected low-grade gold mineralisation (approximately 0.5g/t) beneath tin-bearing gossans and quartz-haematite breccias (Ahmad (1993), Orridge (1994)). The association of tin and gold, albeit an erratic one, had been shown earlier by sampling carried out by Northern Territory Geological Survey in the Mount Harris Tinfield, notably at the Big Julie Mine (Newton, (1977)).

Mine Data Sheets for the mineral deposits within and close to the licence area are provided in Appendices 1 and 2 respectively.

PREVIOUS GEOLOGICAL STUDIES AND EXPLORATION ACTIVITIES

The central part of the Pine Creek Inlier has been the focus of many geological studies by Commonwealth and Territory government agencies and of substantial mineral exploration in recent years. The latter activities have occurred mainly in the 1980s and early 1990s and have been concentrated upon geochemical sampling (stream sediment and soil principally), being directed towards the search for one or more of gold, base-metals and uranium. Gold exploration has been the most recent. Small-scale production of tin has occurred from small mines near the licence area in past years, notably from Mount Wells.

Significant aspects of the past government work are:
work by the Aerial, Geological and Geophysical Survey of the Northern Australia (ASSSNA) at the McKinlay Gold Mine: Hossfeld (1940)

1:63 360 scale geological and geophysical mapping by the BMR in the 1950s and 1960s: eg Goodeve (1966)

detailed geophysical mapping as an aid to tin exploration and mining in the Mount Masson - Mount Harris region to the immediate south of the northern, east-west half of the present licence area: Tipper and Finney (1966)

detailed assessment of the Mary River (Gubberah Gosan) lead-zinc deposit approximately 9 km east of the Mount Harris Tinfield: Darby (1985)

1:100 000 scale geological mapping by the BMR in the 1980s: Stuart-Smith and others (1986)

detailed geological and metallogenetic studies by the BMR of the Cullen Mineral Field: Stuart Smith and others (1993)

metallogenetic mapping by the NTGS of the Pine Creek 1:250 000 mapsheet area: Ahmad and others (1994)

Geological and geophysical plans provided in this report are based on BMR publications as listed above eg Figures 8 and 9.

Detailed mineral exploration has been undertaken by many title holders, both of Exploration Licences and of Mineral Claims and Mining Leases. Only exploration on past Exploration Licences has been summarised as available technical data for past claims and leases are very incomplete. Included in the past exploration activities have been large airborne magnetic-radiometric surveys, principally designed as aids to uranium exploration but with much relevance to base metal and gold exploration as well. However, the bulk of the
airborne geophysical data relates to ground to the immediate north and west of the licence area where black-soil plains are extensive.

The highlights of previous exploration activities are summarised below. In this work, the results of 1:100 000 - scale geological mapping by the BMR have been used as the starting point by most previous explorers for large amounts of stream-sediment, soil and rock geochemistry, followed by limited drilling in some cases. While low-order geochemical anomalies have been quite commonplace in the past, none has led to intensive drill testing.

The multi-client, high resolution, airborne geophysical survey flown by Aerodata in 1988 (with additions in 1991 and 1992) unfortunately covers only the southern portion of the licence area.

- extensive radiometric surveying plus followup stream-sediment and soil geochemistry
- widespread, low-order Pb soil anomaly on MD grid
- narrow anomalous Pb zones associated with Adam Creek Fault

EL 351 - Central Pacific Minerals N.L., Pietsch (1973)
- soil and rock geochemistry for Sn mostly to the south of Jessops Tin Mine

EL 947 - Comalco Limited Chak (1975)
- stream-sediment sampling of McKinlay River and tributaries for Au (pan concentrates)
- no anomalous samples in streams draining present licence area

EL 1296, 1592 - Occidental Minerals Corporation of Australia, Swingler (1979)
- high-resolution airborne magnetic and radiomagnetic survey for uranium at contact between Palaeoproterozoic and Mesoproterozoic rocks in Mount Douglas area
- followup stream-sediment geochemistry produced Pb and As anomalies associated with the Koolpin Formation, none of which was deemed significant
- most exploration to near north and west of present licence area
- unsuccessful follow-up of stream-sediment geochemistry of Occidental Minerals Corporation of Australia over same areas

EL 4759 - Kable Resources Pty. Ltd. and Dominion Mining Limited, Burn (1988)
- extensive costreaming to northnorthwest and southsoutheast of old Watts Creek alluvial diggings by Kable plus followup mapping, sampling and reverse circulation drilling by Dominion of low-grade, stockwork - type Au mineralisation
- Southern Stockwork Zone (SSZ), Watts Creek North and Watts Creek South prospects
- current tenure as large claim block (68 claims)

EL 4944 - BP Australia Gold Pty Ltd, Walker (1989)
- followup to earlier BLEG sampling by Kennecott Explorations (Australia) Ltd
- BLEG values to 18.7 ppb
- four prospects, Hill 5, Hill 156, Central Anomaly and L82185 Anomaly delineated
- Hill 5 prospect received detailed mapping plus gridding, costeaming and induced polarisation survey followed by reverse circulation drilling (5 holes with best intercept being 6m of 0.6 ppm Au
- elevated As values associated with Hill 5 and Hill 156 prospects
- surface samples of quartz or quartz-haematite veins with values to 0.4 ppm Au

EL 5139 (Douglas Creek East) Dominion Mining Limited, Curnow and Tyson (1990)
- BLEG, silt and pan-concentrate stream-sediment plus rock geochemistry
- no significantly anomalous values
- initially part of Golden Dyke Joint Venture with Peko Wallsend Operations Limited
- most emphasis on Middle Koolpin Formation

EL 5140 (Douglas Creek West) - Dominion Mining Limited, Burn (1989)
- as for EL 5139
- BLEG stream-sediment values to 6.5 ppb Au
EL 5512 - Geopeko, Sowerby (1990)
- BLEG stream-sediment anomaly associated with faulted anticline of Koolpin Formation
- followup to earlier work by Electrotyic Zinc Company of Australasia Ltd and Norgold Ltd
- BLEG values to 22.0 ppb, soil values to 106 ppb, rock values to 0.33 ppm

EL 5534 - Union Reefs Gold N.L., Mulroney (1991)
- mapping and rock sampling for Au
- several weakly anomalous samples

- anomalous As and Zn but no anomalous Au rock geochemistry
- two quartz-vein systems evaluated

EL 6095 (Mount Douglas) - Geopeko, Sowerby (1990)
- BLEG stream-sediment geochemistry with background levels only

EL 6143 - Trescabe Pty. Ltd; Geopeko, Jettner (1993)
- extensive soil sampling to south and east of Rosemary Tin Mine
- exploration led to the mining of the small Touhys North and South Au deposits in ironstones developed above fine-grained, sulphidic metasediments

EL 6184 - Wyrala Pty Ltd, Mining Management Services Pty Ltd (1990)
- rock sampling in Mount Harris Tinfield
- moderate As anomalies associated with gossanous, quartz-veined siltstone

EL 6185 (Watts), 6186 (Masson) - Riomin Australia Gold Limited, Penney (1990)
- earlier work by BP Australia Gold Pty Limited also relates
- BLEG and silt stream-sediment geochemistry plus follow-up rock-geochemistry
- several values greater than 3 ppb Au plus one rock value of 1.6 ppm (latter from fine-grained metasediment containing pyrite and arsenopyrite) in EL 6185
- BLEG values less than 2 ppb Au in EL 6186; also one rock value of 0.12 ppm Au
EL 6444 (Frances Creek) - Billiton Australia, Mackay (1991)
- BLEG stream-sediment geochemistry with values less than 5 ppb Au
- one rock sample with 0.17% Zn

EL 6473 - Auridiam N.L. Romanoff (1990)
- research only re Au potential

EL 7155 - self, Orridge (1993)
- summary of previous exploration by Dominion Mining Limited (EL 5139, 1987 - 89) and BP Australia Gold Limited (EL 4944, 1986 - 89)

The principal findings of past mineral exploration programs within and/or close to the present licence area are:

- a close association of tin and gold has been demonstrated in quartz and quartz-haematite (ex-sulphide) veins which invariably are related to faulting or shearing

- the Koolpin Formation and to a lesser extent, the Zamu Dolerite, have received much exploration for sygenetic, stratiform-stratabound and epigenetic, discordant (structurally controlled) types of Au mineralisation respectively, mostly for bulk-tonnage, low-grade deposits

- numerous past explorers can claim technical success in that one or more of BLEG, silt and pan-concentrate types of stream-sediment and/or soil samples has/have detected subecononomic Au mineralisation (and economic success in the case of Touhys South)

- past experience suggests that the levels of 5 ppb Au for stream-sediment samples and 50 ppb Au for soil samples are appropriate thresholds; higher than average background levels of Au in stream-sediment, soil and rock samples were encountered frequently by past explorers

- tin mineralisation invariably is fine grained eg Mount Harris Tinfield (gold often was present in tin concentrates during earlier mining). Jessops Tin Mine, Rosemary Tin Mine
- tourmaline is a common accessory in the tin-gold mineralisation

- higher gold values in the ferruginous cappings of quartz-sulphide veins and sulphidic metasediments point to a considerable degree of surficial enrichment during oxidation and weathering

- lead and arsenic have been established as pathfinders (arsenopyrite occurs commonly with pyrite in the sulphidic metasediments)

- sulphidic-carbonaceous units are common throughout the Frances Creek group, with the greatest concentrations being in the Mundogie Sandstone and Koolpin Formation

EXPLORATION CRITERIA

The criteria being observed by NTGM in its exploration of the area are:

- particular attention to subareas of non-outcrop given that past exploration activities had a strong geochemical focus (stream-sediment, soil and rock sampling) upon subareas of good outcrop, with largely discouraging results

- re-evaluation of all known mineral deposits and occurrences, with a particular emphasis on zinc in some localities (as well as on gold)

- delineation of structurally complex subareas using available detailed aeromagnetic data, satellite imagery and aerial photography, with particular emphasis on faults, shears and anticlinal axial zones

- evaluation of the mineral prospectivity generally of the contact metamorphic aureole of the Cullen Bathylith (evidence possibly favours metal dispersion rather than concentration of metals?)

- detailed sampling of the ferruginous cappings of sulphidic and carbonaceous rock units in the Koolpin Formation specifically and in the Frances Creek Group generally
detailed sampling of tourmalinised rocks of present

specific assessment of the potential of the Zamu Dolerite to host quartz-stockwork gold mineralisation

The principal aim of the Year 2 program will be to locate drilling targets in appropriate structural settings via a combination of the interpretation of airborne geophysical data, detailed soil and rock sampling, detailed geological mapping and ground magnetometry.

WORK COMPLETED IN YEAR 1 OF TENURE

The following activities were undertaken in Year 1:

- acquisition and digitising of colour aerial photography for the McKinlay River project area, which includes the licence area

- research of available geological and exploration-related data, mostly available in the open-file records of NTDME, in connection with compilation of the prospectus for Australian Gold Mines NL (AGM), the parent company of NTGM; this work was carried out by Dr. G.R. Orridge of Geonorth Pty. Ltd., Darwin and submitted as the Independent Geologist’s Report for the prospectus ((Orridge (1994)). The prospectus, which was issued in April 1994, subsequently was withdrawn in June 1994

- title management by principals and agents of NTGM based in Perth, Melbourne and Darwin

- establishment of a Geographic Information System (GIS) with subsidiary databases to manage all data generated by NTGM for its NT titles; this work was carried out by Mr. R. Fernandez of Ekos Research (NT) Pty. Limited

- assessment of options to obtain existing geophysical data (principally the aeromagnetic type) and satellite imagery in digital format to allow image processing

This work has extended into the early months of the second year of title and included an extension of the research activities with work by AJ Hosking of AJ Hosking and Associates Pty. Ltd.
As a consequence of the failure of the public float of AGM, alternative sources of funding for NTGM's exploration program in the NT have been sought.

EXPENDITURE STATEMENT FOR YEAR 1

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darwin Office - Consultants</td>
<td>8545</td>
</tr>
<tr>
<td>Tenement Costs</td>
<td>1003</td>
</tr>
<tr>
<td>Aerial Photography</td>
<td>2242</td>
</tr>
<tr>
<td>Data Acquisition and Compilation</td>
<td>446</td>
</tr>
<tr>
<td>Geological Consultants</td>
<td>10735</td>
</tr>
<tr>
<td>GIS Management</td>
<td>2562</td>
</tr>
<tr>
<td>Travel and Accommodation</td>
<td>2449</td>
</tr>
<tr>
<td>Administration Overheads</td>
<td>2895</td>
</tr>
<tr>
<td>Total</td>
<td>30,877</td>
</tr>
</tbody>
</table>

The expenditure incurred in Year 1 was less than the covenant. Accordingly an application for a Variation of Condition has been made.

Three geological consultants were utilised for varying periods in connection with preparation of the Prospectus for AGM, title administration and advice re programs and budgets for the title.

PROPOSED EXPLORATION PROGRAM AND BUDGET FOR YEAR 2

Given the generally disappointing nature of the results of past exploration activities within and/or immediately adjacent to the licence area, the exploration philosophy and program for Year 2 will be based upon the following key aspects:

- completion of a structural interpretation of the area using colour aerial photographs plus images prepared from digital Thematic Mapper and aeromagnetic data
- rock-chip, soil and ground magnetic traverses across prospects delineated by the structural interpretation with auger and/or RAB drilling as necessary to sample beneath black soil

- detailed geological mapping of the prospects (subject to outcrop limitations)

Most emphasis will be placed upon:

- assessment of the prospectivity of soil-covered subareas in the southern and central parts of the licence area

- delineation of faults, shear zones and folds (particularly the surface traces of anticlinal hingelines)

- delineation of magnetic units within the Koolpin Formation and of any major discontinuities or aberrations associated with them

- assessments of sulphidic-carbonaceous and tourmalinised rocks as potential hosts to mineralisation

Expenditure is envisaged as follows:

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geology - detailed mapping, supervision, data interpretation</td>
<td>4000</td>
</tr>
<tr>
<td>Geophysics - computer imaging of TM and aeromagnetic data,</td>
<td>7000</td>
</tr>
<tr>
<td>ground magnetic traversing</td>
<td></td>
</tr>
<tr>
<td>Geochemistry - soft and rock-chip sampling (traverses),</td>
<td>5000</td>
</tr>
<tr>
<td>assaying</td>
<td></td>
</tr>
<tr>
<td>Gridding</td>
<td>2000</td>
</tr>
<tr>
<td>Information Management (per GIS)</td>
<td>3000</td>
</tr>
<tr>
<td>Title Management</td>
<td>2000</td>
</tr>
<tr>
<td>Overheads (10%) - Darwin and Perth offices</td>
<td>2300</td>
</tr>
<tr>
<td>Say</td>
<td>$25,500</td>
</tr>
</tbody>
</table>

A.J. Hosking & Associates Pty Ltd
REFERENCES

McGowan, R.J., 1989: The hydrogeology of the Pine Creek mining region. Power and Water Authority, Explanatory Notes for 1:250 000 scale map.

