ANNUAL REPORT EL 6416
FOR YEAR TWO
COOMALIE AIRSTRIP AREA

4 September, 1990 TO 3 September, 1991

BY

OF
EUPENE EXPLORATION ENTERPRISES PTY LTD

FOR
NICRON RESOURCES LIMITED

PINE CREEK SD52-3
Batchelor 5171

Darwin, N.T.
September, 1991

DIRECTORS: Geoffrey Samuel Eupene b sc(Hons) Peter Michael Nicholson b sc(Hons)
TABLE OF CONTENTS

1. INTRODUCTION .. 3
2. TENURE ... 4
3. SUMMARY ... 5
4. CONCLUSIONS ... 6
5. PREVIOUS EXPLORATION ... 7
6. GEOLOGY AND MINERALISATION 9
7. WORK CARRIED OUT AND RESULTS 11
8. EXPENDITURE FOR YEAR TWO 12
9. PROPOSED WORK PROGRAMME AND EXPENDITURE FOR YEAR THREE ... 13
10. REFERENCES .. 14

LIST OF FIGURES

Fig. 1 EL 6416 Location Plan ... 1:1 000 000
Fig. 2. EL 6416 - Geology and Sample Location Plan 1:25 000

LIST OF APPENDICES

Appendix I Analytical Results
1. INTRODUCTION

Exploration Licence 6416 is located 75 kilometres south of Darwin and is 4 to 5 kilometres south of the operating Woodcutters Pb-Zn-Ag mine (see Figure 1). It is accessed by the Stuart Highway, the Batchelor road and various property tracks.

The licence was granted to Nicron Resources Limited and its subsidiaries in 1989. It was taken out to explore for mineralisation in close proximity to the operating mine. The area has not been intensely explored by previous workers and the potential for structurally controlled base metal and gold mineralisation similar to the Woodcutters mine and Flaming Fury anomaly types has not been fully evaluated.

The aim of this report is to discuss the work conducted in the second year of tenure, present results and propose a work programme with an estimated budget for the third year of tenure.
2. TENURE

Exploration Licence 6416 was granted to Nicron Resources Limited (77.08%), Lachlan Zinc NL (12.50%) and Petrocarb Exploration NL (10.42%) on the 4th of September, 1989 for a period of three years. Since the granting, Lachlan Zinc NL and Petrocarb Exploration NL have been incorporated into Nicron Resources Limited which in turn has become a subsidiary of Aztec Mining Company Ltd.

The licence area originally comprised three blocks (10 square kilometres) however one block has subsequently been compulsorily relinquished at the completion of Year Two.
3. SUMMARY

The geology of Exploration Licence 6416 is comprised of carbonaceous mudstone belonging to the Upper Whites Formation and mudstones/siltstones of the Wildman Siltstone with intercalated Acacia Gap Quartzite. The Wildman Siltstone has a characteristic magnetic response resulting from stratiform pyrrhotite mineralisation. Approximately 50% of the licence area is obscured by regolith comprised of Tertiary lateritic duricrust and Quaternary alluvium.

There is no known mineralisation within the licence area but gold and base metal mineralisation associated with discordant veining has been outlined at the "Flaming Fury" Anomaly immediately to the north and northeast of the licence within Wildman Siltstone and Acacia Gap Quartzite. Work conducted by Nicron Resources Limited to date has included literature research, data compilation, detailed stream sediment sampling, rock chip sampling and an airborne magnetics/radiometrics survey. This work has revealed that the "Flaming Fury" mineralisation may trend into the northeastern corner of the licence. It is proposed to follow up the anomalous area with rock chip sampling and soil sampling/costeaming.
4. CONCLUSIONS

1) The geochemically anomalous stream sediments and rock chips in the northeastern corner of the licence area indicate an extension southwards of the "Flaming Fury" mineralisation.

2) There is a characteristic magnetic response in the Wildman Siltstone unit which results from stratiform pyrrhotite mineralisation.

3) Weathered and altered basic rocks mapped as Mount Deane Volcanics by the BMR can possibly be correlated with Zamu Dolerite.
5. PREVIOUS EXPLORATION

After uranium was discovered at Rum Jungle near Batchelor in 1949, the Commonwealth Government, through the BMR, commenced regional exploration for other mineral deposits in the district. A number of geophysical surveys during the mid 1960's were flown over the region and a number of anomalies detected.

In 1975, Magnum Explorations N.L. held EL 739 which covered the northeast block of the present EL 6146. The area was thought to have potential for a "Woodcutters lead-zinc" and uranium mineralisation (Clarke, 1975, 1976).

