

SUMMARY OF PAST EXPLORATION - LOST CHINAMAN

MCNs 1661, 1663, 1665-1667

1. Introduction

This group of titles is located between the Annie and Charlotte Rivers at the head of Bynoe Harbour, 35 kilometres south-south-west of Darwin. As much of the intervening area between Darwin and the prospect is covered by the waters of Port Darwin, the distance from Darwin to the titles by road is about 95 kilometres. The route follows the Stuart Highway for 45 kilometres, the Cox Peninsular/Bynoe Road for 36 kilometres and the Finnis River Station Road for 9.5 kilometres. A bush track then leads for 4-5 kilometres to the prospect area.

The northern part of the titles covers a flat lateritised surface about 20 metres above sea level. The top of this surface is characterised by a 1-3 metre thick sheet of ferricrete which obscures much of the basement rocks. The mineral claims in the south cover a mildly undulating area along the side of the Annie River which is tidal where it passes through the titles.

The Lost Chinaman prospect is for the most part contained within MCNs 391 and 392 which abut the titles presently being reviewed to the south and west. It is one of the western-most tin prospects in a 15 kilometre wide belt of more than 90 tin prospects and mines which stretches in a north-north-east trending direction over a distance of 75 kilometres from Mount Tolmer in the south to Kings Table (near Port Darwin) in the north. Despite the number of mines in the area the recorded cumulative production between 1894 and 1985 has been only 615 tonnes of tin and 15 tonnes of tantalum. The mines have also produced 17.4 kilograms of gold.

2. Geological Setting

According to the published geological map of the area, the Lost Chinaman tenements are for the most part covered by a veneer of laterite and unconsolidated sand and gravel which are related to the Tertiary land surface. Basement rocks are only exposed near the Annie River mainly within MCNs 391 and 392. These consist mainly of pink, red and brown mica schists which contain porphyroblasts of cordierite or andalusite up to eight millimetres across. These are assigned to the Early Proterozoic Burrell Creek Formation of the Finnis River Group though the metamorphic grade is more consistent with them being assigned to the Welltree Metamorphics which are considered to be metamorphic equivalents of the Burrell Creek Formation. There is not sufficient exposure to determine the structural geometry of these basement metasediments but there is evidence in the form of a contorted quartz vein to suggest that more than one episode of penetrative structural deformation have affected these rocks.

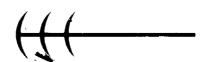
The nearest exposures of granite are 6-7 kilometres to the north and concealed granite is interpreted to be present a similar distance away to the south-west. These are assigned to the Two Sisters Granite of the late Early Proterozoic age (ie. syn-to post-orogenic).

As stated above, the titles lie on the western edge of a 75 x 15 kilometre belt of tintantalum deposits. This mineralisation is associated with veins and lenticular bodies of quartz-feldspar-muscovite pegmatites which exhibit sharp intrusive contacts with the host metasediments. Within the titles, and especially within MCNs 391 and 392, there is a large body of quartz-muscovite (-feldspar) pegmatite (or greisen) several hundred metres long and over a hundred metres wide. This contains accessory tourmaline, cassiterite and tantalite. Large blows of nearly massive quartz are scattered through the pegmatite. These appear to be silica-rich variations of the pegmatite rather than later quartz reefs as has been suggested by some explorers. Much of the mica and feldspar has been converted to kaolinite, probably by weathering processes.

3. Mineralisation Style/Exploration Model

The pegmatites which dominate the area of the titles constitute the prime target of economic interest. Attention to date has been focussed on the location of concentrations of cassiterite and/or tantalite in the pegmatite and despite the results to date this still constitutes the primary target.

In recent years, some attention has been directed towards the gold potential of the pegmatites, or more precisely, the contact areas with the metasediments. The basis for this model is unclear though it receives some support from the historical production figures. Unfortunately there is no record of whether the historical gold production was from hard rock or alluvial operations.