EL 8170

Prepared by:
Ekos Research (NT) for:

NORTHERN TERRITORY
GOLD MINES NL

FIGURE 1
LOCATION
LEGEND

- Road formed
- Road minor
- Watercourse
- Building
- Mine
- Licence boundary

Scale 1:100,000

PHYSIOGRAPHIC AND CULTURAL FEATURES
EL 8170

COMPiled FROM 100,000 MAPPING SERIES
PRODUCED BY THE ROYAL AUSTRALIAN SURVEY CORPS
MAP 5271 McKinlay River

Prepared by:
E&K Research (NT) for:
Northern Territory Gold Mines NL

FIGURE 2
PHYSIOGRAPHIC AND CULTURAL FEATURES
REVIEW

Soils of the dissected foothills, Budgina plains, and granite hills

- Skeletal soils (Ux), Um, and oxotec

- Skeletal soils, gradational (Gz2) and uniform (Ux5) red soils, and gradational yellow earths (Gx2), and on colluvial slopes, slope in narrow flood-planes, minor texture-contrast (Gz5) soils

Soils of the flood-plain

- Gradational (Gz2), Gx2) yellow soils over stratified silts; gradational (Gz4) es如何看待 soils on poorly drained sites

- Uniform (Ux) deep soils on recent plains and levees, gradational (Gx2) red soils on levees, minor texture-contrast (Gz5) and gradational (Gz2) saline soils

Scale 1:100,000

SOIL TYPES

EL 8170

Compiled from C.S.I.R.O., Division of Land Research
SOILS MAP by A.D.L. Hooper
Land Research Series No. 25, 1969

Prepared by:
e^e EKOS RESEARCH (NT) for:
NORTHERN TERRITORY
GOLD MINES NL

FIGURE 4
SOIL TYPES
Central Pine Creek Geosyncline stratigraphy,
by P.M. Nicholson and others

<table>
<thead>
<tr>
<th>AGE</th>
<th>STRATIGRAPHIC UNIT</th>
<th>ESTIMATED THICKNESS (metres)</th>
<th>LITHOLOGIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>JURASSIC - CRETACEOUS</td>
<td>Calypso Reef Boulders Island Formation</td>
<td>15-130</td>
<td>sandstone, siltstone</td>
</tr>
<tr>
<td>CAMBRIAN - ORDOVICIAN</td>
<td>Daly River Group</td>
<td>290-380</td>
<td>conglomerates, basalt, sandstone, limestone, dolomite</td>
</tr>
<tr>
<td></td>
<td>Tumbarian Group</td>
<td>1430</td>
<td>sandstone, conglomerates, dolomite</td>
</tr>
<tr>
<td>ADELAIDIAN</td>
<td>Katherine River Group</td>
<td>3750</td>
<td>sandstone, basalt, andesite</td>
</tr>
<tr>
<td></td>
<td>Edith River Group</td>
<td>1200</td>
<td>sandstone, conglomerates</td>
</tr>
<tr>
<td></td>
<td>El Sherani Group</td>
<td></td>
<td>feldspar, quartz, dolomite</td>
</tr>
</tbody>
</table>

RANGES GROUP

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FINNES RIVER GROUP</td>
<td>Buried Creek Formation</td>
<td>1+400</td>
<td>Upper greywacke, siltstone</td>
</tr>
<tr>
<td></td>
<td>Mt Banna Formation (marine)</td>
<td>5-30</td>
<td>Upper iron formation, mudstone</td>
</tr>
<tr>
<td></td>
<td>Barlee Tuff (veinlet, marine)</td>
<td>150-400</td>
<td>Middle fine-grained andesite, mudstone</td>
</tr>
<tr>
<td></td>
<td>Koolallie Formation (shallow marine, marine)</td>
<td>300-1000</td>
<td>Lower quartzite, greywacke, conglomerate, carbonaceous mudstone</td>
</tr>
<tr>
<td></td>
<td>Acacia Gap Replacement</td>
<td>0-1000</td>
<td>Quartz, greywacke, conglomerate, carbonaceous mudstone</td>
</tr>
<tr>
<td></td>
<td>White Formation</td>
<td>500-1400</td>
<td>Carbonaceous slate, quartzite, siltstone, fine-grained andesite</td>
</tr>
<tr>
<td></td>
<td>Cambrian Formation (shallow marine, marine)</td>
<td>150-300</td>
<td>Carbonaceous slate, carbonaceous slate, siltstone, fine-grained andesite</td>
</tr>
<tr>
<td></td>
<td>Coober Pedy Formation (basaltic)</td>
<td>30-100</td>
<td>Carbonaceous dolomite, siltstone, siltstone, fine-grained andesite</td>
</tr>
<tr>
<td></td>
<td>Bowens Formation (basaltic)</td>
<td>0-1000</td>
<td>Dolomite, magnesite</td>
</tr>
<tr>
<td></td>
<td>Coober Pedy Formation (basaltic)</td>
<td>200-600</td>
<td>Conglomerate, sandstone, shale, hematitic siltstone</td>
</tr>
<tr>
<td></td>
<td>Conquest Formation (basaltic)</td>
<td>100-300</td>
<td>Dolomite, magnesite</td>
</tr>
<tr>
<td></td>
<td>Bowens Formation (basaltic)</td>
<td>0-1200</td>
<td>Conglomerate, sandstone, palyte ore</td>
</tr>
</tbody>
</table>

DIRTY WATER METAMORPHICS

LITHOFIELD COMPLEX

MYRA FALLS METAMORPHICS

NOURLANDS SCHIST

CARNIL Formations

RAMADU GROUP

RUN JUNGLE COMPLEX

WATERHOUSE COMPLEX

MYRA FALLS METAMORPHICS

LITHOFIELD COMPLEX

RUN JUNGLE COMPLEX

WATERHOUSE COMPLEX

WOOLLER GRANITE

FIGURE 7

STRATIGRAPHY
REGIONAL GEOLOGY

EL 8170

Compiled from B.M.R. 100,000 Series
by P.G. Stuart-Smith and others
Map 5271, McKinlay River

Prepared by:
ef EKOS RESEARCH (NT) for:
NORTHERN TERRITORY
GOLD MINES NL

FIGURE 8
REGIONAL GEOLOGY
AEROMAGNETIC CONTOURS

EL 8170

COMPILED FROM B.M.R. SURVEY OF 1963
From Goodeeve
MAP AS:D 52/B1-18 (1064)

Prepared by:
EKOS RESEARCH (NT) for:
NORTHERN TERRITORY GOLD MINES NL

FIGURE 9
AEROMAGNETIC CONTOURS
PREVIOUS EXPLORATION

EL 8170

COMPiled FROM VARIOUS SOURCES

Prepared by:
e^T EKOS RESEARCH (NT) for:

NORTHERN TERRITORY
GOLD MINES NL

FIGURE 10
PREVIOUS EXPLORATION
APPENDIX 1

NTGS MINE DATA SHEETS

Localities within EL 8170
MINERAL DEPOSIT DATA SHEET

METALLOGENIC MAP DATA
- Deposit/Prospect name: Unnamed
- Commodities - Major/Minor: Pb Zn
- Locality - 1:250 000 sheet: PINE CREEK
 - 1:100 000 sheet: McKinlay River
- Universal Grid Reference: HL 071 311
- Latitude: Longitude:
- Length (m): Width (m): Depth (m):
- Strike bearing: Dip: Plunge:

GEOLOGICAL SETTING
- Major tectonic unit(s): Pine Creek Geosyncline
- Group: Mount Partridge Group
- Formation: Wildman Silstone
- Member: Sub-unit:
- Age: Palaeoproterozoic
- Age: Palaeoproterozoic
- Age:

LITHOLOGY AND METAMORPHISM
- Host rock:
- Subsidiary host rock:
- Wall rock:
- Subsidiary wall rock:
- Age of metamorphism: 1800 Ma
- Type: Regional
- Facies: Greenschist

STRUCTURE
- Type: Bedding
 - Strike: 340
 - Dip: 60°NE
 - Plunge:
 - Age relative to mineralisation: Pre
- Type: Strike:
 - Dip:
 - Plunge:
 - Age relative to mineralisation:

MINERALISATION
- Principal primary ore mineral:
- Other primary ore mineral(s):
- Principal secondary ore mineral:
- Other secondary ore mineral(s):
- Principal gangue mineral:
- Other gangue mineral(s):
- Microscopic ore textures:
- Weathering affect(s):
- Depth of weathering (m):

WALLROCK ALTERATION
- Type: Location Relative to ore
- Age relative to ore

EXPLORATION AND MINING
- Exploration methods:
- Mining methods:
- Open-cut workings - Depth (m):
- Length:
- Width:

PAST PRODUCTION
- Period:
- Cre (t):
- Grade (%):
- Concentrate (t):
- Contained metal (t):

ORE RESERVES
- Status:
- Tonnes:
- Grade:
- Cut-off grade:

REFERENCES
- : Stuart-Smith et al., 1986 (Map)

REMARKS
- Occurrence was not inspected.
MINERAL DEPOSIT DATA SHEET

METALLOGENIC MAP DATA
Deposit name: Unnamed
Commodities - Major/Minor: Pb Ag
Locality - 1:250 000 sheet: PINE CREEK
 1:100 000 sheet: McKinlay River
Universal Grid Reference: GL 995 181
Latitude: Longitude:
Length (m): 200 Width (m): 0.8 Depth (m): 2
Strike bearing: 015 Dip: 90 Plunge:
Deposit number: 086
Compiled by: P.F.
Date entered: 22/08/89
Status: Mineral occurrence
Shape: Vein
Size: Occurrence only
Mode of origin: Hydrothermal

GEOLOGICAL SETTING
Major tectonic unit(s): Pine Creek Geosyncline
Group: South Alligator Group
Formation: Mount Bonnie Formation
Member:
Sub-unit: Age:
Type: Palaeoproterozoic
Age: Palaeoproterozoic
Age:

LITHOLOGY AND METAMORPHISM
Host rock: Gossanous vein quartz breccia
Subsidiary host rock: Pyritic volcanoclastic lutite
Wall rock:
Subsidiary wall rock:
age of metamorphism: 1800 Ma
Type: Regional
Facies: Greenschist

STRUCTURE
Type: Shear
Strike: 015 Dip: 90 Plunge: Age relative to mineralisation: Syn
Type: Bedding
Strike: 020 Dip: 80 W Plunge: Age relative to mineralisation: Pre

MINERALISATION
Principal primary ore mineral: Galena
Other primary ore mineral(s): Pyrite
Principal secondary ore mineral: Cerussite
Other secondary ore mineral(s): Pyromorphite
Principal gangue mineral: Quartz
Other gangue mineral(s): Limonite
Macroscopic ore textures: Brecciation
Weathering affect(s): Oxidation

MINERALISATION
Grain size: Medium
Age of Mineralisation: E. Prot.

WALLROCK ALTERATION
Type: Silicification
Location Relative to ore: In ore
Age relative to ore: Syn

EXPLORATION AND MINING
Exploration methods:
Mining methods: Open cut
Open cut workings - Depth (m): 2
Length: 30
Width:

PAST PRODUCTION
Period: Ore (t) Grade (%): Concentrate (t): Contained metal (t):

ORE RESERVES
Status: Tonnes Grade Cut-off grade

REFERENCES
: Perrenoud, 1990b (GS90/15)

REMARKS
It appears that about 130t of ore and mullock has been extracted from the high grade parts of this deposit. Ore samples assayed 14.4% Pb, 1350g/g Ag and 1.25g/g Au (NTGS 9798).
MINERAL DEPOSIT DATA SHEET

METALLOGENIC MAP DATA
- **Deposit/Prospect name:** Rosemary
- **Commodities:** Sn
- **Locality:** PINE CREEK, SD52-8
- **Locality:** McKinlay River, 5271
- **Universal Grid Reference:** HL 002 162
- **Latitude:**
- **Length (m):** 400
- **Width (m):** 0.5
- **Depth (m):**
- **Strike bearing:** 320
- **Dip:** 75E
- **Plunge:**

GEOLOGICAL SETTING
- **Major tectonic unit:** Pine Creek Geosyncline
- **Group:** South Alligator Group
- **Formation:** Gerowie Tuff
- **Member:**
- **Sub-unit:**
- **Age:** Palaeoproterozoic

LITHOLOGY AND METAMORPHISM
- **Host rock:** Quartz vein
- **Wall rock:** Silstone
- **Wall rock:** Greywacke
- **Age of metamorphism:** 1800 Ma
- **Type:** Regional/Contact
- **Facies:** Gnsch./Alb.Ep.

STRUCTURE
- **Type:** Shear zone
- **Strike:** 320
- **Dip:** 75E
- **Plunge:**
- **Age relative to mineralisation:** Pre

MINERALISATION
- **Principal primary ore mineral:** Cassiterite
- **Other primary ore mineral(s):** Pyrite
- **Principal secondary ore mineral:** Hematite
- **Other secondary ore mineral(s):** Goethite, limonite
- **Principal gangue mineral:** Quartz
- **Other gangue mineral(s):** Hematite
- **Microscopic ore textures:** Vein fill & disseminations
- **Weathering affect(s):** Oxidation
- **Depth of weathering (m):** 50

WALLROCK ALTERATION
- **Type:** Sericitic
- **Relative to ore:** Proximal
- **Age relative to ore:** Syn
- **Type:** Chlorsitic
- **Relative to ore:** Proximal
- **Age relative to ore:** Syn

EXPLORATION AND MINING
- **Exploration methods:** Geol. mapping, Costeaming, Drilling
- **Mining methods:** Underground
- **Open-cut workings:**
- **Depth (m):**
- **Length:**
- **Width:**

PAST PRODUCTION
- **Period:** 1967-76
- **Ore (t):** 4478
- **Grade (% Sn):** 0.6%
- **Concentrate (t):** 26.8
- **Contained metal (t):** 15.03

ORE RESERVES
- **Status:** Inferred resource
- **Tonnes:** 80,000
- **Grade (% Sn):** 0.68
- **Cut-off grade:**

REFERENCES
- Taylor, 1967 (CRC 67/38)
- Newton & Shields, 1977 (GS 77/7)
- Newton, 1979 (GS 79/19)
- Roarty, 1975 (GS 75/16)

REMARKS
- Reserves may be an overestimate.
MINERAL DEPOSIT DATA SHEET

METALLOGENIC MAP DATA

<table>
<thead>
<tr>
<th>Deposit/Prospect name:</th>
<th>Lewis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commodities - Major/Minor:</td>
<td>Mn Fe</td>
</tr>
<tr>
<td>Locality - 1:250 000 sheet:</td>
<td>PINE CREEK</td>
</tr>
<tr>
<td>1:100 000 sheet:</td>
<td>McKinlay River</td>
</tr>
<tr>
<td>Universal Grid Reference</td>
<td>HL 012 150</td>
</tr>
<tr>
<td>Latitude:</td>
<td>Longitude:</td>
</tr>
<tr>
<td>Length (m):</td>
<td>Width (m):</td>
</tr>
<tr>
<td>Strike bearing:</td>
<td>Dip:</td>
</tr>
</tbody>
</table>

GEOLOGICAL SETTING

Major tectonic unit(s):	Pine Creek Geosyncline
Group:	South Alligator Group
Formation:	Koolpin Formation
Member:	

Sub-unit:
- Age: Palaeoproterozoic
- Age: Palaeoproterozoic
- Age: Palaeoproterozoic

LITHOLOGY AND METAMORPHISM

Host rock:	Gossan
Subsidiary host rock:	Carbonaceous shale
Wall rock:	Banded ironstone
Subsidiary wall rock:	
Age of metamorphism:	1800 Ma
Type:	Regional
Facies:	Greenschist

STRUCTURE

Type: Bedding	Strike: 325	Dip: 85NE
Type: Strike:	Dip:	Plunge:
Age relative to mineralisation:	Pre	

MINERALISATION

Principal primary ore mineral:	
Other primary ore mineral(s):	
Principal secondary ore mineral:	Pyrolusite
Other secondary ore mineral(s):	Hematite
Principal gangue mineral:	Shale
Other gangue mineral(s):	Chlorite
Macroscopic ore textures:	Boxworks, Botryoidal
Weathering affect(s):	Supergene
Depth of weathering(m):	25

WALLROCK ALTERATION

| Type: | Location Relative to ore | Age relative to ore |
| | |

EXPLORATION AND MINING

Exploration methods:	Geol. mapping, Geochem., Drilling	
Mining methods:		
Open-cut workings - Depth(m):	Length:	Width:

PAST PRODUCTION

| Period | Ore(t) | Grade(%) | Concentrate(t) | Contained metal (t) |
| | | |

ORE RESERVES

| Status | Tonnes | Grade | Cut-off grade |
| | | |

REFERENCES

- Newico, 1977c (GS77/8)
- |

REMARKS
APPENDIX 2.