In 1977 Amax exploration conducted a track etch radon detection survey around the Coomalie Airfield which resulted in an anomaly eleven times background. This was followed up by airborne radiometric and magnetic surveys and ground radiometric surveys. The best airborne radiometric anomaly occurred around the Coomalie Airfield. Amax then proceeded to drill several rotary percussion holes on one fence line near Coomalie Airfield. These holes were 15-25m deep and all were gamma probed. The top and bottom hole samples were collected and assayed for Cu, Pb, Zn, Ag and U if there was anomalous radioactivity. No anomalous geochemical values were obtained. One hole drilled on a track etch anomaly of the Coomalie Airfield detected carbonaceous mudstone from 19m to 25m. The hole was not anomalous in uranium or thorium and it was thought that the near surface uranium anomalies were due to enrichment of the iron oxides. Amax then recommended the area to be relinquished (Wyatt & Brahem, 1977).

In 1976 and 1977 Geopeko explored the area (EL 1058) for Woodcutters base metal style mineralisation. Outcrop sampling and a general geological reconnaissance was carried out but no anomalous values were obtained (Brown, 1978).

In 1979 Uranerz Australia Pty Ltd began exploring for vein-type uranium deposits of the Rum Jungle/Alligator River type associated with the Coomalie/Whites Formation contact (EL 2160). The area was geologically mapped and a hand held scintillometer was carried. Several radiometric anomalies associated with laterite and "spot highs" near quartz-hematitic veins were detected and thought responsible for most of the BMR airborne anomalies. Other anomalies were interpreted to result from an outcrop/alluvium
contrast.

Samples taken were analysed for U_3O_8 and Th, however only minor enrichment was detected hence the overall prospectivity of the licence was considered low and the licence was allowed to lapse.

One sample from a small shear with malachite staining assayed up to 6350 ppm Cu (Uranerz Aust. Pty Ltd, 1981).

In October, 1982 Geotrex Pty Ltd conducted combined airborne input electromagnetic and magnetic surveys for Mineral Reserves Group Inc. (EL 2262) with the aim of delineating carbonaceous units which could be associated with uranium mineralisation. One small anomaly in the northwest corner of the present EL 6416 was detected and associated with a linear trend. It was concluded that this anomaly was probably due to cultural features or alternatively conductive bedrock. Low priority was given to it due to its weak conductivity. An extensive highly conductive source associated with a broad large amplitude magnetic anomaly was also detected and corresponds mainly with the Wildman Siltstone (Laporte, 1982).

The northeast area of El 6146 was explored for gold mineralisation in 1987 and 1988 by the Tanami Joint Venture in EL 4868 (Hickey, 1988). A BCL stream sediment sampling programme failed to define any areas with anomalous gold.
6. GEOLOGY AND MINERALISATION

EL 6416 lies on the northeastern margin of the Archaean Rum Jungle and Waterhouse basement complexes. These are overlain by Lower Proterozoic clastic and dolomitic units of the Namoona Group, Crater Formation and Coomalie Dolomite; mudstone and calcareous mudstones of the Whites Formation and mudstone with interbedded quartzite of the Wildman Siltstone. The outcropping geology within EL 6416 consists of dominantly carbonaceous mudstone, siltstone and minor greywacke of the Wildman Siltstone with intercalated Acacia Gap Quartzite forming prominent ridges. The Whites and Wildman Siltstone Formations have distinctive sills of fresh Zamu Dolerite. In addition a highly weathered, possibly altered, mafic rock unit designated as Mount Deane Volcanics by the BMR has been mapped and can possibly be correlated with Zamu Dolerite. The sediments dip steeply to the east and strike broadly north-south. Approximately 50% of the licence area is obscured by a regolith comprised of Tertiary lateritic duricrust and Quaternary alluvium (see Figure 2).

The structure of the Rum Jungle/Woodcutters area is dominated by a number of domes centred with, or underlain by, basement highs. Two main periods of deformation can be distinguished. The first main deformation event is restricted to the Early Proterozoic sedimentary sequence and is evidenced by the following elements; NW-SE normal faults, N-S strike-slip faults, doming, N to NNE folds, bedding parallel shears and a slaty cleavage. The second deformation event is characterised by NE-SW faulting (Giants Reef Fault) with associated fault splays and a conjugate shear direction oriented NW-SE.

Known uranium, gold and base metal mineralisation in the Woodcutters/Rum Jungle Mineral Field occurs as stratiform ore or is concentrated in structural zones predominantly within the lower section of Whites Formation and the upper portion of underlying Coomalie Dolomite.