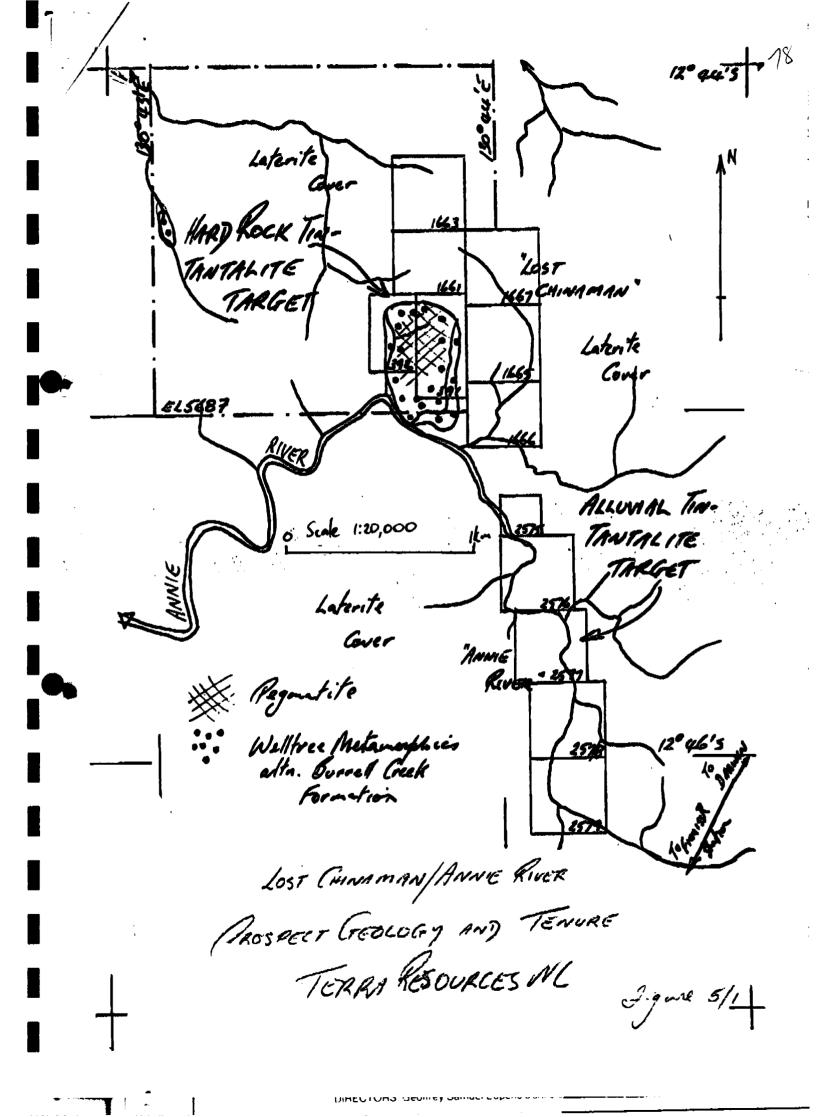

It is possible that hard rock gold mineralisation, if present, may be unrelated to the pegmatites and may instead be related to earlier quartz-vein development similar to the contorted vein observed in the basement metasediments at one site. It is also possible that quartz-stockwork-type vein mineralisation may be present in the area though this seems unlikely given the vast expanse of non-auriferous sediments of the Burrell Creek Formation to the east of Lost Chinaman.

4. Previous Exploration and Mining History

It is not clear from the available literature whether there has in fact been any actual production from Lost Chinaman though there is evidence of early pitting operations and of milling activity on the banks of the Annie River in the form of old foundations, stamp battery remains, water storage dams and tailings. Extensive recent costeaning also makes it difficult to identify any early mining activity.

Documented exploration of the area is restricted to the period since 1987 when UODC joined Kakadu initially to explore MCNs 391 and 392 and later the surrounding area (EL5687 and EL5664). In fact because of the initial disappointing results from the mineral claims UODC withdrew from the venture shortly after the licences were granted.

UODC excavated a total of seven costeans (approximately 1000 metres) across the pegmatite zone in MCNs 391 and 392 and collected 203 channel samples each over intervals of 5 metres. These were analysed for tin, tantalum, yttrium, lanthanum, cerium, neodymium, rerbium and thorium. The only significant result was 0.75% tin over one sample interval. Only four other tin values exceeded 100 ppm (maximum 290 ppm). The high tin value was accompanied by 70 ppm tantalum which was the only result above 25 ppm. There were no economically significant results for the


other elements. Kakadu resampled this costean in 1988 but obtained only 90-95 ppm tin over the high grade zone identified by UODC. They did achieve results of 300-400 ppm tin in the adjacent samples where UODC samples had previously assayed 200-290 ppm tin. This highlighted the erratic character of the cassiterite distribution in the pegmatite.

Kakadu also sampled the alluvial gravels in the Annie River in the area now covered by MCNs 2575-2579. Encouraging levels of black concentrate, which included cassiterite and tantalite were panned but the actual grades of tin and tantalite in the gravels was not reported. Traces of gold were identified in two samples.

In 1990, Kakadu directed their attention to the potential for gold and conducted rock-chip sampling and BLEG soil sampling in the area of the present titles. All of the rock chips assayed less than 0.01 g/t gold. The soil samples, which were collected from colluvial debris on top of the laterite surface, returned a result of 87 ppb gold (among 9 samples 0.6-4.1 ppb gold) on a traverse in the north-east corner of EL5687 and returned consecutive results of 13.5, 7.9, 11.3, 14.0, 12.0 and 8.9 ppb gold over a 250 metre traverse to the south of the Annie River (area now relinquished).

These results appeared anomalous and were followed up in 1991 by wide-spaced systematic soil sampling over part of the current titles. Unfortunately on this occasion the samples were analysed by a fire assay/AAS technique (10 ppb detection limit) and the results are not directly comparable with those of the earlier survey. In addition, the later survey did not cover the initial traverse in the north-east of EL5687, and the area south of the Annie River returned results below the detection limit in the second survey. An anomalous gold zone (1200 x 200 metres) was defined along the eastern margin of EL5687 through the area of the mineral claims. Results included 0.14, 0.17, 0.71, 0.83 and 0.98 g/t (ie. ppm) gold which are anomalous. It does appear that several of these anomalous results are from *in situ* soil over exposed basement whereas the bulk of the survey was over laterite and the significance of the data is therefore questionable.

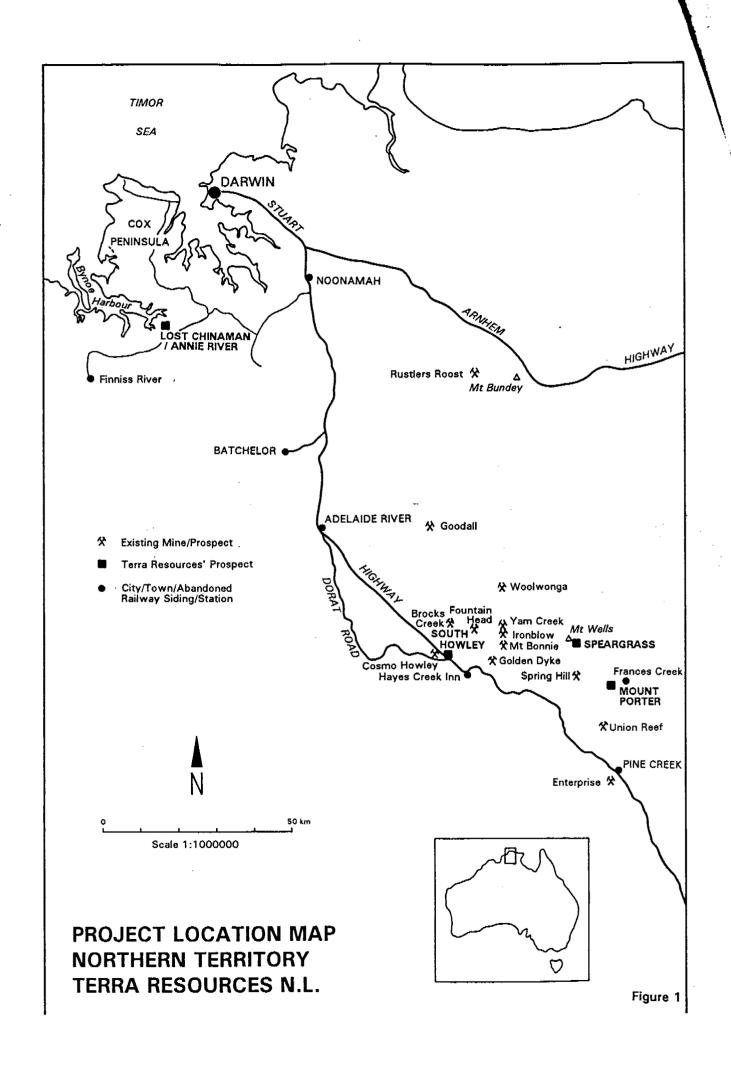
(Prepared by John Goulevitch BSc (Hons) MSc of Eupene Exploration Enterprises Pty Ltd, 15th September, 1993)