NTGS MINE DATA SHEETS

Localities in close proximity to EL 8170
MINERAL DEPOSIT DATA SHEET

METALLOGENIC MAP DATA

<table>
<thead>
<tr>
<th>Deposit/Prospect name:</th>
<th>P.J.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commodities - Major/Minor:</td>
<td>Pb Ag</td>
</tr>
<tr>
<td>Locality - 1:250 000 sheet:</td>
<td>PINCREEK SD52-8</td>
</tr>
<tr>
<td>1:100 000 sheet:</td>
<td>McKinlay River 3271</td>
</tr>
<tr>
<td>Universal Grid Reference</td>
<td>H1 124 338</td>
</tr>
<tr>
<td>Latitude:</td>
<td>Longitude:</td>
</tr>
<tr>
<td>Length (m): 200</td>
<td>Width (m): 2</td>
</tr>
<tr>
<td>Strike bearing:</td>
<td>Dip: 75SW Plunge:</td>
</tr>
<tr>
<td>Strike: 330</td>
<td>Dip: 75SW Plunge:</td>
</tr>
</tbody>
</table>

Deposit number: 056
Compiled by: P.F.
Date entered: 29/03/89

Status: Mineral occurrence
Shape: Vein
Size: Occurrence only
Mode of origin: Hydrothermal

GEOLOGICAL SETTING

<table>
<thead>
<tr>
<th>Major tectonic unit(s):</th>
<th>Pine Creek Geosyncline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group:</td>
<td>Mount Partridge Group</td>
</tr>
<tr>
<td>Formation:</td>
<td>Mundongie Sandstone</td>
</tr>
<tr>
<td>Member:</td>
<td></td>
</tr>
<tr>
<td>Sub-unit:</td>
<td>Palaeproterozoic</td>
</tr>
<tr>
<td>Age:</td>
<td>Palaeproterozoic</td>
</tr>
<tr>
<td>Age:</td>
<td></td>
</tr>
</tbody>
</table>

LITHOLOGY AND METAMORPHISM

Host rock:	Gossanous vein quartz breccia
Subsidiary host rock:	Fractured arenite
Wall rock:	Quartz litharenite
Subsidiary wall rock:	
age of metamorphism:	1800 Ma
Type:	Regional
Facies:	Greenschist

STRUCTURE

Type:	Strike: 330 Dip: 75SW Plunge:
Type:	Strike: 335 Dip: 60SW Plunge:
Type:	Regional
Facies:	Greenschist

MINERALISATION

Principal primary ore mineral:	Galena
Other primary ore mineral(s):	
Principal secondary ore mineral:	Pyromorphite
Other secondary ore mineral(s):	Cerussite
Principal gangue mineral:	Quartz
Other gangue mineral(s):	
Macroscopic ore textures:	Fracture filling, Brecciation
Weathering affect(s):	Oxidation
Depth of weathering(m):	40

WALLROCK ALTERATION

Type:	Location Relative to ore
Type:	Age relative to ore
Type:	
Type:	Carbonatization
Type:	In ore
Type:	Syn
Type:	Sericitic
Type:	Footwall & Hangingwall
Type:	Syn

EXPLORATION AND MINING

Exploration methods:	Geol. mapping, Geochem., Geophy., Drilling.
Mining methods:	
Open-cut workings - Depth(m):	
Length:	
Width:	

PAST PRODUCTION

| Period: | Ore(t) Grade(%) Concentrate(t) Contained metal (t) |
| Period: | |

ORE RESERVES

| Status: | Tonnes Grade Cut-off grade |
| Status: | |

REFERENCES

:	Wills, 1978a (CR78/62)
:	Swensson et al., 1979 (CR79/54)
:	
:	
:	
:	
:	
:	

REMARKS

Drilling intersected 1m grading 1500ppm Pb, 1000ppm Zn and 2ppm Ag. A chip sample from a gossan assayed 17.9% Pb, 217ppm Ag and 1.35g/t Au.
MINERAL DEPOSIT DATA SHEET

METALLOGENIC MAP DATA
- Deposit/Prospect name: George Creek
- Commodities - Major/Minor: Zn, Pb, Ag
- Locality - 1:250 000 sheet: PINE CREEK
- 1:100 000 sheet: McKinlay River
- Universal Grid Reference: HL 223 326
- Latitude: 118.5
- Longitude: 23.3
- Length (m): 2
- Width (m): 17
- Depth (m): 80
- Strike bearing: 340
- Dip: 85
- Plunge:
- Deposit number: 057
- Compiled by: P.F.
- Date entered: 29/03/89

GEOLOGICAL SETTING
- Major tectonic unit(s): Pine Creek Geosyncline
- Group: Namaqua Group
- Formation: Mabson Formation
- Sub-unit:
- Age: Palaeoproterozoic
- Age: Palaeoproterozoic
- Age:

LITHOLOGY AND METAMORPHISM
- Host rock: Quartz/carbonate veins
- Subsidiary host rock: Altered Basalt
- Wall rock: Altered Basalt
- Subsidiary wall rock: Shale (graphite & pyritic)
- Age of metamorphism: 1800 Ma
- Type: Regional
- Facies: Greenschist

STRUCTURE
- Type: Fracture
 - Strike: 340
 - Dip: 85
 - Plunge: Age relative to mineralisation: Syn
- Type: Bedding
 - Strike: 340
 - Dip: 45 NE
 - Plunge: Age relative to mineralisation: Pre

MINERALISATION
- Principal primary ore mineral: Galena
- Other primary ore mineral(s): Sphalerite, Pyrite, Chalcopyrite, Arsenopyrite
- Principal secondary ore mineral: Cerussite
- Other secondary ore mineral(s): Anglesite
- Principal gangue mineral: Quartz
- Other gangue mineral(s): Carbonate
- Microscopic ore textures: Massive, Veinlets, Disseminations
- Weathering effect(s): Oxidation
- Depth of weathering (m): 40

WALLROCK ALTERATION
- Type: Carbonatization
- Location Relative to ore: In ore
- Age relative to ore: Syn
- Type: Sericite
- Location Relative to ore: Footwall & Hangingwall
- Age relative to ore: Syn
- Type: Chlorite
- Location Relative to ore: Footwall & Hangingwall
- Age relative to ore: Syn

EXPLORATION AND MINING
- Exploration methods: Geol. mapping, Geochem., Geoph., Drilling.
- Mining methods: Open-cut workings - Depth (m):
- Length:
- Width:

PAST PRODUCTION
- Period:
 - Ore (t):
 - Grade (%):
 - Concentrate (t):
 - Contained metal (t):

ORE RESERVES
- Status: Inferred resource
- Tonnage: 50 000
- Grade:
 - 2% Pb, 4% Zn
 - 130 g/t Ag

REFERENCES
- Wills, 1978a (CR78/62)
- Swenson et al., 1979 (CR79/54)
- Ikvens, 1980 (CR80/113)
- Cook, 1981 (CR81/127)

REMARKS
- Drilling intersections include: 5.48 m grading 4.5% Pb, 4.2% Zn, 98 g/t Ag with 0.6 m of 2.7% Pb, 12.2% Zn, 455 g/t Ag, 3.8 g/t Au (DD80GC4), 0.9 m grading 3.1% Pb, 9% Zn, 770 g/t Ag & 2.7 g/t Au (78GCD1), 1 m at 4% Pb, 7.6% Zn & 285 g/t Ag (78GCD3)
MINERAL DEPOSIT DATA SHEET

METALLOGENIC MAP DATA
- **Deposit/Prospect name:** Tolmer South
- **Commodities - Major/Minor:** Cu
- **Locality - 1:250 000 sheet:** PINE CREEK SD52-8
- **1:100 000 sheet:** Reynolds River 5071
- **Universal Grid Reference:** FL 922 215
- **Latitude:** Longitude:
 - **Length (m):** Width (m):
 - **Strike bearing:** Dip:
 - **Depth (m):** Plunge:

GEOLOGICAL SETTING
- **Major tectonic unit(s):** Pine Creek Geosyncline
- **Group:** Finnsis River Group
- **Formation:** Burrell Creek Formation
- **Member:**
- **Sub-unit:** Palaeoproterozoic
- **Age:** Palaeoproterozoic

LITHOLOGY AND METAMORPHISM
- **Host rock:** Vein quartz
- **Subsidiary host rock:** Phyllite
- **Wall rock:**
- **Subsidiary wall rock:**
 - **Age of metamorphism:** 1800 Ma
 - **Type:** Regional
 - **Facies:** Greenschist

STRUCTURE
- **Type:** Bedding
 - **Strike:** 340
 - **Dip:** 50 E
 - **Plunge:**
- **Type:**
 - **Strike:**
 - **Dip:**
 - **Plunge:**

MINERALISATION
- **Principal primary ore mineral:** Chalcopyrite
- **Other primary ore mineral(s):**
- **Principal secondary ore mineral:** Malachite
- **Other secondary ore mineral(s):**
- **Principal gangue mineral:** Quartz
- **Other gangue mineral(s):**
- **Macroscopic ore textures:** Disseminated
- **Weathering affect(s):** Oxidation
- **Depth of weathering (m):** 30

WALLROCK ALTERATION
- **Type:**
- **Location Relative to ore:**
- **Age relative to ore:**

EXPLORATION AND MINING
- **Exploration methods:**
- **Mining methods:**
- **Open-cut workings - Depth (m):**
- **Length:**
- **Width:**

PAST PRODUCTION
- **Period:**
 - **Ore (t):**
 - **Grade (%):**
 - **Concentrate (t):**
 - **Contained metal (t):**

ORE RESERVES
- **Status:**
 - **Tonnes:**
 - **Grade:**
 - **Cut-off grade:**

REFERENCES
- Fietz, 1989. (Map)

REMARKS
Not located during field survey.
MINERAL DEPOSIT DATA SHEET

METALLOGENIC MAP DATA

<table>
<thead>
<tr>
<th>Deposit/Prospect name:</th>
<th>Touhy's</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commodities - Major/Minor:</td>
<td>U</td>
</tr>
<tr>
<td>Locality - 1:250 000 sheet:</td>
<td>PINE CREEK</td>
</tr>
<tr>
<td>1:100 000 sheet:</td>
<td>Batchelor</td>
</tr>
<tr>
<td>Universal Grid Reference</td>
<td>GL 308 256</td>
</tr>
<tr>
<td>Latitude:</td>
<td>SD52-8</td>
</tr>
<tr>
<td>Longitude:</td>
<td>5171</td>
</tr>
<tr>
<td>Length (m):</td>
<td>250</td>
</tr>
<tr>
<td>Width (m):</td>
<td>1</td>
</tr>
<tr>
<td>Strike bearing:</td>
<td>345</td>
</tr>
<tr>
<td>Dip:</td>
<td>65W</td>
</tr>
<tr>
<td>Plunge:</td>
<td>5</td>
</tr>
<tr>
<td>Deposit number:</td>
<td>059</td>
</tr>
<tr>
<td>Compiled by:</td>
<td>P.F.</td>
</tr>
<tr>
<td>Date entered:</td>
<td>29/03/89</td>
</tr>
<tr>
<td>Status:</td>
<td>Abandoned mine</td>
</tr>
<tr>
<td>Shape:</td>
<td>Vein</td>
</tr>
<tr>
<td>Size:</td>
<td>Occurrence only</td>
</tr>
<tr>
<td>Mode of origin:</td>
<td>Hydrothermal</td>
</tr>
</tbody>
</table>

GEOLOGICAL SETTING

Major tectonic unit(s):	Pine Creek Geosyncline
Group:	Finnis River Group
Formation:	Burrell Creek Formation
Member:	Sub-unit: Palaeoproterozoic
Age:	Palaeoproterozoic
Age:	

LITHOLOGY AND METAMORPHISM

Host rock:	Slate
Wall rock:	Greywacke
Wall rock age of metamorphism:	1800 Ma
Type: Regional	
Facies:	Greenschist

STRUCTURE

Type: Bedding	Strike: 345
Type: Vein	Strike: 110
Dip: 65 W	Dip: 35NE
Plunge:	Age relative to mineralisation: Pre
Plunge:	Age relative to mineralisation: Syn

MINERALISATION

Principal primary ore mineral:	Grain size:
Other primary ore mineral(s):	
Principal secondary ore mineral:	Torbernite
Other secondary ore mineral(s):	Autunite
Principal gangue mineral:	Slate
Other gangue mineral(s):	Age of Mineralisation: E. Prot.
Macroscopic ore textures:	Coating joint planes
Weathering affects:	Supergene
Depth of weathering (m):	15

WALLROCK ALTERATION

Type: Silification	Location Relative to ore
Age relative to ore:	Proximal
Age relative to ore:	Syn

EXPLORATION AND MINING

Exploration methods:	Geochem., Geophys., Costeaming.
Mining methods:	Shaft (6-10m) and shallow pits.
Open-cut workings - Depth (m):	
Length:	
Width:	