Gold and base metal mineralisation has been outlined immediately to the north and northeast of EL 6416 at the "Flaming Fury" Anomaly. The mineralisation located to date is confined to a 200 metre wide zone in the vicinity of the interpreted boundary between Whites Formation and Wildman Siltstone. Anomalous Au, Pb, Zn and Sb have been identified along this zone.
From diamond drill core information, the mineralisation appears to be associated with bedded pyrite and arsenopyrite and/or thin quartz + pyrite ± carbonate ± arsenopyrite ± sphalerite ± galena ± chalcopyrite veins. The veins are most commonly discordant, tending to follow cleavage, but sometimes are conformable.
7. WORK CARRIED OUT AND RESULTS

A detailed stream sediment sampling programme was completed during the second year of tenure in conjunction with geological mapping and rock chipping traverses. A total of nine -40 mesh stream sediment samples (sample numbers 2001 - 2009) and five rock chip samples (sample numbers 2051 - 2055) were collected during this programme.

The stream sediment samples were analysed for Cu, Pb, Zn (AAS), As (hydride generation - AAS finish) and Au (fire assay - AAS finish). The analyses results for Cu, Pb and Zn were background only (see Appendix I for results) and demonstrated little geochemical character. Elevated As (540 ppm max.) and Au (0.033 ppm max.) values were obtained from samples collected in the northeastern portion of the licence (see Figure 2 for sample locations). These elevated levels occur in streams draining outcropping mudstones, siltstones and quartzite of the Lower Wildman Siltstone and are interpreted to indicate a continuation southwards of the "Flaming Fury" Anomaly.

The rock chip samples were analysed for the same suite of elements as for the stream sediments, with a higher detection limit for As (AAS) being the only difference in methods. In general, the results were background for all elements with the only exception being sample number 2054 which analysed 5600 ppm As and 0.029 ppm Au. The rock chip samples were generally strongly ferruginous (iron stained) and weakly gossanous zones in the outcropping sediments.

The results of a detailed airborne magnetic and radiometric survey flown in August, 1990 which covered the northern portion of the licence were image processed and interpreted as part of an overall compilation and interpretation programme of the Rum Jungle/Woodcutters area that was completed by the Woodcutters geological staff in early 1991. This work represented the culmination of several years' data collection and has resulted in a far better understanding of the geology, structure, mineralisation types and geophysical characteristics in the area. These new interpretations have generated a number of target areas which are currently being investigated this field season and as a result a wide spaced low level airborne magnetics and radiometrics survey has recently been completed over the remainder of EL 6416.
8. EXPENDITURE FOR YEAR TWO

Overall expenditure on the licence area for Year Two is as follows:

Geological Consultants (includes field assistants costs, wages, vehicle hire) $2,450
Analyses $280
Airborne magnetics/radiometrics survey and processing $1,350
Image processing and interpretation $540
Drafting $180
Administration (15%) $680

TOTAL: $5,480

The Expenditure Covenant for Year Two of tenure was $5,000.
9. PROPOSED WORK PROGRAMME AND EXPENDITURE FOR YEAR THREE

The proposed work programme for Year Three of tenure is as follows:-

1) Image processing and interpretation of the recent airborne magnetics and radiometrics data.

2) Detailed rock chip sampling in the vicinity of anomalous stream sediment samples.

3) Follow-up soil sampling and costeaining if warranted.

The estimated expenditure for this programme of work is $4,000.
10. REFERENCES

Clarke, 1975. Annual Report EL 739. _NT Department of Mines and Energy Library, Open File Record CR75/063._

APPENDIX I

ANALYTICAL RESULTS
ANALYTICAL REPORT NO. 115000.21.04935

WINDING NO.

ORDER No: SSF4052B

DATE RECEIVED: 11/06/91

PROJECT

RESULTS REQUIRED: ASAP

INVOICE TO:

WOODCUTTERS JOINT VENTURE
PRIVATE MAIL BAG 60
WINNELLIE NT 0821

No. OF RESULTS

DATE REPORTED

No. OF COPIES

TOTAL No. OF SAMPLES

<table>
<thead>
<tr>
<th>SAMPLE NUMBERS</th>
<th>SAMPLE DESCRIPTION</th>
<th>ELEMENT/METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001/09,1117</td>
<td>SS Prep : GP018</td>
<td>Au,Au(R),Au(S)/GS309</td>
</tr>
<tr>
<td>2001/09,1117</td>
<td>SS Prep :</td>
<td>Cu,Pb,Zn,As/BA140,As/BA114</td>
</tr>
<tr>
<td>2001/55</td>
<td>RD Prep : GP029</td>
<td>Au,Au(R),Au(S)/GS309</td>
</tr>
<tr>
<td>2001/55</td>
<td>RD Prep :</td>
<td>Cu,Pb,Zn,As/BA101</td>
</tr>
</tbody>
</table>