SUMMARY OF PAST EXPLORATION - LOST CHINAMAN

MCNs 1661, 1663, 1665-1667

1. Introduction

This group of titles is located between the Annie and Charlotte Rivers at the head of Bynoe Harbour, 35 kilometres south-south-west of Darwin. As much of the intervening area between Darwin and the prospect is covered by the waters of Port Darwin, the distance from Darwin to the titles by road is about 95 kilometres. The route follows the Stuart Highway for 45 kilometres, the Cox Peninsular/Bynoe Road for 36 kilometres and the Finnis River Station Road for 9.5 kilometres. A bush track then leads for 4-5 kilometres to the prospect area.


The northern part of the titles covers a flat lateritised surface about 20 metres above sea level. The top of this surface is characterised by a 1-3 metre thick sheet of ferricrete which obscures much of the basement rocks. The mineral claims in the south cover a mildly undulating area along the side of the Annie River which is tidal where it passes through the titles.

The Lost Chinaman prospect is for the most part contained within MCNs 391 and 392 which abut the titles presently being reviewed to the south and west. It is one of the western-most tin prospects in a 15 kilometre wide belt of more than 90 tin prospects and mines which stretches in a north-north-east trending direction over a distance of 75 kilometres from Mount Tolmer in the south to Kings Table (near Port Darwin) in the north. Despite the number of mines in the area the recorded cumulative production between 1894 and 1985 has been only 615 tonnes of tin and 15 tonnes of tantalum. The mines have also produced 17.4 kilograms of gold.

2. Geological Setting

According to the published geological map of the area, the Lost Chinaman tenements are for the most part covered by a veneer of laterite and unconsolidated sand and gravel which are related to the Tertiary land surface. Basement rocks are only exposed near the Annie River mainly within MCNs 391 and 392. These consist mainly of pink, red and brown mica schists which contain porphyroblasts of cordierite or andalusite up to eight millimetres across. These are assigned to the Early Proterozoic Burrell Creek Formation of the Finnis River Group though the metamorphic grade is more consistent with them being assigned to the Welltree Metamorphics which are considered to be metamorphic equivalents of the Burrell Creek Formation. There is not sufficient exposure to determine the structural geometry of these basement metasediments but there is evidence in the form of a contorted quartz vein to suggest that more than one episode of penetrative structural deformation have affected these rocks.

The nearest exposures of granite are 6-7 kilometres to the north and concealed granite is interpreted to be present a similar distance away to the south-west. These are assigned to the Two Sisters Granite of the late Early Proterozoic age (ie. syn- to post-orogenic).

As stated above, the titles lie on the western edge of a 75 x 15 kilometre belt of tintantalum deposits. This mineralisation is associated with veins and lenticular bodies of quartz-feldspar-muscovite pegmatites which exhibit sharp intrusive contacts with the host metasediments. Within the titles, and especially within MCNs 391 and 392, there is a large body of quartz-muscovite (-feldspar) pegmatite (or greisen) several hundred metres long and over a hundred metres wide. This contains accessory tourmaline, cassiterite and tantalite. Large blows of nearly massive quartz are scattered through the pegmatite. These appear to be silica-rich variations of the pegmatite rather than later quartz reefs as has been suggested by some explorers. Much of the mica and feldspar has been converted to kaolinite, probably by weathering processes.

3. Mineralisation Style/Exploration Model

The pegmatites which dominate the area of the titles constitute the prime target of economic interest. Attention to date has been focussed on the location of concentrations of cassiterite and/or tantalite in the pegmatite and despite the results to date this still constitutes the primary target.

In recent years, some attention has been directed towards the gold potential of the pegmatites, or more precisely, the contact areas with the metasediments. The basis for this model is unclear though it receives some support from the historical production figures. Unfortunately there is no record of whether the historical gold production was from hard rock or alluvial operations.

It is possible that hard rock gold mineralisation, if present, may be unrelated to the pegmatites and may instead be related to earlier quartz-vein development similar to the contorted vein observed in the basement metasediments at one site. It is also possible that quartz-stockwork-type vein mineralisation may be present in the area though this seems unlikely given the vast expanse of non-auriferous sediments of the Burrell Creek Formation to the east of Lost Chinaman.