PAST PRODUCTION

<table>
<thead>
<tr>
<th>Period:</th>
<th>Ore (t)</th>
<th>Grade (%)</th>
<th>Concentrate (t)</th>
<th>Contained metal (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ORE RESERVES

<table>
<thead>
<tr>
<th>Status:</th>
<th>Tonnes</th>
<th>Grade</th>
<th>Cut-off grade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES

- Shields & Pietsch, 1971 (CR71/99)
- Fander, 1981 (CR81/160)
- Robertson, 1956 (BMR Rec. 1956/87)
- Ferenczi, 1990 (GS90/18)

REMARKS

Production figure is a visual estimate of ore and mullock material which lies beside the exploration shaft. Chip sample assayed 360ppm U (S shields & Pietsch, 1971).
MINERAL DEPOSIT DATA SHEET

METALLOGENIC MAP DATA
Deposit/Prospect name: George Creek
Commodities - Major/Minor: U
Locality - 1:250 000 sheet: PINE CREEK
1:100 000 sheet: Batchelor
Universal Grid Reference GL 313 246
Latitude: 58° 33' 30" S
Longitude: 132° 34' 18" E
Length (m): 20
Width (m): 1.5
Strike bearing: 345
Dip: 75E
Depth (m): 40
Plunge:
Deposit number: 060
Compiled by: P.F.
Date entered: 29/03/89

GEOLOGICAL SETTING
Major tectonic unit(s): Pine Creek Geosyncline
Group: Finnis River Group
Formation: Burrell Creek Formation
Member: Sub-unit:

LITHOLOGY AND METAMORPHISM
Host rock: Fractured greywacke
Subsidiary host rock: Vein quartz
Wall rock: Siliceous shales
Subsidiary wall rock: Greywacke
Age of metamorphism: 1800 Ma
Type: Regional
Facies: Greenschist

STRUCTURE
Type: Shear zone
Strike: 345
Dip: 75E
Plunge:
Age relative to mineralisation: Syn
Type: Bedding
Strike: 345
Dip: 32W
Plunge:
Age relative to mineralisation: Pre

MINERALISATION
Principal primary ore mineral: Pitchblende
Other primary ore mineral(s): Pyrite, Chalcopyrite
Principal secondary ore mineral: Tumbrine
Other secondary ore mineral(s): Autunite
Principal gangue mineral: Quartz
Other gangue mineral(s):
Macroscopic ore textures: Stringers, Pods
Weathering affect(s): Supergene
Depth of weathering (m): 15

WALLROCK ALTERATION
Type: Silicification
Location Relative to ore: Proximal
Age relative to ore: Syn

EXPLORATION AND MINING
Exploration methods: Geol. mapping, Geophys., Drilling
Mining methods: Shallow (38.4m) with drives to the north & south.
Open-cut workings - Depth (m): Width:

PAST PRODUCTION
Period
1958-59
Ore (t)
120
Grade (%)
0.26% U308
Concentrate (t):
300 kg U

ORE RESERVES
Status: Inferred resource
Tonnes
250
Grade
0.26% U308
Cut-off grade

REFERENCES
Rade & Clarke, 1954 (BMR Rec. 1955/3)
Roberts, 1955 (bld. 1955/17)
Rade, 1955 (bld. 1955/38)
Firman & Clarke, (bld. 1955/83)
Roberson, 1956 (bld. 1956/87)
Rade, 1956 (Econ. Geol.)
Arkin & Walpole, 1960 (BMR Rec. 1960/10)
Shields & Pietsch, 1971 (CR71/09)
Fander, 1981 (CR81/160)

REMARKS
The uranium mineralisation is localized within a series of weak in echelon shears in greywacke bands. At depth the mineralisation is highly irregular, and pinches out just below the 25m level (Arkin & Walpole, 1960).
MINERAL DEPOSIT DATA SHEET

METALLOGENIC MAP DATA
- **Deposit/Project name:** Unnamed
- **Commodities - Major/Minor:** Pb
- **Locality - 1:250 000 sheet:** PINE CREEK SD52-8
- **1:100 000 sheet:** McKinlay River 5271
- **Universal Grid Reference:** H66 025 255
- **Latitude:**
- **Longitude:**
- **Length (m):** 40
- **Width (m):** 1
- **Depth (m):** 3
- **Strike bearing:** 315°
- **Dip:** 90°
- **Plunge:**

GEOLOGICAL SETTING
- **Major tectonic unit(s):** Pine Creek Geosyncline
- **Group:** South Alligator Group
- **Formation:** Gerowie Tuff
- **Member:**
- **Sub-unit:**
- **Age:** Palaeoproterozoic
- **Age:** Palaeoproterozoic
- **Age:**

LITHOLOGY AND METAMORPHISM
- **Host rock:** Gossanous tuff-breccia
- **Subordinate host rock:** Chert
- **Wall rock:** Chert
- **Subordinate wall rock:** Cordierite hornfels
- **Age of metamorphism:** 1800 Ma
- **Type:** Regional/Contact
- **Facies:** Gnsch./flb.Hfs
- **Grain size:** Medium
- **Age of Mineralisation:** E. Prot.

STRUCTURE
- **Type:** Shear zone
 - **Strike:** 315°
 - **Dip:** 90°
 - **Plunge:**
- **Type:** Bedding
 - **Strike:** 340°
 - **Dip:** 55° E
 - **Plunge:**
- **Age relative to mineralisation:** Syn

MINERALISATION
- **Principal primary ore mineral:** Galena
- **Other primary ore mineral(s):** Pyrite
- **Principal secondary ore mineral:** Cerussite
- **Other secondary ore mineral(s):**
- **Principal gangue mineral:** Quartz
- **Other gangue mineral(s):** Hematite
- **Macroscopic ore textures:** Disseminated
- **Weathering effect(s):** Oxidation
- **Depth of weathering (m):** 20

WALLROCK ALTERATION
- **Type:** Substitution
- **Location Relative to ore:** Footwall & Hangingwall
- **Age relative to ore:** Syn

EXPLORATION AND MINING
- **Exploration methods:** Costeaming
- **Mining methods:** Small pits.
- **Open-cut workings - Depth (m):** 1.5
- **Length:** 10
- **Width:** 2

PAST PRODUCTION
- **Period:**
 - **Ore (t):** 15
 - **Grade (%):** High grade
 - **Concentrate (t):** Silver-lead ore 12.9 t Pb

ORE RESERVES
- **Status:**
- **Tonnes:**
- **Grade:**
- **Cut-off grade:**

REFERENCES
- J. Crago pers comm. 1988
- Fereczko, 1990b (GS90/15)

REMARKS
- Contained metal calculation assumes 86% Pb
MINERAL DEPOSIT DATA SHEET

METALLOGENIC MAP DATA

Deposit/Prospect name: Jessops
Commodities - Major/Minor: Sn
Locality - 1:250 000 sheet: PINE CREEK SD52-8
1:100 000 sheet: McKinlay River 5271
Universal Grid Reference: HL 052 260
Latitude: Longitudes:
Length (m): 360 Width (m): 0.6 Depth (m):
Strike bearing: 350 Dip: 60W Plunge:

Deposit number: 072
Compiled by: M.A
Date entered: 27/8/99
Status: Abandoned mine
Shape: Vein
Size: Small
Mode of origin: Hydrothermal

GEOLOGICAL SETTING

Major tectonic unit(s): Pine Creek Geosyncline
Group: Mount Partridge Group
Formation: Wildman Silstone
Member:
Sub-unit:
Age: Palaeoproterozoic
Age: Palaeoproterozoic
Age:

LITHOLOGY AND METAMORPHISM

Host rock: Hematite quartz breccia
Subsidiary host rock:
Wall rock: Silstone
Subsidiary wall rock:
age of metamorphism: 1800 Ma
Type: Regional/Contact

STRUCTURE

Type: Shear
Strike: 350 Dip: 60W Plunge:
Age relative to mineralisation: Pre
Type: Strike:
Dip:
Plunge:
Age relative to mineralisation:

MINERALISATION

Principal primary ore mineral: Cassiterite
Other primary ore mineral(s): Pyrite, Arsenopyrite
Principal secondary ore mineral: Hematite
Other secondary ore mineral(s): Limonite, Goethite
Principal gangue mineral: Hematite, Limonite
Other gangue mineral(s): Quartz
Macroscopic ore textures: Vein fill & disseminations in sulphides
Weathering affect(s): Oxidation
Depth of weathering (m): 50
Grain size: Fine
Age of Mineralisation: E. Proterozoic

WALLROCK ALTERATION

Type: Sedimentary
Location Relative to ore: Proximal
Age relative to ore: Syn
Hematitisation: In ore
Age: Post

EXPLORATION AND MINING

Exploration methods: Geol. mapping, Costeaming, Drilling
Mining methods: Open cut & Underground
Open-cut workings - Depth (m): 15 Length: 200 Width: 4

PAST PRODUCTION

Period: 1957-72
Ore (t): Grade (%): Concentrate (t):
1.0% Sn: 193
106.5 t Sn

ORE RESERVES

Status: Indicated Resource
Tonnes: Grade: Cut-off grade:
10,000: 1.0% Sn:

REFERENCES

: United Uranium NL, 1963 (CR 63/11)
: Vanderplank, 1964 (GS 64/5)
: Hays, 1960 (BMR Rec. 1960/2)
: Hays, 1958 (BMR Rec. 1958/2)
: Blackett & Dunkin (1951)
: Baker (1960)

REMARKS

Mineralised zone represents oxidised part of massive sulphide vein. Minor gold (about 1 ppm) is present in the ore. Cassiterite is very fine and is disseminated in the sulphides.

Produced by Northern Territory Geological Survey, Dept Mines and Energy
MINERAL DEPOSIT DATA SHEET

METALLOGENIC MAP DATA
- Deposit/Prospect name: Billyean
- Commodities - Major/Minor: Sn
- Locality - 1:250 000 sheet: PINE CREEK SD52-8
- Universal Grid Reference: HL 055 255
- Latitude: \[1100\,000\,sheet: \] McKinlay River 5271
- Length (m): Width (m): Depth (m):
- Strike bearing: 350 Dip: 60W Plunge:

GEOLOGICAL SETTING
- Major tectonic unit(s): Pine Creek Geosyncline
- Group: Mount Partridge Group
- Formation: Wildman Siltstone
- Member:
- Sub-unit:
- Age: Palaeoproterozoic
- Age:

LITHOLOGY AND METAMORPHISM
- Host rock: Hematite quartz breccia
- Subsidiary host rock:
- Wall rock:
- Subsidiary wall rock:
- Age of metamorphism: 1800 Ma
- Type: Regional/Contact
- Facies: Gneiss/Alb./Ep.

STRUCTURE
- Type: Shear
- Strike: 350 Dip: 60W Plunge:
- Type:
- Strike:
- Dip:
- Plunge:
- Age relative to mineralisation:

MINERALISATION
- Principal primary ore mineral: Cassiterite
- Other primary ore mineral(s): Pyrite, Arsenopyrite
- Principal secondary ore mineral: Hematite
- Other secondary ore mineral(s): Limonite, Goethite
- Principal gangue mineral: Hematite, Limonite
- Other gangue mineral(s): Quartz
- Macroscopic ore textures: Vein fill & disseminations in sulphides
- Weathering effects: Oxidation
- Depth of weathering (m): 50

WALLROCK ALTERATION
- Type: Sericitic
- Location Relative to ore: Proximal
- Hematitisation
- Age relative to ore: Syn
- Post

EXPLORATION AND MINING
- Exploration methods: Geol. mapping, Costeaming, Drilling
- Mining methods:
- Open-cut workings - Depth (m):
- Length: Width:

PAST PRODUCTION
- Period:
- Ore (t):
- Grade (%):
- Concentrate (t):
- Contained metal (t):

ORE RESERVES
- Status:
- Tonnes:
- Grade:
- Cut-off grade:

REFERENCES
- United Uranium NL, 1963 (CR 63/11)
- Hays, 1960 (BMR Rec. 1960/2)
- Hays, 1958 (BMR Rec. 1958/2)

REMARKS
- Mineralised zone represent oxidised part of massive sulphide vein. Minor gold (about 1 ppm) is present in the ore. Cassiterite is very fine and is disseminated in the sulphides.
MINERAL DEPOSIT DATA SHEET

METALLOGENIC MAP DATA
- **Deposit/Prospect name:** Mount Masson
- **Commodities - Major/Minor:** Sn
- **Locality - 1:250 000 sheet:** PINE CREEK
- **1:100 000 sheet:** McKinlay River
- **Universal Grid Reference:** Hl 055 245
- **Latitude:**
- **Longitude:**
- **Length (m):** 120
- **Width (m):** 0.5
- **Depth (m):**
- **Strike bearing:** 340
- **Dip:** 90
- **Plunge:**

GEOLOGICAL SETTING
- **Major tectonic unit(s):** Pine Creek Geosyncline
- **Group:** Mount Partridge Group
- **Formation:** Wildman Silstone
- **Member:**
- **Sub-unit:**
- **Age:** Paleoproterozoic
- **Age:** Paleoproterozoic
- **Age:**

LITHOLOGY AND METAMORPHISM
- **Host rock:** Hematite quartz breccia
- **Subsidiary host rock:**
- **Wall rock:** Silstone
- **Subsidiary wall rock:**
- **Age of metamorphism:** 1800 Ma
- **Type:** Regional/Contact
- **Facies:** Gneiss/Alb.Ep.