RESULTS

IAN BUTLER
WOODCUTTERS JOINT VENTURE
TO
PRIVATE MAIL BAG 60
WINNELLIE N.T. 0821

RESULTS

Mr. Andrew Grove
Woodcutters Joint Venture
Private Mail Bag 60
WINNELLIE
N.T. 0821

REMARKS
<table>
<thead>
<tr>
<th>TUBE No.</th>
<th>SAMPLE No.</th>
<th>Cu</th>
<th>Cu</th>
<th>Zn</th>
<th>Zn</th>
<th>As</th>
<th>As</th>
<th>As</th>
<th>As</th>
<th>Au</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2001</td>
<td>23</td>
<td>-</td>
<td>19</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><0.008</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>2002</td>
<td>18</td>
<td>-</td>
<td>11</td>
<td>-</td>
<td>-</td>
<td>78</td>
<td>-</td>
<td><0.008</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2003</td>
<td>24</td>
<td>-</td>
<td>21</td>
<td>-</td>
<td>-</td>
<td>91</td>
<td>-</td>
<td><0.008</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2004</td>
<td>28</td>
<td>-</td>
<td>67</td>
<td>-</td>
<td>-</td>
<td>>100</td>
<td>-</td>
<td>-</td>
<td>0.014</td>
<td>41</td>
</tr>
<tr>
<td>5</td>
<td>2005</td>
<td>15</td>
<td>-</td>
<td>25</td>
<td>-</td>
<td>-</td>
<td>23</td>
<td>-</td>
<td><0.008</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2006</td>
<td>7</td>
<td>-</td>
<td>14</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td><0.008</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2007</td>
<td>17</td>
<td>-</td>
<td>18</td>
<td>-</td>
<td>-</td>
<td>15</td>
<td>-</td>
<td><0.008</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2008</td>
<td>37</td>
<td>-</td>
<td>60</td>
<td>-</td>
<td>-</td>
<td>61</td>
<td>-</td>
<td><0.008</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2009</td>
<td>10</td>
<td>-</td>
<td>24</td>
<td>-</td>
<td>-</td>
<td>53</td>
<td>-</td>
<td>0.033</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2051</td>
<td>-</td>
<td>26</td>
<td>-</td>
<td>40</td>
<td>-</td>
<td>-</td>
<td><100</td>
<td><0.008</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2052</td>
<td>-</td>
<td>40</td>
<td>-</td>
<td>148</td>
<td>-</td>
<td>160</td>
<td>0.010</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2053</td>
<td>-</td>
<td><5</td>
<td>-</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td><100</td>
<td><0.008</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2054</td>
<td>-</td>
<td>81</td>
<td>-</td>
<td>67</td>
<td>-</td>
<td>5600</td>
<td>0.029</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2055</td>
<td>-</td>
<td>180</td>
<td>-</td>
<td>170</td>
<td>-</td>
<td>470</td>
<td><0.008</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| DETECTION | 5 | 5 | 5 | 5 | 100 | 1 | 100 | 0.008 | - | 5 |

<table>
<thead>
<tr>
<th>UNITS</th>
<th>PPM</th>
<th>PPM</th>
<th>PPM</th>
<th>PPM</th>
<th>PPM</th>
<th>PPM</th>
<th>PPM</th>
<th>ppm</th>
<th>PPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>METHOD</td>
<td>GA140</td>
<td>GA101</td>
<td>GA140</td>
<td>GA101</td>
<td>GA140</td>
<td>GA140</td>
<td>GA114</td>
<td>GA101</td>
<td>GB309</td>
</tr>
</tbody>
</table>

Results in ppm unless otherwise specified.
X = element not determined.

AUTHORIZED OFFICER: D. van Blomme.
<table>
<thead>
<tr>
<th>TUBE No.</th>
<th>SAMPLE No.</th>
<th>Pb</th>
<th>Au(III)</th>
<th>Au(II)</th>
<th>COF</th>
<th>SHF</th>
<th>DIF</th>
<th>SRF</th>
<th>PPR</th>
<th>MRR</th>
<th>HRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2051</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2052</td>
<td>108</td>
<td></td>
<td>0.012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2053</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2054</td>
<td>271</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2055</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>DETECTION</td>
<td>5</td>
<td>0.008</td>
<td>0.008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>UNITS</td>
<td>PPM</td>
<td>ppm</td>
<td>ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>METHOD</td>
<td>6A101</td>
<td>66309</td>
<td>66309</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results in ppm unless otherwise specified.
T = element present, but concentration too low to measure.
X = element concentration is below detection limit.
- = element not determined.