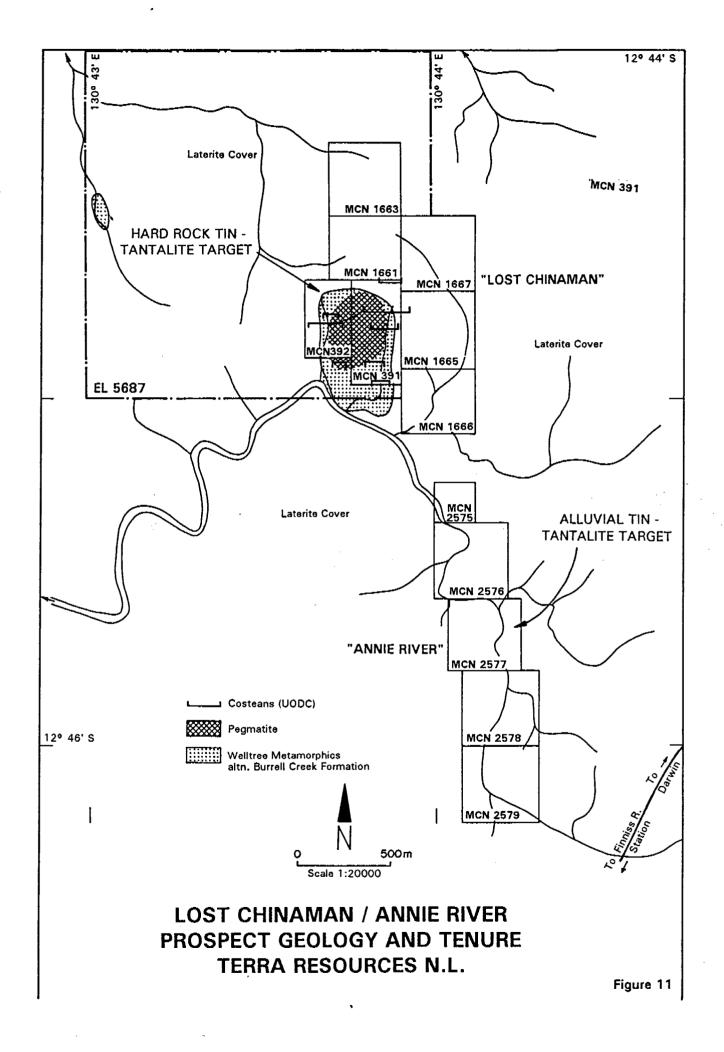
4(A) Previous Exploration and Mining History

It is not clear from the available literature whether there has in fact been any actual production from Lost Chinaman though there is evidence of early pitting operations and of milling activity on the banks of the Annie River in the form of old foundations, stamp battery remains, water storage dams and tailings. Extensive recent costeaning also makes it difficult to identify any early mining activity.

Documented exploration of the area is restricted to the period since 1987 when UODC joined Kakadu initially to explore MCNs 391 and 392 and later the surrounding area (EL5687 and EL5664). In fact because of the initial disappointing results from the mineral claims UODC withdrew from the venture shortly after the licences were granted.

UODC excavated a total of seven costeans (approximately 1000 metres) across the pegmatite zone in MCNs 391 and 392 and collected 203 channel samples each over intervals of 5 metres. These were analysed for tin, tantalum, yttrium, lanthanum, cerium, neodymium, terbium and thorium. The only significant result was 0.75% tin over one sample interval. Only four other tin values exceeded 100 ppm (maximum 290 ppm). The high tin value was accompanied by 70 ppm tantalum which was the only result above 25 ppm. There were no economically significant results for the

h(4) Con't


other elements. Kakadu resampled this costean in 1988 but obtained only 90-95 ppm tin over the high grade zone identified by UODC. They did achieve results of 300-400 ppm tin in the adjacent samples where UODC samples had previously assayed 200-290 ppm tin. This highlighted the erratic character of the cassiterite distribution in the pegmatite.

Kakadu also sampled the alluvial gravels in the Annie River in the area now covered by MCNs 2575-2579. Encouraging levels of black concentrate, which included cassiterite and tantalite were panned but the actual grades of tin and tantalite in the gravels was not reported. Traces of gold were identified in two samples.

In 1990, Kakadu directed their attention to the potential for gold and conducted rock-chip sampling and BLEG soil sampling in the area of the present titles. All of the rock chips assayed less than 0.01 g/t gold. The soil samples, which were collected from colluvial debris on top of the laterite surface, returned a result of 87 ppb gold (among 9 samples 0.6-4.1 ppb gold) on a traverse in the north-east corner of EL5687 and returned consecutive results of 13.5, 7.9, 11.3, 14.0, 12.0 and 8.9 ppb gold over a 250 metre traverse to the south of the Annie River (area now relinquished).

These results appeared anomalous and were followed up in 1991 by wide-spaced systematic soil sampling over part of the current titles. Unfortunately on this occasion the samples were analysed by a fire assay/AAS technique (10 ppb detection limit) and the results are not directly comparable with those of the earlier survey. In addition, the later survey did not cover the initial traverse in the north-east of EL5687, and the area south of the Annie River returned results below the detection limit in the second survey. An anomalous gold zone (1200 x 200 metres) was defined along the eastern margin of EL5687 through the area of the mineral claims. Results included 0.14, 0.17, 0.71, 0.83 and 0.98 g/t (ie. ppm) gold which are anomalous. It does appear that several of these anomalous results are from *in situ* soil over exposed basement whereas the bulk of the survey was over laterite and the significance of the data is therefore questionable.

(Prepared by John Goulevitch BSc (Hons) MSc of Eupene Exploration Enterprises Pty Ltd., 15th September, 1993)

(B) .. Exploration Activities

During the first year of the renewal, exploration work comprised air photo mapping, reconnaissance sampling (including pan concentrate surveys), and petrological studies. A number of pan concentrates from trap sites on the small tributaries were found to contain moderate quantities of cassiterite and tantalite, and occasionally gold.

Detailed work on the Lost Chinaman, which included trenching and channel sampling, gave conflicting results for tin and tantalum, and negative results for rare earth metals.

An initial costeaning programme, involving a total of seven costeans, was completed over the two mineral lease areas. The costeans were channel sampled using a 5 metre sampling intervals and all samples (total 203) were analyzed by AMDEL for Sn, Ta, Nb, Y, La, Ce, Nd, Tb and Th using XRF techniques.

Prior to costeaning, an east-west oriented grid was established using a 100 metre line spacing and the outcrop geology of the area was recorded.

Analytical results for tantalum, tin and yttrium are shown in Appendix 1. Generally the results obtained were disappointing.

In the second year of the Licence exploration work included a review of all relevant data, and field reconnaissance to map out the main trend and extent of the pegmatite intrusive zone.