STRUCTURE
- **Type:** Shear
- **Strike:** 350
- **Dip:** 60W
- **Plunge:**
- **Age relative to mineralisation:** Pre
- **Type:**
- **Strike:**
- **Dip:**
- **Plunge:**
- **Age relative to mineralisation:**

MINERALISATION
- **Principal primary ore mineral:** Cassiterite
- **Other primary ore mineral(s):** Pyrite, Arsenopyrite
- **Principal secondary ore mineral:** Hematite
- **Other secondary ore mineral(s):** Limonite, Goethite
- **Principal gangue mineral:** Hematite, Limonite
- **Other gangue mineral(s):** Quartz
- **Macroscopic ore textures:** Vein fill, disseminations in sulphides
- **Weathering affect(s):** Oxidation
- **Depth of weathering (m):** 50

WALLROCK ALTERATION
- **Type:** Sericite
- **Location Relative to ore:** Proximal
- **Age relative to ore:** Syn
- **:**
- **Hematitisation:**
- **In ore:**
- **:**

EXPLORATION AND MINING
- **Exploration methods:** Geo. mapping, Costeaming, Drilling
- **Mining methods:** Underground
- **Open-cut workings - Depth (m):**
- **Length:**
- **Width:**

PAST PRODUCTION
- **Period:** 1942-68
- **Ore (t):** 2016
- **Grade (%):** 1.1% Sn
- **Concentrate (t):**
- **Contained metal (t):** 52.08 t Sn

ORE RESERVES
- **Status:** Inferred resource
- **Tonnes:** 5400
- **Grade:** 1.1% Sn
- **Cut-off grade:**

REFERENCES
- : Hays, 1960 (BMR Rec. 1960/2)
- : :
- : :
- : :

REMARKS
- Mineralised zone represent oxidised part of massive sulphide vein. Minor gold (about 1 ppm) is present in the ore. Cassiterite is very fine and is disseminated in the sulphides.
MINERAL DEPOSIT DATA SHEET

METALLOGENIC MAP DATA
- **Deposit/Prospect name:** Big Drum
- **Commodities - Major/Minor:** Sn
- **Locality - 1:250 000 sheet:** FINE CREEK SD52-8
- **1:100 000 sheet:** McKinlay River 5271
- **Universal Grid Reference:** HL 057 239
- **Latitude:**
- **Length (m):**
- **Width (m):**
- **Depth (m):**
- **Strike bearing:** 340°
- **Dip:** 90°
- **Plunge:**

GEOLOGICAL SETTING
- **Major tectonic unit(s):** Fines Creek Geosyncline
- **Group:** Mount Partridge Group
- **Formation:** Wildman Silstone
- **Sub-unit:**
- **Age:** Palaeoproterozoic
- **Age:**

LITHOLOGY AND METAMORPHISM
- **Host rock:** Hematite quartz breccia
- **Subsidiary host rock:**
- **Wall rock:** Silstones
- **Subsidiary wall rock:**
- **age of metamorphism:** 1800 Ma
- **Type:** Regional/Contact
- **Facies:** Gneiss/Gneissic Ep.

STRUCTURE
- **Type:** Shear
- **Strike:** 350°
- **Dip:** 60°W
- **Plunge:**
- **Age relative to mineralisation:**

MINERALISATION
- **Principal primary ore mineral:** Cassiterite
- **Other primary ore mineral(s):** Pyrite, Arsenopyrite
- **Principal secondary ore mineral:** Hematite
- **Other secondary ore mineral(s):** Limonite, Goethite
- **Principal gangue mineral:** Hematite, Limonite
- **Other gangue mineral(s):** Quartz
- **Microscopic ore textures:** Vein fill & disseminations in sulphides
- **Weathering effect(s):** Oxidation
- **Depth of weathering:** 50

WALLROCK ALTERATION
- **Type:**
 - Sodicitic
 - Humiclastic
- **Location Relative to ore:**
 - Proximal
 - In ore
- **Age relative to ore:**
 - Syn
 - Post

EXPLORATION AND MINING
- **Exploration methods:** Geochemical, mapping, testing
- **Mining methods:** Underground
- **Open-cut workings - Depth (m):**

PAST PRODUCTION
- **Period:** 1962
- **Ore (t):** 220
- **Grade (%):**
- **Concentrate (t):**
- **Contained metal (t):** 220 kg

ORE RESERVES
- **Status:**
 - Tonnes
 - Grade
 - Cut-off grade

REFERENCES
- Hays, 1962 (BMR Res. 1960/2)
-...

REMARKS
- Mineralized zone represents oxidized part of massive sulphide vein. Minor gold (about 1 ppm) is present in the ore. Cassiterite is very fine and is disseminated in the sulphides.
METALLOGENIC MAP DATA

<table>
<thead>
<tr>
<th>Deposit/Prospect name:</th>
<th>Big Julie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commodities - Major/Minor:</td>
<td>Sn</td>
</tr>
<tr>
<td>Locality - 1:250 000 sheet:</td>
<td>PINE CREEK</td>
</tr>
<tr>
<td>1:100 000 sheet:</td>
<td>McKinlay River</td>
</tr>
<tr>
<td>Universal Grid Reference</td>
<td>HL 057 238</td>
</tr>
<tr>
<td>Latitude:</td>
<td>Longitude:</td>
</tr>
<tr>
<td>Length (m): 65</td>
<td>Width (m): 0.5</td>
</tr>
<tr>
<td>Strike bearing:</td>
<td>Dip:</td>
</tr>
</tbody>
</table>

GEOLOGICAL SETTING

<table>
<thead>
<tr>
<th>Major tectonic unit(s):</th>
<th>Pine Creek Geology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group:</td>
<td>Mount Partridge Group</td>
</tr>
<tr>
<td>Formation:</td>
<td>Mundogin Sandstone</td>
</tr>
<tr>
<td>Member:</td>
<td></td>
</tr>
</tbody>
</table>

LITHOLOGY AND METAMORPHISM

- Host rock: Hematite quartz breccia
- Subsidiary host rock: Siltstone
- Wall rock: Siltstone
- Subsidiary wall rock: -
- Age of metamorphism: 1800 Ma
- Type: Regional/Contact

STRUCTURE

<table>
<thead>
<tr>
<th>Type:</th>
<th>Strike: 350</th>
<th>Dip: 60W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plunge:</td>
<td>Plunge:</td>
<td></td>
</tr>
<tr>
<td>Age relative to mineralisation:</td>
<td>Pre</td>
<td></td>
</tr>
<tr>
<td>Age relative to mineralisation:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MINERALISATION

- Principal primary ore mineral: Cassiterite
- Other primary ore mineral(s): Pyrite, Arsenopyrite
- Principal secondary ore mineral: Hematite
- Other secondary ore mineral(s): Limonite, Goethite
- Principal gangue mineral: Hematite, Limonite
- Other gangue mineral(s): Quartz
- Macroscopic ore textures: Vein fill & disseminations in sulphides
- Weathering affect(s): Oxidation
- Depth of weathering (m): 50
- Grain size: Fine
- Age of Mineralisation: E. Prot.

WALLROCK ALTERATION

- Type: Sericite, Hematitisation
- Location Relative to ore: Proximal
- In ore
- Age relative to ore: Syn, Post

EXPLORATION AND MINING

- Exploration methods: Geol. mapping, costeasing, drilling
- Mining methods: Open cut
- Open-cut workings - Depth (m): 3
- Length: 30
- Width: 4

PAST PRODUCTION

<table>
<thead>
<tr>
<th>Period</th>
<th>Ore (t)</th>
<th>Grade (%)</th>
<th>Concentrate (t)</th>
<th>Contained metal (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970-80</td>
<td>493</td>
<td>4.17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ORE RESERVES

- Status: Tonnage
- Grade
- Cut-off grade

REFERENCES

- Newton, 1977b (GS 77/5)

REMARKS

Mineralised zone represent oxidized part of massive sulphide vein. Minor gold (about 1 ppm) is present in the ore. Cassiterite is very fine and is disseminate in the sulphides.
MINERAL DEPOSIT DATA SHEET

METALLOGENIC MAP DATA
- Deposit/Prospect name: Nelson I
- Commodities - Major/Minor: Sn
- Locality - 1:250 000 sheet: PINE CREEK SD52-8
 - 1:100 000 sheet: McKinlay River 5271
- Universal Grid Reference: HL 120 278
- Deposit number: 077
- Compiled by: M.A
- Date entered: 27/8/90
- Status: Abandoned mine
- Shape: Vein
- Size: Occurrence only
- Mode of origin: Hydrothermal

GEOLOGICAL SETTING
- Major tectonic unit(s): Pine Creek Geosyncline
- Group: Mount Partridge Group
- Formation: Mundogie Sandstone
- Member:

LITHOLOGY AND METAMORPHISM
- Host rock: Hematite quartz breccia
- Subsidiary host rock:
- Wall rock: Silstone
- Subsidiary wall rock:
- Age of metamorphism: 1800 Ma
- Type: Regional/Contact

STRUCTURE
- Type: Strike: Depth: Plunge:
- Type: Strike: Dip: Plunge: Age relative to mineralization:

MINERALISATION
- Principal primary ore mineral: Cassiterite
- Other primary ore mineral(s): Pyrite, Arsenopyrite
- Principal secondary ore mineral: Hematite
- Other secondary ore mineral(s): Limonite, Goethite
- Principal gangue mineral: Hematite, Limonite
- Other gangue mineral(s): Quartz
- Macroscopic ore textures: Vein fill
- Weathering effect(s): Oxidation
- Depth of weathering(m): 50

WALLROCk ALTERATION
- Type: Location Relative to ore Age relative to ore

EXPLORATION AND MINING
- Exploration methods: Geol, mapping, Costeaming
- Mining methods: Small pits
- Open-cut workings - Depth(m):

PAST PRODUCTION
- Period: Ore(t) Grade(%) Concentrate(t) Contained metal (t)
 - :
 - :
 - :

ORE RESERVES
- Status: Tonnes Grade Cut-off grade
 - :
 - :
 - :

REFERENCES
- :
 - Hays, 1960(BMR Res. 1960/2)
 - Crohn, 1968(BMR Bull. 82)

REMARKS
- Few grab samples assayed up to 1.53% Sn. Traces of gold are also present.

Produced by Northern Territory Geological Survey, Dept Mines and Energy
MINERAL DEPOSIT DATA SHEET

METALLOGENIC MAP DATA
- **Deposit/prospect name:** Margaret
- **Commodities - Major/Minor:** Sn
- **Locality - 1:250 000 sheet:** Pine Creek SD52-8
- **1:100 000 sheet:** McKinlay River 5271
- **Universal Grid Reference:** HL 120 273
- **Latitude:** Longitude:
- **Length (m):** 19 **Width (m):** 1.3 **Depth (m):**
- **Strike bearing:** 145 **Dip:** 60°NE **Plunge:**
- **Deposit number:** 078
- **Compiled by:** M.A
- **Date entered:** 27/8/90
- **Status:** Abandoned mine
- **Shape:** Vein
- **Size:** Small
- **Mode of origin:** Hydrothermal

GEOLOGICAL SETTING
- **Tectonic unit(s):** Pine Creek Geosyncline
- **Group:** Mount Partridge Group
- **Formation:** Mundlogie Sandstone
- **Member:**
- **Sub-unit:**
- **Age:** Paleoproterozoic
- **Age:** Paleoproterozoic
- **Age:**

LITHOLOGY AND METAMORPHISM
- **Host rock:** Hematite quartz breccia
- **Subsidiary host rock:**
- **Wall rock:** Siltstone
- **Subsidiary wall rock:**
- **Age of metamorphism:** 1800 Ma
- **Type:** Progr. reg/cont
- **Facies:** Gnsch./Hb.Hfs

STRUCTURE
- **Type:** Shear **Strike:** 145 **Dip:** 60°NE **Plunge:**
- **Age relative to mineralisation:** Pre?
- **Type:** Vein **Strike:** 90 **Dip:** 90 **Plunge:**
- **Age relative to mineralisation:** Pre?

MINERALISATION
- **Principal primary ore mineral:** Cassiterite
- **Other primary ore mineral(s):** Pyrite, Arsenopyrite
- **Principal secondary ore mineral:** Hematite
- **Other secondary ore mineral(s):** Limonite, Goethite
- **Principal gangue mineral:** Hematite, Limonite
- **Other gangue mineral(s):** Quartz
- **Microscopic ore textures:** Vein fill
- **Weathering affect(s):** Oxidation
- **Age of Mineralisation:** E. Prot.
- **Depth of weathering (m):** 50
- **Grain size:** Fine

WALLROCK ALTERATION
- **Type:** Scrobal **Location Relative to ore:**
- **Age relative to ore:**
- **Hematitisation:**
- **in ore:**
- **Age relative to ore:**

EXPLORATION AND MINING
- **Exploration methods:** Geol. mapping, costeining, drilling
- **Mining methods:** Underground, Open cut
- **Open-cut workings - Depth (m):** 3
- **Length:** 50 **Width:** 1

PAST PRODUCTION
- **Period:** 1927-76
- **Ore (t):**
- **Grade (%):**
- **Concentrate (t):**
- **Contained metal (t):**

ORE RESERVES
- **Status:**
- **Tonnes:**
- **Grade:**
- **Cut-off grade:**

REFERENCES
- McQueen, 1956 (BMR Rec. 1956/133)
- Hays, 1960 (BMR Rec. 1960/2)
- Crohn, 1968 (BMR Bull. 82)

REMARKS
Includes Buffalo, Charlie and Bessie leases. The Buffalo lease has produced some 4 tons of hand sorted ore. Mineralisation style is probably similar to the Jepscs lode i.e. disseminated in massive sulphides. Traces of gold are present.
MINERAL DEPOSIT DATA SHEET

METALLOGENIC MAP DATA
- **Deposit/Prospect name:** Nelson 2
- **Commodities - Major/Minor:** Sn
- **Locality - 1:250 000 sheet:** PINE CREEK
- **1:100 000 sheet:** McKinley River
- **Universal Grid Reference:** HL 114 264
- **Longitude:**
- **Latitude:**
- **Length (m):** 1500
- **Width (m):** 0.5
- **Depth (m):**
- **Strike bearing:** 045
- **Dip:**
- **Plunge:**

GEOLOGICAL SETTING
- **Major tectonic unit/lake:** Fine Creek Geosyncline
- **Group:** Mount Partridge Group
- **Formation:** Mundogie Sandstone
- **Member:**
- **Sub-unit:**
- **Age:** Palaeoproterozoic
- **Age:** Palaeoproterozoic
- **Age:**

LITHOLOGY AND METAMORPHISM
- **Host rock:** Hematite quartz breccia
- **Subordinate host rock:**
- **Wall rock:** Siltstone
- **Subordinate wall rock:** 1800 Ma
- **Type:** Regional/Contact
- **Facies:** Gnash/Alb.Ep.

STRUCTURE
- **Type:**
- **Strike:**
- **Dip:**
- **Plunge:**
- **Age relative to mineralisation:**

MINERALISATION
- **Principal primary ore mineral:** Cassiterite
- **Other primary ore mineral(s):** Pyrite, Arsenopyrite
- **Principal secondary ore mineral:** Hematite
- **Other secondary ore mineral(s):** Limonite, Goethite
- **Principal gangue mineral:** Hematite, Limonite
- **Other gangue mineral(s):** Quartz
- **Macroscopic ore textures:** Vein fill
- **Weathering effect(s):** Oxidation
- **Depth of weathering (m):** 50
- **Grain size:** Fine
- **Age of Mineralisation:** E. Prot.

WALLROCK ALTERATION
- **Type:** Sericite
- **Location Relative to ore:** Proximal
- **Age relative to ore:** Ply
- **Hematisation:**
- **In ore:**

EXPLORATION AND MINING
- **Exploration methods:** Prospecting pits
- **Mining methods:** Small pits
- **Open-cut workings - Depth (m):**

PAST PRODUCTION
- **Period:**
- **Ore (t):**
- **Grade (%):**
- **Concentrate (t):**
- **Contained metal (t):**

ORE RESERVES
- **Status:**
- **Tonnes:**
- **Grade:**
- **Cut-off grade:**

REFERENCES
- **Hays, 1960 (BMR Rec. 1960/2)**
- **Cobin, 1968 (BMR Bull., 82)**

REMARKS
Lodes are discontinuous over a total strike length of 1500m. Traces of gold are also present.
MINERAL DEPOSIT DATA SHEET

METALLOGENIC MAP DATA
Deposit/Prospect name: Unnamed
Commodities - Major/Minor: Sn
Locality - 1:250 000 sheet: PINE CREEK SD52-8
1:100 000 sheet: McKinlay River 5271
Universal Grid Reference: HL 125 268
Latitude: Longitude:
Length (m): Width (m): Depth (m):
Strike bearing: 045 Dip: Plunge:

Deposit number: 080
Compiled by: M.A
Date entered: 27/8/90

GEOLOGICAL SETTING
Major tectonic unit(s): Pine Creek Geosyncline
Group: Mount Partridge Group
Formation: Mundagie Sandstone
Member:
Sub-unit:
Age:
Age:
Age:

LITHOLOGY AND METAMORPHISM
Host rock:
Subsidiary host rock:
Wall rock:
Subsidiary wall rock:
age of metamorphism: 1800 Ma
Type: Regional/Contact
Facies: Gnsch./Alb./Ep.

STRUCTURE
Type: Strike: Dip: Plunge:
Type: Strike: Dip: Plunge:
Age relative to mineralisation:
Age relative to mineralisation:

MINERALISATION
Principal primary ore mineral: Cassiterite
Other primary ore mineral(s): Pyrite, Arsenopyrite
Principal secondary ore mineral: Hemitite
Other secondary ore mineral(s): Limonite, Goethite
Principal gangue mineral: Hemitite, Limonite
Other gangue mineral(s): Quartz
Macroscopic ore textures: Vein fill
Weathering affected: Oxidation
Depth of weathering (m): 50
Grain size: Fine
Age of Mineralisation: E. Prot.

WALLROCK ALTERATION
Type
: Sedimentary
: Hematitisation
Location Relative to ore
Age relative to ore
: Proximal
: In ore
Pyn
Past

EXPLORATION AND MINING
Exploration methods: Prospecting pits
Mining methods:
Open-cut workings - Depth (m):
Length:
Width:

PAST PRODUCTION
Period
: Ore (t)
: Grade (%)
: Concentrate (t)
:Contained metal (t)

ORE RESERVES
Status
: Tonnes
: Grade
: Cut-off grade

REFERENCES

REMARKS
Small vein, erratic assays.

Produced by Northern Territory Geological Survey, Dept Mines and Energy
MINERAL DEPOSIT DATA SHEET

METALLOGENIC MAP DATA

- **Deposit/Prospect name:** Mary River Gossan
- **Commodities - Major/Minor:** Zn, Pb, Cu
- **Locality - 1:250 000 sheet:** PINE CREEK SD52-8
- **1:100 000 sheet:** McKinlay River S271
- **Universal Grid Reference:** HL 198 262
- **Latitude:**
- **Longitude:**
- **Length (m):** 200
- **Width (m):** 4
- **Depth (m):** 60
- **Strike bearing:** 040
- **Dip:** 75NW
- **Plunge:**

Deposit number: 081
Compiled by: P.F.
Date entered: 29/03/89

Status: Prospect
Shape: Vein
Size: Medium
Mode of origin: Hydrothermal

GEOLOGICAL SETTING

- **Major tectonic unit(s):** Pine Creek Geosyncline
- **Group:** Mount Partridge Group
- **Formation:** Mundoege Sandstone
- **Member:**
- **Sub-unit:**
- **Age:** Palaeoproterozoic

LITHOLOGY AND METAMORPHISM

- **Host rock:** Quartz vein breccia
- **Subsidiary host rock:** Pyritic shale
- **Wall rock:** Quartzwacke
- **Subsidiary wall rock:** Shale
- **Age of metamorphism:** 1800 Ma
Type: Regional
Facies: Gneissic

STRUCTURE

- **Type:** Shear zone
Sucre: 040
Dip: 75NW
Plunge:
- **Type:** Bedding
Sucre: 310
Dip: 65SW
Plunge:

MINERALISATION

- **Principal primary ore mineral:** Sphalerite
- **Other primary ore mineral(s):** Galena, Pyrite, Sphalerite
- **Principal secondary ore mineral:** Cerussite
- **Other secondary ore mineral(s):**
- **Principal gangue mineral:** Quartz
- **Other gangue mineral(s):** Sericite, Carbonate
- **Macroscopic ore textures:** Brecciation, Fracture filling
- **Weathering affect(s):** Oxidation
- **Depth of weathering (m):** 30-40
Grain size: Coarse
Age of Mineralisation: E. Prot.

WALLROCK ALTERATION

<table>
<thead>
<tr>
<th>Type</th>
<th>Location Relative to ore</th>
<th>Age relative to ore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silification</td>
<td>Footwall & Hangingwall</td>
<td>Syn</td>
</tr>
<tr>
<td>Sericite</td>
<td>In ore</td>
<td>Syn</td>
</tr>
<tr>
<td>Chlorite</td>
<td>Footwall & Hangingwall</td>
<td>Syn</td>
</tr>
</tbody>
</table>

EXPLORATION AND MINING

- **Exploration methods:** Geol. mapping, Geochem., Geophys., Drilling
- **Mining methods:**
- **Open-cut workings - Depth (m):**
- **Length:**
- **Width:**

PAST PRODUCTION

<table>
<thead>
<tr>
<th>Period</th>
<th>Ore(t)</th>
<th>Grade(%)</th>
<th>Concentrate(t)</th>
<th>Contained metal (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ORE RESERVES

<table>
<thead>
<tr>
<th>Status</th>
<th>Tonnes</th>
<th>Grade</th>
<th>Cut-off grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inferred</td>
<td>900 900</td>
<td>9.4% Zn</td>
<td>0.5% Pb</td>
</tr>
</tbody>
</table>

REFERENCES

- Darby, 1985 (GS58/10)
- Daly, 1971 (GS70/05)
- Daly, 1975 (GS75/01)
- Shields & Willis, 1978 (GS Rec. 78/01)
- Watts, 1969 (GS69/12)
- Williams, 1971 (ibid. 1971/134)
- Bullock, 1972 (ibid. 1972/52)
- Michell, 1974 (ibid. 1974/166)

REMARKS

MINERAL DEPOSIT DATA SHEET

METALLOGENIC MAP DATA

<table>
<thead>
<tr>
<th>Deposit/prospect name:</th>
<th>Mary River South</th>
<th>Revised:</th>
<th>082</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commodities - Major/Minor:</td>
<td>Zn Pb</td>
<td>Compiled by:</td>
<td>P.F.</td>
</tr>
<tr>
<td>Localitiy - 1:250 000 sheet:</td>
<td>PINE CREEK SD52-8</td>
<td>Date entered:</td>
<td>29/03/89</td>
</tr>
<tr>
<td>1:100 000 sheet:</td>
<td>McKinlay River 5271</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Universal Grid Reference</td>
<td>HL 201 251</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latitude:</td>
<td>Longitude:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length (m):</td>
<td>Width (m):</td>
<td>Depth (m):</td>
<td></td>
</tr>
<tr>
<td>Strike bearing:</td>
<td>Dip:</td>
<td>Plunge:</td>
<td></td>
</tr>
</tbody>
</table>

GEOLOGICAL SETTING

<table>
<thead>
<tr>
<th>Major tectonic unit(s):</th>
<th>Pine Creek Geosyncline</th>
<th>Sub-unit:</th>
<th>Palaeoproterozoic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group:</td>
<td>Mount Partridge Group</td>
<td>Age:</td>
<td>Palaeoproterozoic</td>
</tr>
<tr>
<td>Formation:</td>
<td>Mundygong Sandstone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Member:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LITHOLOGY AND METAMORPHISM

<table>
<thead>
<tr>
<th>Host rock:</th>
<th>Quartz vein breccia</th>
<th>Type:</th>
<th>Regional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subsidiary host rock:</td>
<td>Quartzwacke</td>
<td>Facies:</td>
<td>Greenschist</td>
</tr>
<tr>
<td>Wall rock:</td>
<td>Shale</td>
<td>Type:</td>
<td>Regional</td>
</tr>
<tr>
<td>Subsidiary wall rock:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>age of metamorphism:</td>
<td>1800 Ma</td>
<td>Type:</td>
<td>Regional</td>
</tr>
</tbody>
</table>

STRUCTURE

<table>
<thead>
<tr>
<th>Type:</th>
<th>Strike:</th>
<th>Dip:</th>
<th>Plunge:</th>
<th>Age relative to mineralisation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shear zone</td>
<td>315</td>
<td>70SW</td>
<td></td>
<td>Syn</td>
</tr>
<tr>
<td>Bedding</td>
<td>150</td>
<td>70SW</td>
<td></td>
<td>Pre</td>
</tr>
</tbody>
</table>

MINERALISATION

<table>
<thead>
<tr>
<th>Principal primary ore mineral:</th>
<th>Sphalerite</th>
<th>Grain size:</th>
<th>Coarse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other primary ore mineral(s):</td>
<td>Galena, Pyrite</td>
<td>Age of Mineralisation:</td>
<td>E. Prot</td>
</tr>
<tr>
<td>Principal secondary ore mineral:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other secondary ore mineral(s):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principal gangue mineral:</td>
<td>Quartz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other gangue mineral(s):</td>
<td>Hematite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macroscopic ore textures:</td>
<td>Brecciation, Fracture filling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weathering effect(s):</td>
<td>Oxidation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth of weathering(m):</td>
<td>30-40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WALLROCK ALTERATION

<table>
<thead>
<tr>
<th>Location Relative to ore</th>
<th>Age relative to ore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Footwall & Hangingwall</td>
<td>Syn</td>
</tr>
</tbody>
</table>

EXPLORATION AND MINING

<table>
<thead>
<tr>
<th>Exploration methods:</th>
<th>Geol. mapping, Geochem., Geophys., Drilling.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mining methods:</td>
<td></td>
</tr>
<tr>
<td>Open-cut workings - Depth(m):</td>
<td></td>
</tr>
<tr>
<td>Length:</td>
<td></td>
</tr>
<tr>
<td>Width:</td>
<td></td>
</tr>
</tbody>
</table>

PAST PRODUCTION

<table>
<thead>
<tr>
<th>Period:</th>
<th>Ore(t)</th>
<th>Grade(%)</th>
<th>Concentrate(t)</th>
<th>Contained metal (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ORE RESERVES

<table>
<thead>
<tr>
<th>Status:</th>
<th>Tonnes</th>
<th>Grade</th>
<th>Cut-off grade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watts, 1969a(GS69/12)</td>
<td>Daly, 1975(GS75/01)</td>
</tr>
<tr>
<td>Daly, 1971(GS71/05)</td>
<td>Hone & Major, 1978(BMR Rpt 206)</td>
</tr>
<tr>
<td>Williams, 1971(BMR Rec. 1971/134)</td>
<td>Darby, 1985(GS85/10)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REMARKS

Best drilling intersection was 3.57% Zn between 141-142.5m in DDH1. This prospect has good potential; further drilling may prove tonnages and grades similar to the Mary River Gossan.
Mineral Deposit Data Sheet

Metallogenic Map Data
- **Deposit/Prospect name:** Mingle No2
- **Commodities - Major/Minor:** Pb, Zn
- **Locality - 1:250 000 sheet:** PINE CREEK SD52-8
- **1:100 000 sheet:** McKinlay River 237
- **Universal Grid Reference:** HIL 213 238
- **Latitude:**
- **Longitude:**
- **Length (m):** Width (m): Depth (m):
- **Strike bearing:** 310° Dip: 80°SW Plunge:

Geological Setting
- **Major tectonic unit(s):** Pate Creek Geosyncline
- **Group:** Mount Partridge Group
- **Formation:** Wildman Siltstone
- **Member:**
- **Sub-unit:**
- **Age:** Paleoproterozoic

Lithology and Metamorphism
- **Host rock:** Carbonaceous shale
- **Subsidiary host rock:**
- **Wall rock:** Carbonaceous shale
- **Subsidiary wall rock:** Conglomerate hornfels
- **Age of metamorphism:** 1800 Ma
- **Type:** Regional/Contact
- **Facies:** Greenschist

Structure
- **Type:** Bedding
- **Strike:** 310° Dip: 80°SW Plunge:
- **Type:** Strike:
- **Dip:** Plunge:

Mineralisation
- **Principal primary ore mineral:** Pyrrhotite
- **Other primary ore mineral(s):**
- **Principal secondary ore mineral:**
- **Other secondary ore mineral(s):**
- **Principal gangue mineral:** Host
- **Other gangue mineral(s):**
- **Macroscopic ore textures:**
- **Weathering affect(s):** Oxidation
- **Age of Mineralisation:**

Wallrock Alteration
- **Type:**
- **Location Relative to ore:**
- **Age relative to ore:**

Exploration and Mining
- **Exploration methods:** Geophy., Drilling.
- **Mining methods:**
- **Open-cut workings - Depth (m):**
- **Length:**
- **Width:**

Past Production
- **Period:**
- **Ore (t):** Grade (%): Concentrate (t): Contained metal (t):

Ore Reserves
- **Status:**
- **Tonnes:** Grade:
- **Cut-off grade:**

References
- Michael, 1974 (BMR Rec.1974/166)
- Daly, 1975 (GSM5/01)
- Hone & Major, 1978 (BMR. Rpt 206)

Remarks
- Purely a geophysical target caused by local concentrations of pyrrhotite in carbonaceous shales of the Wildman Siltstone. No economic minerals were observed in the drill core.
MINERAL DEPOSIT DATA SHEET

METALLOGENIC MAP DATA
- **Deposit/Prospect name:** Mount George
- **Commodities - Major/Minor:** Sn
- **Locality - 1:250 000 sheet:** PINE CREEK
 - **SDS2-8:**
- **1:100 000 sheet:** McKinlay River
 - **5271:**
- **Universal Grid Reference:** HL 081 202
- **Latitude:**
- **Longitude:**
- **Length (m):** 60
- **Width (m):**
- **Depth (m):**
- **Strike bearing:** NW
- **Dip:** plunge

GEOLOGICAL SETTING
- **Major tectonic unit(s):** Pine Creek Geosyncline
- **Group:** Mount Partridge Group
- **Formation:** Mundowie Sandstone
- **Member:**
- **Sub-unit:**
- **Age:** Palaeoproterozoic
- **Age:** Palaeoproterozoic
- **Age:**

LITHOLOGY AND METAMORPHISM
- **Host rock:** Hematite quartz breccia
- **Subsidiary host rock:** Siltstone
- **Wall rock:**
- **Subsidiary wall rock:**
- **Age of metamorphism:** 1.800 Ma
- **Type:** Regional/Contact
- **Facies:** Gneiss/Alb./Ep.