During the 1990/91 season activities were re-directed towards evaluationg the possible gold potential of the area, bearing in mind records of alluvial gold, and of gold values in the contact zones of pegmatites.

Enlarged aerial photographs at a scale of about 1:6,000 were acquired covering the area of interest, and these were used to prepare a photogeological base map, and for location during traversing in the field. Geological traversing was carried out mainly along the laterite break-aways at the edges of the mangroves, since this is the best situation to find outcrop in this type of terrain. Rock chip samples were taken of favourable looking quartz or ironstone and were analysed for gold by fire assay.

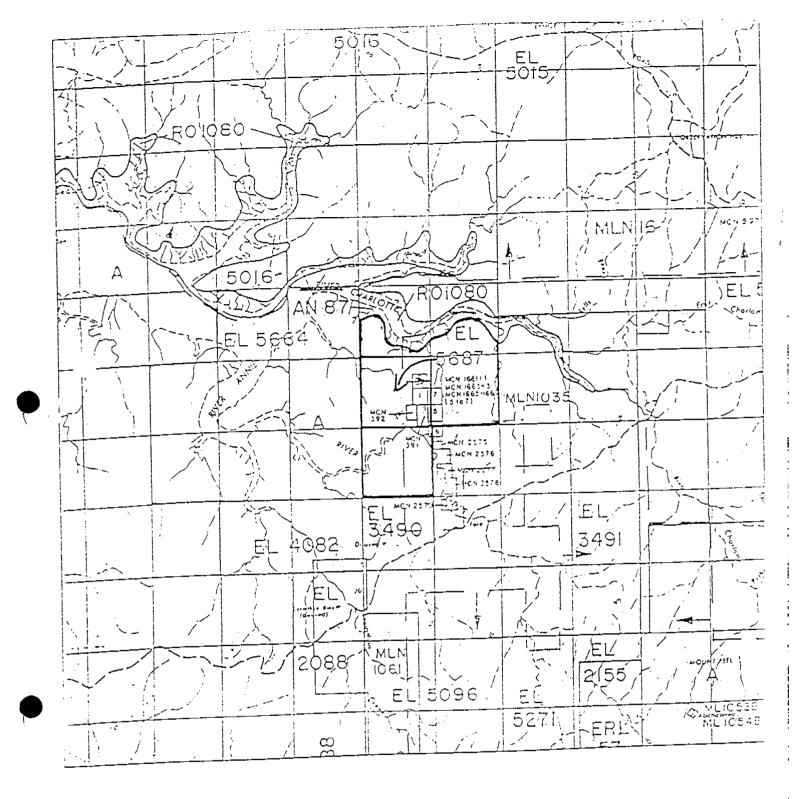
Additionally, two east to west traverse of soil samples were run across the laterite interfluves in areas possibly underlain by the zone of pegmatite injection. Samples consisting of about 500 gm of minus 2 mm material were collected at 50 m spacings along the traverse lines. Soil samples were assayed for gold by bulk cyanide leach.

4(B)

Samples locations are shown in Figure , and analytical results are given in Appendix II.

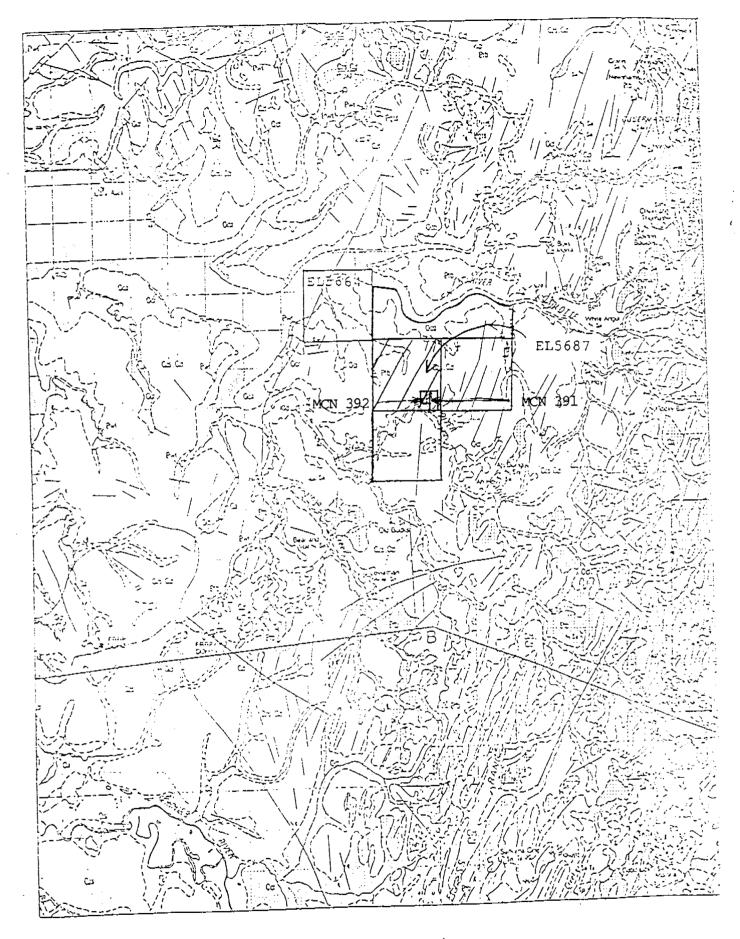
Cont

The results of rock chip sampling were negative, all reported values being below the detection limit of 0.01 g/t Δu .