STRUCTURE
- **Type:**
 - **Strike:**
 - **Dip:**
 - **Plunge:** Age relative to mineralisation:
- **Type:**
 - **Strike:**
 - **Dip:**
 - **Plunge:** Age relative to mineralisation:

MINERALISATION
- **Principal primary ore mineral:** Cassiterite
- **Other primary ore mineral(s):** Pyrite, Arsenopyrite
- **Principal secondary ore mineral:** Hematite
- **Other secondary ore mineral(s):** Limonite, Goethite
- **Principal gangue mineral:** Hematite, Limonite
- **Other gangue mineral(s):** Quartz, Tourmaline
- **Macropscopic ore textures:** Vein fill & stingers
- **Weathering affect(s):** Oxidation
- **Depth of weathering(m):** 50

WALLROCK ALTERATION
- **Type:**
 - Sericitic
 - Hematitisation
- **Location Relative to ore:**
 - Proximal
 - In ore
- **Age relative to ore:** Syn
 - Post

EXPLORATION AND MINING
- **Exploration methods:** Prospecting pits
- **Mining methods:** Open cut, underground
- **Open-cut workings - Depth (m):**

PAST PRODUCTION
- **Period:** 1926-65
- **Ore (t):** 200
- **Grade (%):** 12
- **Concentrate (t):** 7.15 Sn
- **Contained metal (t):**

ORE RESERVES
- **Status:**
- **Tonnes:**
- **Grade:**
- **Cut-off grade:**

REFERENCES
- Crohn, 1968 (BMR Bull. 82)
- Hays, 1969 (BMR Rec. 1960/2)

REMARKS
The lodes have no definite trend and the ore is in fine stringers.
<table>
<thead>
<tr>
<th>METALLOGENIC MAP DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deposit/Prospect name:</td>
</tr>
<tr>
<td>Commodities - Major/M</td>
</tr>
<tr>
<td>Locality - 1:250 000</td>
</tr>
<tr>
<td>sheet: 1:100 000</td>
</tr>
<tr>
<td>Universal Grid Reference: HL 007 182</td>
</tr>
<tr>
<td>Latitude:</td>
</tr>
<tr>
<td>Length (m): 120</td>
</tr>
<tr>
<td>Strike bearing: 335</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GEOLOGICAL SETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major tectonic unit(s):</td>
</tr>
<tr>
<td>Group:</td>
</tr>
<tr>
<td>Formation:</td>
</tr>
<tr>
<td>Member:</td>
</tr>
<tr>
<td>Sub-unit:</td>
</tr>
<tr>
<td>Age:</td>
</tr>
<tr>
<td>Age:</td>
</tr>
<tr>
<td>Age:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LITHOLOGY AND METAMORPHISM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host rock:</td>
</tr>
<tr>
<td>Subsidiary host rock:</td>
</tr>
<tr>
<td>Wall rock:</td>
</tr>
<tr>
<td>Subsidiary wall rock:</td>
</tr>
<tr>
<td>Age of metamorphism:</td>
</tr>
<tr>
<td>Type:</td>
</tr>
<tr>
<td>Facies:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STRUCTURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type: Bedding</td>
</tr>
<tr>
<td>Strike: 340</td>
</tr>
<tr>
<td>Dip: 75E</td>
</tr>
<tr>
<td>Plunge:</td>
</tr>
<tr>
<td>Type:</td>
</tr>
<tr>
<td>Strike:</td>
</tr>
<tr>
<td>Dip:</td>
</tr>
<tr>
<td>Plunge:</td>
</tr>
<tr>
<td>Age relative to mineralisation: Pre</td>
</tr>
<tr>
<td>Age relative to mineralisation:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MINERALISATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal primary ore mineral:</td>
</tr>
<tr>
<td>Other primary ore mineral(s):</td>
</tr>
<tr>
<td>Principal secondary ore mineral:</td>
</tr>
<tr>
<td>Other secondary ore mineral(s):</td>
</tr>
<tr>
<td>Principal gangue mineral:</td>
</tr>
<tr>
<td>Other gangue mineral(s):</td>
</tr>
<tr>
<td>Macroscopic ore textures:</td>
</tr>
<tr>
<td>Weathering affect(s):</td>
</tr>
<tr>
<td>Depth of weathering (m):</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WALLROCK ALTERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
</tr>
<tr>
<td>Location Relative to ore:</td>
</tr>
<tr>
<td>Age relative to ore:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EXPLORATION AND MINING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploration methods:</td>
</tr>
<tr>
<td>Mining methods:</td>
</tr>
<tr>
<td>Open-cut workings - Depth (m):</td>
</tr>
<tr>
<td>Length:</td>
</tr>
<tr>
<td>Width:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PAST PRODUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period:</td>
</tr>
<tr>
<td>Ore (t):</td>
</tr>
<tr>
<td>Grade (%):</td>
</tr>
<tr>
<td>Concentrate (t):</td>
</tr>
<tr>
<td>Contained metal (t):</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ORE RESERVES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status:</td>
</tr>
<tr>
<td>Tonnes:</td>
</tr>
<tr>
<td>Grade:</td>
</tr>
<tr>
<td>Cut-off grade:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REFERENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shields, 1966 (GS664).</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Produced by Northern Territory Geological Survey, Dept Mines and Energy
MINERAL DEPOSIT DATA SHEET

METALLOGENIC MAP DATA
- **Deposit/Prospect name:** McKinley
- **Commodities - Major/Minor:** Au
- **Locality:** 1:250 000 sheet: PINE CREEK, S52-8
 1:100 000 sheet: McKinley River 5271
- **Universal Grid Reference:** GL 963 168
- **Latitude:** Depth(m):
- **Length (m):** 200 **Width (m):** 1 **Dip:** 80 **Plunge:**
- **Strike bearing:** 155

GEOLOGICAL SETTING
- **Main tectonic unit:** Pine Creek Geosyncline
- **Group:** South Alligator Group
- **Formation:** Mount Bonnie Formation
- **Member:**
- **Sub-unit:** Palaeoproterozoic
- **Age:** Palaeoproterozoic

LITHOLOGY AND METAMORPHISM
- **Host rock:** Vein quartz
- **Wall rock:** Ferruginous silstone
- **Wall rock:** Greywacke
- **Age of metamorphism:** 1800 Ma
- **Type:** Regional/Contact
- **Facies:** Gnsch./Alb./Ep.

STRUCTURE
- **Type:** Anticline
 - **Strike:** 155
 - **Dip:** 80
 - **Plunge:**

MINERALISATION
- **Principal primary ore mineral:** Gold
- **Other primary ore mineral(s):** Pyrite, Arsenopyrite
- **Principal secondary ore mineral:** Hematite
- **Other secondary ore mineral(s):**
- **Principal gangue mineral:** Quartz
- **Other gangue mineral(s):** Hematite
- **Macroscopic ore textures:** Disseminated in quartz veins
- **Weathering affect:** Oxidation
- **Depth of weathering (m):** 50
- **Grain size:** Microscopic

WALLROCK ALTERATION
- **Type:**
 - **Coloritic:**
 - **Sericitic:**
 - **Location Relative to ore:**
 - **Proximal:**
 - **Age relative to ore:**
 - **Proximal:**
 - **Syne./Post:**

EXPLORATION AND MINING
- **Exploration methods:** Geolog. mapping, Costeaming, Drilling
- **Mining methods:** Open cut
- **Open-cut workings - Depth (m):** 3
 - **Length:** 50
 - **Width:** 4

PAST PRODUCTION
- **Period:** 1939
- **Ore (t):** 127
- **Grade (%):** 3.24
- **Concentrate (t):**
- **Contained metal (t):** 0.4 kg Au

ORE RESERVES
- **Status:**
 - **Tonnes:**
 - **Grade:**
 - **Cut-off grade:**

REFERENCES
- Hosford, 1940
- Newton, 1974a (GS 74/017)

REMARKS
- Given production figure is almost certainly incomplete.

Produced by Northern Territory Geological Survey, Dept. Mines and Energy
METALLOGENIC MAP DATA
<table>
<thead>
<tr>
<th>Deposit/Prospect name:</th>
<th>Porcupine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commodities - Major/Minor:</td>
<td>Fe</td>
</tr>
<tr>
<td>Locality - 1:250 000 sheet:</td>
<td>PINE CREEK SD52-8</td>
</tr>
<tr>
<td>1:100 000 sheet:</td>
<td>McKinlay River 5271</td>
</tr>
<tr>
<td>Universal Grid Reference:</td>
<td>HL 040 149</td>
</tr>
<tr>
<td>Latitude:</td>
<td></td>
</tr>
<tr>
<td>Longitude:</td>
<td></td>
</tr>
<tr>
<td>Length (m):</td>
<td>500</td>
</tr>
<tr>
<td>Width (m):</td>
<td>15</td>
</tr>
<tr>
<td>Depth (m):</td>
<td>10</td>
</tr>
<tr>
<td>Strike bearing:</td>
<td>330</td>
</tr>
<tr>
<td>Dip:</td>
<td>55W</td>
</tr>
<tr>
<td>Plunge:</td>
<td></td>
</tr>
</tbody>
</table>

GEOLOGICAL SETTING
Major tectonic unit(s):	Pine Creek Geosyncline
Group:	Mount Partridge Group
Formation:	Wildman Siltstone
Member:	

LITHOLOGY AND METAMORPHISM
Host rock:	Ferruginous shale breccia
Subsidiary host rock:	
Wall rock:	Slate
Subsidiary wall rock:	Slate
Age of metamorphism:	1800 Ma
Type:	Regional
Facies:	Greenschist

STRUCTURE
Type:	Bedding
Strike:	390
Dip:	55W
Plunge:	

MINERALISATION
Principal primary ore mineral:	
Other primary ore mineral(s):	
Principal secondary ore mineral:	Hematite
Other secondary ore mineral(s):	Limonite
Principal gangue mineral:	Shale
Other gangue mineral(s):	
Macroscopic ore textures:	Brecciation
Weathering effect(s):	Supergene
Depth of weathering (m):	50

WALLROCK ALTERATION
| Type: | Location Relative to ore |
| Age relative to ore: | |

EXPLORATION AND MINING
Exploration methods:	Geochem.
Mining methods:	
Open-cut workings - Depth (m):	
Length:	
Width:	

PAST PRODUCTION
| Period: | Ore (t) | Grade (%) | Concentrate (t) | Contained metal (t) |

ORE RESERVES
| Status: | Tonnes | Grade | Cut-off grade |

REFERENCES
| | Shields, 1966 (GS66/4). |

REMARKS
Five chip samples along the lode averaged 52.4% Fe and 0.4% P.
MINERAL DEPOSIT DATA SHEET

<table>
<thead>
<tr>
<th>METALLOGENIC MAP DATA</th>
<th>Deposit number: 108</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deposit/prospect name:</td>
<td>McFarrars</td>
</tr>
<tr>
<td>Commodities - Major/Minor:</td>
<td>Fe Mn</td>
</tr>
<tr>
<td>Locality - 1:250 000 sheet:</td>
<td>PINE CREEK</td>
</tr>
<tr>
<td></td>
<td>1:100 000 sheet: McKinlay River</td>
</tr>
<tr>
<td>Universal Grid Reference:</td>
<td>HL 015 144</td>
</tr>
<tr>
<td>Latitude:</td>
<td>Longitude:</td>
</tr>
<tr>
<td>Length (m): 200</td>
<td>Width (m): 15</td>
</tr>
<tr>
<td>Strike bearing: 330</td>
<td>Dip: 45° E</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GEOLOGICAL SETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major tectonic unit(s):</td>
</tr>
<tr>
<td>Group:</td>
</tr>
<tr>
<td>Formation:</td>
</tr>
<tr>
<td>Member:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LITHOLOGY AND METAMORPHISM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host rock: Massive limonite gosgen</td>
</tr>
<tr>
<td>Subsidiary host rock: Limonite-shale breccia</td>
</tr>
<tr>
<td>Wall rock: Carbonaceous shale</td>
</tr>
<tr>
<td>Subsidiary wall rock:</td>
</tr>
<tr>
<td>age of metamorphism:</td>
</tr>
<tr>
<td>Type:</td>
</tr>
<tr>
<td>Facies:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STRUCTURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type: Bedding</td>
</tr>
<tr>
<td>Type:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MINERALISATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal primary ore mineral:</td>
</tr>
<tr>
<td>Other primary ore mineral(s):</td>
</tr>
<tr>
<td>Principal secondary ore mineral: Limonite</td>
</tr>
<tr>
<td>Other secondary ore mineral(s): Pyrolusite</td>
</tr>
<tr>
<td>Principal gangue mineral: Shale</td>
</tr>
<tr>
<td>Other gangue mineral(s):</td>
</tr>
<tr>
<td>Macroscopic ore textures: Boxwork, Brecciation</td>
</tr>
<tr>
<td>Weathering affect(s): Supergene</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WALLROCK ALTERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
</tr>
<tr>
<td>Location Relative to ore: Age relative to mineralisation:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EXPLORATION AND MINING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploration methods: Geochem.</td>
</tr>
<tr>
<td>Mining methods:</td>
</tr>
<tr>
<td>Open-cut workings - Depth (m):</td>
</tr>
<tr>
<td>Length:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PAST PRODUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
</tr>
<tr>
<td>Ore (t)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ORE RESERVES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status:</td>
</tr>
<tr>
<td>Tonnes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REFERENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shields, 1966 (GS66/4).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three chip samples along the lode averaged 41% Fe and 11.8% Mn (Shields, 1966).</td>
</tr>
</tbody>
</table>

Produced by Northern Territory Geological Survey, Dept Mines and Energy
MINERAL DEPOSIT DATA SHEET

METALLOGENIC MAP DATA
- **Deposit/Prospect name:** Egg Cup
- **Commodity - Major/Minor:** Fe
- **Locality:** 1:250,000 sheet: PINE CREEK, SDS2-8; 1:100,000 sheet: McKinlay River, 5271
- **Universal Grid Reference:** HL 023 141
- **Latitude:**
- **Length (m):** 30
- **Width (m):** 2
- **Sulie bearing:** 340
- **Dip:** 60SW
- **Depth (m):** 10
- **Plunge:**

GEOLOGICAL SETTING
- **Major tectonic unit(s):** Pine Creek Geosyncline
- **Group:** South Alligator Group
- **Formation:** Koolpin Formation
- **Member:**

LITHOLOGY AND METAMORPHISM
- **Host rock:** Hematite-shale breccia
- **Subsidiary host rock:** Massive hematite
- **Wall rock:** Slate
- **Subsidiary wall rock:** Shale
- **Age of metamorphism:** 1800 Ma
- **Type:** Regional
- **Facies:** Greenschist

STRUCTURE
- **Type:** Bedding
- **Strike:** 340
- **Dip:** 60SW
- **Plunge:**

MINERALISATION
- **Principal primary ore mineral:** Hematite
- **Other primary ore mineral(s):**
- **Principal secondary ore mineral:** Limonite
- **Other secondary ore mineral(s):**
- **Principal gangue mineral:** Slate
- **Other gangue mineral(s):**
- **Macroscopic ore textures:** Boxwork, Brecciation
- **Weathering affect(s):** Supergene
- **Depth of weathering (m):** 40

WALLROCK ALTERATION
- **Type:**
- **Location Relative to ore:**
- **Age relative to ore:**

EXPLORATION AND MINING
- **Exploration methods:**
- **Mining methods:**
- **Open-cut workings - Depth (m):**
- **Length:**
- **Width:**

PAST PRODUCTION
- **Period:**
- **Ore (t):**
- **Grade (%):**
- **Concentrate (t):**
- **Contained metal (t):**

ORE RESERVES
- **Status:**
- **Tonnes:**
- **Grade:**
- **Cut-off grade:**

REFERENCES
- Shields, 1966 (G566/4).

REMARKS
METALLOGENIC MAP DATA

<table>
<thead>
<tr>
<th>Deposit/Prospect name:</th>
<th>Bowerbird</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commodities - Major/Minor:</td>
<td>Fe Mn</td>
</tr>
<tr>
<td>Locality - 1:250 000 sheet:</td>
<td>Pine Creek</td>
</tr>
<tr>
<td>Universal Grid Reference</td>
<td>HL 048 134</td>
</tr>
<tr>
<td>Latitude:</td>
<td>Longitude:</td>
</tr>
<tr>
<td>Length (m):</td>
<td>Width (m):</td>
</tr>
<tr>
<td>Strike bearing:</td>
<td>Dip:</td>
</tr>
<tr>
<td>Depth (m):</td>
<td>Plunge:</td>
</tr>
</tbody>
</table>

Deposit number: 111
Compiled by: P.F.
Date entered: 07/09/89

Status: Mineral occurrence
Shape: Stratiform
Size: Occurrence only
Mode of origin: Superficial enrichment

GEOLOGICAL SETTING

- **Major tectonic unit(s):** Pine Creek Geosyncline
- **Group:** Mount Partridge Group
- **Formation:** Wildman Siltstone
- **Member:**

Sub-unit: Palaeoproterozoic
Age: Palaeoproterozoic

LITHOLOGY AND METAMORPHISM

- **Host rock:** Massive hematite
- **Subsidiary host rock:** Hematite-shale breccia
- **Wall rock:** Shale
- **Subsidiary wall rock:** Slate
- **Age of metamorphism:** 1800 Ma

Type: Regional
Facies: Greenschist

STRUCTURE

- **Type:** Bedding
 - **Sulde:** 320
 - **Dip:** 60°W
 - **Plunge:**

- **Type:** Cleavage
 - **Sulde:** 020
 - **Dip:** 80°E
 - **Plunge:**

Age relative to mineralisation: Pre

MINERALISATION

- **Principal primary ore mineral:**
- **Other primary ore mineral(s):**
- **Principal secondary ore mineral:** Hematite
- **Other secondary ore mineral(s):** Limonite, Pyrolusite
- **Principal gangue minerals:** Shale
- **Other gangue mineral(s):**

Age of Mineralisation:

Macroscopic ore textures: Massive, Brecciation.

Weathering affect(s): Supergeno

Depth of weathering (m): 50

WALLROCK ALTERATION

Type

Location Relative to ore

Age relative to ore

EXPLORATION AND MINING

Exploration methods: Geochem.

Mining methods:

Open-cut workings - Depth (m):

Length:

Width:

PAST PRODUCTION

<table>
<thead>
<tr>
<th>Period</th>
<th>Ore (t)</th>
<th>Grade (%)</th>
<th>Concentrate (t)</th>
<th>Contained metal (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ORE RESERVES

<table>
<thead>
<tr>
<th>Status</th>
<th>Tonnes</th>
<th>Grade</th>
<th>Cut-off grade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES

- Shields, 1966 (GS66/4).

REMARKS

The prospect contains two subparallel lodes which average 50% Fe (Shields, 1966).
Mineral Deposit Data Sheet

Metallogenic Map Data

<table>
<thead>
<tr>
<th>Deposit/Prospect name:</th>
<th>Big Hill</th>
<th>Deposit number:</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commodity: Major/Minor</td>
<td>Fe</td>
<td>Compiled by:</td>
<td>P.F.</td>
</tr>
<tr>
<td>Locality - 1:250 000 sheet:</td>
<td>PINE CREEK SD52-8</td>
<td>Date entered:</td>
<td>07/09/89</td>
</tr>
<tr>
<td>1:100 000 sheet:</td>
<td>McKinley River 5271</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Universal Grid Reference</td>
<td>HL 044 143</td>
<td>Status:</td>
<td>Prospect</td>
</tr>
<tr>
<td>Latitude:</td>
<td>Longitude:</td>
<td>Shape:</td>
<td>Stratiform</td>
</tr>
<tr>
<td>Length (m): 800</td>
<td>Width (m): 6</td>
<td>Size:</td>
<td>Small</td>
</tr>
<tr>
<td>Strike bearing: 345</td>
<td>Dip: 60°W</td>
<td>Mode of origin:</td>
<td>Superficial enrichment</td>
</tr>
<tr>
<td>Depth (m): 15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Geological Setting

<table>
<thead>
<tr>
<th>Major sequence unit(s):</th>
<th>Pina Creek Group</th>
<th>Sub-unit:</th>
<th>Paleoproterozoic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group:</td>
<td>Mount Partridge Group</td>
<td>Age:</td>
<td>Paleoproterozoic</td>
</tr>
<tr>
<td>Formation:</td>
<td>Wildman Shale</td>
<td>Age:</td>
<td></td>
</tr>
<tr>
<td>Member:</td>
<td></td>
<td>Age:</td>
<td></td>
</tr>
</tbody>
</table>

Lithology and Metamorphism

Host rock:	Massive limonite
Wall rock:	Shale
Subsidiary wall rock:	Slate
Age of metamorphism:	1800 Ma
Type:	Regional
Facies:	Greenschist

Structure

<table>
<thead>
<tr>
<th>Type: Bedding</th>
<th>Strike: 345</th>
<th>Dip: 60°W</th>
<th>Plunge:</th>
<th>Age relative to mineralisation: Pre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type: Bedding</td>
<td>Strike: 345</td>
<td>Dip: 45°W</td>
<td>Plunge:</td>
<td>Age relative to mineralisation: Pre</td>
</tr>
</tbody>
</table>

Mineralisation

- Principal primary ore mineral: Limonite
- Other primary ore mineral(s): Hematite
- Principal secondary ore mineral(s): Green-grey slate
- Other secondary ore mineral(s):
- Principal gangue mineral(s): Massive, Brecciation
- Other gangue mineral(s):
- Macroscopic ore textures: Supergene
- Weathering affect(s):
- Depth of weathering (m): 50

Wallrock Alteration

<table>
<thead>
<tr>
<th>Type:</th>
<th>Location Relative to ore:</th>
<th>Age relative to ore:</th>
</tr>
</thead>
</table>

Exploration and Mining

- Exploration methods: Drilling
- Mining methods: Open-cut workings
- Length: |
- Width: |

Past Production

<table>
<thead>
<tr>
<th>Period</th>
<th>Ore (t)</th>
<th>Grade (%)</th>
<th>Concentrate (t)</th>
<th>Contained metal (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ore Reserves

<table>
<thead>
<tr>
<th>Status</th>
<th>Tonnage</th>
<th>Grade</th>
<th>Cut-off grade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>300 000</td>
<td>-50% Fe</td>
<td>Shields, 1966 (GS5664).</td>
</tr>
</tbody>
</table>

Remarks

Bands of slate within limonite are common.

Produced by Northern Territory Geological Survey, Dept Mines and Energy
MINERAL DEPOSIT DATA SHEET

METALLOGENIC MAP DATA

<table>
<thead>
<tr>
<th>Deposit/Prospect name:</th>
<th>Millers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commodities - Major/Minor:</td>
<td>Fe, Mn</td>
</tr>
<tr>
<td>Locality - 1:250 000 sheet:</td>
<td>PINE CREEK, SD52-S</td>
</tr>
<tr>
<td>1:100 000 sheet:</td>
<td>McKinlay River, 5271</td>
</tr>
<tr>
<td>Universal Grid Reference:</td>
<td>HL 054, 122</td>
</tr>
<tr>
<td>Latitude:</td>
<td>Longitude:</td>
</tr>
<tr>
<td>Length (m):</td>
<td>Width (m): 15</td>
</tr>
<tr>
<td>Strike bearing:</td>
<td>Strike: 345</td>
</tr>
</tbody>
</table>

GEOLOGICAL SETTING

<table>
<thead>
<tr>
<th>Major tectonic unit(s):</th>
<th>Pine Creek Geosyncline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group:</td>
<td>Mount Patridge Group</td>
</tr>
<tr>
<td>Formation:</td>
<td>Wildman Siltstone</td>
</tr>
<tr>
<td>Member:</td>
<td></td>
</tr>
<tr>
<td>Sub-units:</td>
<td></td>
</tr>
<tr>
<td>Age:</td>
<td>Palaeoproterozoic</td>
</tr>
<tr>
<td>Age:</td>
<td>Palaeoproterozoic</td>
</tr>
<tr>
<td>Age:</td>
<td></td>
</tr>
</tbody>
</table>

LITHOLOGY AND METAMORPHISM

Host rock:	Limonite gossan
Subsidiary host rock:	
Wall rock:	Metagreywacke (weathered)
Subsidiary wall rock:	Silty shale
Age of metamorphism:	1800 Ma
Type:	Regional
Facies:	Greenschist

STRUCTURE

Type: Bedding	Strike: 345	Dip: 60W
Type: Syncline	Strike: 345	Dip: Tight
Plunge:	Age relative to mineralisation: Pre	
Plunge: N	Age relative to mineralisation: Pre	

MINERALISATION

Principal primary ore mineral:	
Other primary ore mineral(s):	
Principal secondary ore mineral:	Limonite
Other secondary ore mineral(s):	Hematite, Pyrolusite
Principal gangue mineral:	Wallrock
Other gangue mineral(s):	
Macroscopic ore textures:	Massive, Brecciation
Weathering affect(s):	Supergene
Depth of weathering (m):	30

WALLROCK ALTERATION

<table>
<thead>
<tr>
<th>Type:</th>
<th>Location Relative to ore</th>
<th>Age relative to ore</th>
</tr>
</thead>
</table>

EXPLORATION AND MINING

Exploration methods:	Geol. mapping, Geochem., Drilling.	
Mining method:		
Open-cut workings - Depth (m):	Length:	Width:

PAST PRODUCTION

<table>
<thead>
<tr>
<th>Period</th>
<th>Ore(t)</th>
<th>Grade(%)</th>
<th>Concentrate(t)</th>
<th>Contained metal (t)</th>
</tr>
</thead>
</table>

ORE RESERVES

Status:		
Indicated resource:	380 000 Tonne	Grade 52% Fe
Inferred resource:	1 234 900 Tonne	50% Fe, 7% Mn

REFERENCES

| | |
| Shields, 1966a (GS66/4). |
| Shields, 1966b (GS66/12). |
| Friesen, 1972 (CR72/6). |

REMARKS

The lode is in the form of a tight syncline.
MINERAL DEPOSIT DATA SHEET

<table>
<thead>
<tr>
<th>METALLOGENIC MAP DATA</th>
<th>Deposit number: 113</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deposit/Prospect name: McKeddes</td>
<td></td>
</tr>
<tr>
<td>Commodities - Major/Minor: Au</td>
<td></td>
</tr>
<tr>
<td>Locality - 1:250 000 sheet: PINE CREEK SD52-8</td>
<td></td>
</tr>
<tr>
<td>Universal Grid Reference: HL 091 112</td>
<td></td>
</tr>
<tr>
<td>Latitude:</td>
<td></td>
</tr>
<tr>
<td>Length (m): 3333 Width(m): Depth(m):</td>
<td></td>
</tr>
<tr>
<td>Strike bearing: Dip: Plunge:</td>
<td></td>
</tr>
<tr>
<td>Compiled by: Z.B</td>
<td></td>
</tr>
<tr>
<td>Date entered: 5/12/90</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GEOLOGICAL SETTING</th>
<th>Status: Abandoned mine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major tectonic unit(s): Pine Creek Geosyncline</td>
<td></td>
</tr>
<tr>
<td>Group:</td>
<td></td>
</tr>
<tr>
<td>Formation: Czs</td>
<td></td>
</tr>
<tr>
<td>Member:</td>
<td></td>
</tr>
<tr>
<td>Sub-unit:</td>
<td></td>
</tr>
<tr>
<td>Age:</td>
<td></td>
</tr>
<tr>
<td>Age: Cainozoic</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LITHOLOGY AND METAMORPHISM</th>
<th>Age relative to mineralisation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host rock: Gravel</td>
<td></td>
</tr>
<tr>
<td>Subsidiary host rock: Sand, silt and alluvium</td>
<td></td>
</tr>
<tr>
<td>Wall rock:</td>
<td></td>
</tr>
<tr>
<td>Subsidiary wall rock:</td>
<td></td>
</tr>
<tr>
<td>age of metamorphism: Type: Facies:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STRUCTURE</th>
<th>Type: Strike: Dip: Plunge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type: Strike: Dip: Plunge:</td>
<td></td>
</tr>
<tr>
<td>Age relative to mineralisation:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MINERALISATION</th>
<th>Grain size:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal primary ore mineral: Gold</td>
<td></td>
</tr>
<tr>
<td>Other primary ore mineral(s):</td>
<td></td>
</tr>
<tr>
<td>Principal secondary ore mineral:</td>
<td></td>
</tr>
<tr>
<td>Other secondary ore mineral(s):</td>
<td></td>
</tr>
<tr>
<td>Principal gangue mineral: Magnetite</td>
<td></td>
</tr>
<tr>
<td>Other gangue mineral(s): Limonite, Hematite</td>
<td></td>
</tr>
<tr>
<td>Macroscopic ore textures:</td>
<td></td>
</tr>
<tr>
<td>Weathering affect(s):</td>
<td></td>
</tr>
<tr>
<td>Depth of weathering(m):</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WALLROCK ALTERATION</th>
<th>Location Relative to ore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td></td>
</tr>
<tr>
<td>Age relative to ore</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EXPLORATION AND MINING</th>
<th>Age of Mineralisation:Cainozoic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploration methods: Geol. Mapping, Costeaming</td>
<td></td>
</tr>
<tr>
<td>Mining methods: Open pit excavation</td>
<td></td>
</tr>
<tr>
<td>Open-cut workings - Depth(m): 1 Length: 200 Width: 100</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PAST PRODUCTION</th>
<th>Ore(t) Grade(%) Concentrate(t) Contained metal (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period:</td>
<td></td>
</tr>
<tr>
<td>Age:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ORE RESERVES</th>
<th>Tonnes Grade Cut-off grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status:</td>
<td></td>
</tr>
<tr>
<td>Age:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REFERENCES</th>
<th>Age of Mineralisation:Cainozoic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walpole and others, 1968(BMR Bull.82)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REMARKS</th>
</tr>
</thead>
</table>