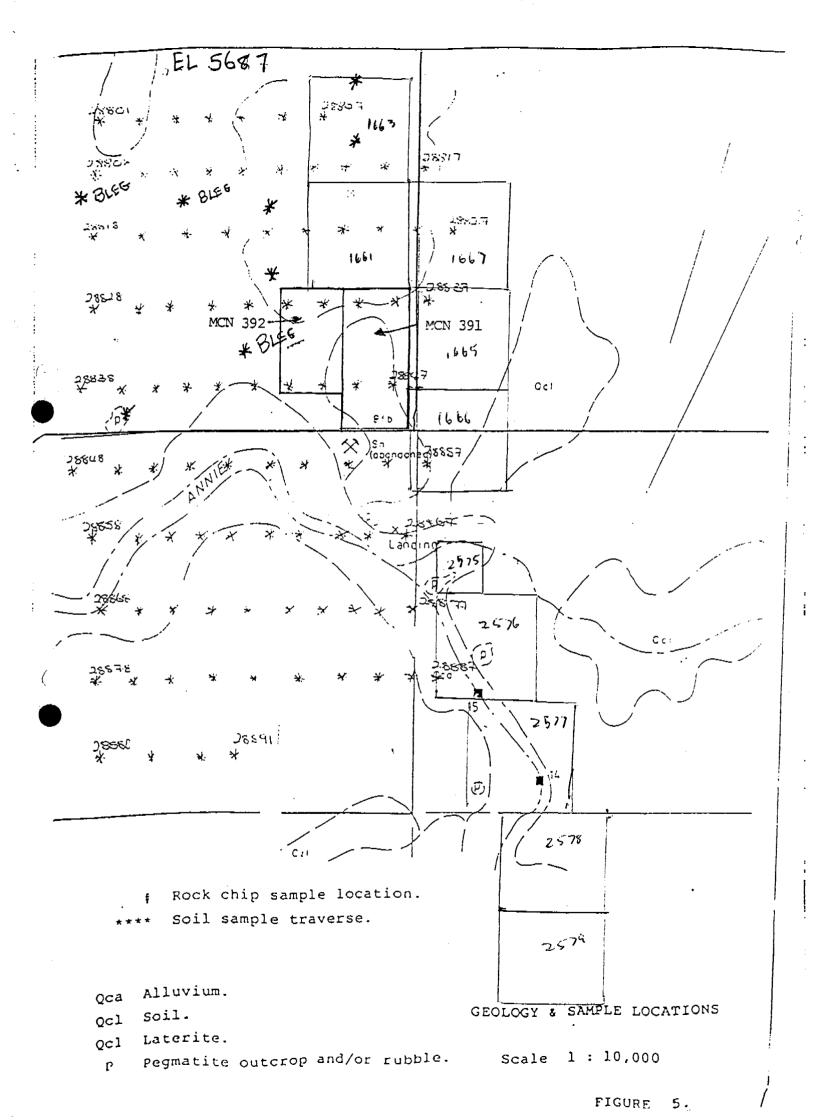

The soil samples reported values in the range 0.15 to 87 ppb Au. In this context values exceeding 10 ppb are regarded as probably anomalous.

A secondary programme of rock chip sampling and soil sampling for gold has been undertaken over the general area. Ten east-west traverses of soil and rock sampling were run across the Exploration Licence 5687 and included MCN 391 - 392. Samples consisted of approximately 1 kg of material collected at 150 metre samples were assayed for gold by 50 gm fire assay. Samples locations are shown in Figure 5 and analytical results in Appendix I. Anomalous values in soils appear to confirm that trace gold mineralisation is associated with the pegmatites. However the economic significance of the results is unknown. They need to be regarded with caution since the sampled material was essentially colluvial debris overlying disintegrated laterite.

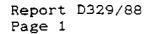
References


- CHAN K M, GOLDNER P T, 1987. Evaluation of the Lost Chinaman Tantalum-Tin Prospect, Northern Territory. Unpublished report by Peter Goldner & Associates.
- GIACOMO S M, 1989. Exploration Licence 5687, Annual Report for First Year, Lost Chinaman Project. Unpublished, Kakadu Resources Ltd.
- HOLDEN, D, 1990. Annual Report for Exploration Licence 5687, Bynoe Area. Unpublished report, Kakadu Resources Ltd.
- PIETSCH B A, 1986. Explanatory Notes Bynoe 5077. Northern Territory Geological Survey, Darwin NT.
- ORRIDGE G R, 1991. Annual Report for EL 5687 Annie River near Bynoe Harbour NT. Unpublished report, Kakadu Resources Ltd.

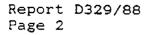
TERRAGO



TENEMENT MAP


scale 1 : 100,000

Intertidal marine alluvium. QUATERNARY Qct Beach sands and cheniers. Qca REGIONAL GEOLOGY Soil. CAINOZOIC Czs Laterite and ferricrete. 1 : 100,000 Czl Bathurst Island Formation. MESOZOIC Pgts Two Sisters Granite. Kld PROTEROZOIC Welltree Metamorphics. Pwt Pfb Burrell Creek Formation.

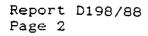

APPENDIX I

SAMPLE	C∈	La	Y	Sn	Τâ	ИÞ
MARK	ppm	₽₽m	ppm	ppm	ppm	
40305	50	75	15	55	<10	10
40313	60	70	25	90	<10	15
40315	60	70	20	10	<10	10
40316	65	60	20	15	10	10
40319	<20	25	15	15	<10	6
40320	55	70	20	15	<10	8
40337	<20	20	20	35	<10	15
40339	75	65	30	40	10	10
40341	80	90	20	120	15	35
40344	90	80	35	10	<10	10
40345	85	70	30	8	<10	10
40346	75	65	30	10	‹10	10
40348	60	60	25	60	<10	10
40376	35	70	30	10	<10	10
40377	225	160	60	4	<10	10
40379	75	95	45	4	<10	10
40380	75	75	25	4	<10	10
40382	25	40	15	15	<10	10
40388	25	35	25	10	10	10
40390	∢20	55	20	10	<10	8
40396	20	30	15	15	<10	8
40397	∢20	45	15	15	< 10	10
40398	45	30	20	6	< 10	8
40400	60	50	15	10	< 10	೪
40401	50	55	20	10	<10	10
40403	90	65	30	10	< 10	15
36491	30	30	25	. 15	<10	10
36493	30	40	25	10	∢10	10
36495	<20	20	8	4	<10	6
36497	∢20	< 20	15	4	<10	10
Detn Limit	(20)	(20)	(4)	(4)	(10)	(4)

METHOD : X3

SAMPLE MARK	Tb ppb	Nd ppm
36491	400	23
36493	400	27
36495	200	10_
36497	140	7.7
40305	400	29
40313	560	32
40315	540	34
40316	540	35
40319	240	17
40320	500	36
40337	240	15
40339	600	32
40341	440	29
40344	680	38
40345	640	38
40346	420	19
40348	900	37
40376	780	36
40377	1500	82
40379	980	50
40380	620	38
40382	280	17
40388	500	28
40390	340	21
40396	300	18
40397	300	17
40398	460	28
40400	200	13
40401	380	28
40403	700	48

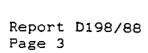
METHOD : Acid digest/ICP-MS



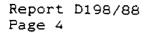
Report D198/88 Page 1

ANALYSIS

SAMPLE MARK	Tb	Nd	
	ppb 	 ppm	
40301	280	17	
40302	240	13	
40303	200	8.0	
40304	300	18	
40306	380	24	
40307 40308	240	15	
40309	180	11	
40310	40	1.6	
40311	40 60	2.4	
40312	380	4.4 28	
40314	440		
40317	240	27 14	
40318	160	8.9	
40321	460	29	
40322	120	4.9	
40323	100	4.3	
40324	∢20	0.4	
40325	120	6.7	
40326	380	25	
40327	500	34	
40328	40	2.2	
40329 40330	< 20	1.1	
40330	40	3.9	
40332	200	6.9	
40333	160 140	9.1	
40334	₹20	7.5 0.5	
40335	20	0.9	
40336	280	14	
40338	320	19	
40340	840	39	
40342	088	45	
40343	660	34 .	
40347	760	35	
40349	200	8.3	
40350	20	0.7	
40351	40	1.5	
40352 40353	60	2.2	
4033 3	40	1.0	



			
SAMPLE MARK	Tb ppb	ppm Nd	
40354	80	3.2	
40355	120	5.4	
40356	100	4.7	
40357	<20	1.0	
40358	80	3.8	
40359	∢20	1.5	
40360	60	4.2	
40361	460	16	
40362	280	12	
40363	160	4.2	
40364	120	4.8	
40365	780	48	
40366 40367	260	18	
40368	180	8.7	
40369	140	7.1 10	
40370	160 140	8.2	
40371	120	6.7	
40372	240	25	
40373	120	19	
40374	460	32	
40375	820	60	
40378	1100	60	
40381	420	33	
40383	680	25	
∍0384	380	20	
40385	760	47	
40386	680	40	
40387	640	39	
40389	400	24	
40392	80	2.2	
40393	40	4.8	
40394 40395	60 80	6.4	
40399	80 360	3.8	
40402	360 420	20	
40404	800	30 55	
40405	360	19	
40406	360	22	
40407	180	9.1	
40408	80	4.3	
		· • 	


METHOD : Mixed acid digest/ICP-MS

SAMPLE MARK	Tb ppb	Nd ppm
40409	280	9.0
40410	240	8.7
40411	140	5.5
40412	100	5.2
40413	240	8.2
40414	160	6.9
40415	60	2.6
40416	120	4.8
40417	80	4.0
40418	100	3.0
40419 40420	180	8.7
40420	240 180	8.7
40422	360	7.5 15
40423	280	11
40424	180	8.0
40425	140	5.3
40426	160	3.8
40427	120	4.4 <
40428	160	7.1
40429	160	5.9
40430	60	2.2
40431	200	4.5
40432	160	4.6
40433	200	7.5
40434	140	5.2
40435	160	5.8
40436	160	7.7
40437 40438	220	8.5
40439	200	7.5
40440	140 160	5.5 5.4
40441	120	3.1
40442	320	12
40443	120	3.1
40444	180	8.2
40445	180	5.8
40446	300	14
40447	300	11
40448	140	4.1

SAMPLE MARK	Tb ppb	Nd ppm
40449	160	6.4
40450	140	3.6
40451	40	3.4
40452	180	3.7
40453	100	5.2
36451	400	24
36452	260	15
36453	180	12
36454	600	37
36455	300	22
36456	180	15
36457	120	7.2
36458	160	7.1
36459	120	4.4
36460	220	6.0
36461	100	4.3
36462 36463	100	5.0
36463 36464	140	6.7
36465	80	7.4
36466	100	7.8
36467	120	11
36468	80	4.8
36469	80	7.2
36470	180 120	7.0
36471	200	6.7
36472	100	12
36473	140	5.0 8.4
36474	100	6.2
36475	200	7.8
36476	140	5.7
36477	140	3.1
36478	180	11
36479	180	9.9
36480	140	5.0
36481	140	6.8
36482	220	12
36483	140	7.8
36484	120	4.0
36485	100	3.6

Report D198/88 Page 5

ANALYSIS

SAMPLE MARK	Tb ppb	Nd ppm
36486	180	5.2
36487	140	6.9
36488	160	6.5
36489	280	14
36490	420	25
36491	300	16
36492	460	26
36493	<20	0.1
36494	360	24
36495	< 20	<0.1
36496	260	14
36497	<20	<0.1
36498	260	13
36499	120	4.9
36500	320	20

© Classic Laboratories M

Χı	l £ 0	Pa	Report AC 24219	Analysis code X3
PPm	in	Results	Urder No. Diyev88	
			Th	Sample
			10	40305
			20 -	40313
			15	40315
			10	40316
			10	40319
			15	40320
			× 20	~40337
			15	40339
			6	40341
			10	40344
			15	40345
			10	40346
			10	40348
			√ 20	∠40376
			10	40377
			15	40379
			10	40380
			<4	40382
			15	40388
			15	40390
			√20	×40396
			15	40397
			10	40398

Detn limit

J40403

(4)

/20

Classic Laboratories Par

Analysis code X3	Report AC 24219	Page X2
	Order No. 0324/88	Results in ppm
Sample	Th	
40301	10	
40302	< 4	
40303	< 4	
40304	8	
40306	` €	
40307	6	
40308	ϵ	
40309	<4	
40310	<4	
40311 40312	6	
40312	15	
40317	15	
40318	1 () 8	
40321	15	
40322	<4	
40323	₹4	
40324	<4	
40325	10	
40326	8	
40327	15	
40328	<4	
40329	<4	
40330	< 4	
40331 40332	<4	
40332	<4	
40334	<4 	
40335	<4 <4	
40336	15	,
40336	15	
40340	10	
40342	10	
40343	15	
40347	15	
40349	<4	
40350	<4	
40351	<4	
40352	<4	
40353	<4	

(4)

Dotn limit

Classic Laboratories 13

•		
And the second		
Analysis code X3	Report AC 24219	Page X3
	Order No. D324/88	Results in ppm
Sample	Th	
40354	<4	
40355	< 4	
40356	< 4	
40357	<4	
40358	<4	
40359	<4	
40360	<4	
40361	<4	
40362	<4	
40363	< 4	
40364	< 4	ı
40365	15	
40366	15	
40367	· <4	
40368	<4	
40369	<4	
40370	<4	
40371	<4	
40372	<4	
40373	<4	
40374	10	
40375	15	
40378	15	
40381	15	
40383	15	
40384	6	
40385	10	
40386	10	
40387	îŠ	
40389	15	
× 40392	.20	
40000	• Z V	

30-<4

Detn limit

(4)

<4

X4

Page

© Classic Laboratories 12

Analysis code X3 Report AC 24219 Order No. 0324/88 Results in ppm

> Sample Τh 40408 <4 40409 <4 40410 10 40411 <4 40412 <4 40413 <4 40414 <4 40415 <4 40416 <4 40417 <4 40418 ٤ 40419 4 40420 4 40421 <4 40422 <4 40423 ₹4 40424 <4 40425 <4 40426 ₹4 40427 <4 40428 <4 40429 <4 40430 <4 40431 <4 40432 <4 40433 <4 40434 <4 40435 (4 40436 < 4 40437 <4 40438 <4 40439 <4 40440 <4 40441 <4 40442 <4 40443 <4 40444 <4 40445 <4 40446 <4 40447 <4 Detn limit (4)

Classic Laboratories Ma

One bunda and - um		_
Analysis code X3	Report AC 24219	Page X5
	Order No. D324/88	Results in ppm
Sample	Th	
40448	<4	
40449	<4	
40450	< 4	
40451	<4	
40452	<4	
40453	<4	
36451	8	
36452	8	
36455	<4	
√36 4 54	· 20 -	
36455	e	
36456	<4	
36457	<4	
36458	< 4	
36459	<4	
36460	<4	
36461	<4	
36462	<4	
36469	<4	
36464	<4	
36465	<4	
36466	<4	
36467	<4	
36468	<4	
36469	₹4	
36470	<4	
36471	4	
36472	<4 .	
36473	<4	
36474	₹4	
36475	<4	
36476	<4	
36477	. <4	
36478	<4	
36479	<4	
36480	<4	
36481	\ 4	
36482	\ 4	
36483	<4	
20104	\4	

10

(4)

364R4

Detn limit

Classic Laboratories 134

Analysis code X3	Raport AC 2	4219	Page	X6
	Order No. D	0324/88 Result	s in	PPM
Sam	pla ï	⁻ h		
364	85 <	. 4		
364	86 <	(4		
364	B7 <	(4		
364	89 <	(4		
364	89 1	, Çı		
√364	90 /2	10 -		
364		0 *		
364		5		
364		5		
364		8		
364		5		
364		4		
365		ខ		
Det	n limit (4 >		

APPENDIX II

Preliminary
Job Number:1PE7353
O/N :0088

ANALYTICAL REPORT

SAMPLE	A	i Dpl	Au	pp2	Αu	Dp3	
28804 28805	•	0.08 0.01 0.01 0.01 0.01		- · · · · · · · · · · · · · · · · · · ·			
28806 28807 28808 28809 28810		<0.01 <0.01 <0.01 <0.01 <0.01		 			1663 MCW
28811 28812 28813 28814 28815	•	<0.01 <0.01 <0.01 <0.01 0.01					1663 MCW
28816 28817 28818 28819 28820		0.02 6.98 (0.01 0.02 (0.01					٦ .
28821 28822 28823 28824 28825	•	<0.01 <0.01 <0.01 <0.01 <0.01				 	1661
28826 28827 28828 28829 28830	•	<0.01 <0.01 <0.01 0.02 <0.01					(667 MCA)
28831 28832 28833 28834 28835		<pre><0.01 <0.01 <0.01 <0.01 <0.01 0.02</pre>		 		 	MCN 392
28836 28837 28838 28839 28840		0.71 0.83 (0.01 (0.01 0.02	1 -	 			MCN 391
UNITS SCHEME		ppm FA1		ppm FA1		ppm FA1	

. edu Resources Ltd

Page 1 of 3

ASSIC LABORATORIES LTD

Preliminary Job Number:1PE7333 O/N :0088

ANALYTICAL REPORT

SAMPLE	Au Dpl	Au Dp2	Au Dp3	
28841 28842 28843 28844 28845	0.02 00.01 00.01 0.01 0.01			MCN 392
28846 28847 28848 28849 28850	<0.01 0.04 <0.01 <0.01 <0.01	 	 	MC11 39/
28851 28852 28853 28854 28855	<0.01 <0.01 <0.01 <0.01 0.04		 	
28856 28857 28858 28859 28860	<0.01 <0.01 <0.01 <0.02 <0.01	 		mcn 1666
28861 28862 28863 28864 28865	<0.01 <0.01 0.02 <0.01 0.02	 		
28866 28867 28868 28869 28870	0.04 0.14 <0.01 <0.01 <0.01	 		
26871 28872 28673 28874 28875	0.02 <0.01 <0.01 <0.01 <0.01	 	 	
28876 28877 28878 28879 28880	<0.01 <0.01 <0.01 <0.01 <0.01	 	 	2876 MCa
UNITS SCHEME	ppm FA1	ppm FA1	ppm FAl	

IC LABORATORIES LTD

Preliminary Job Number:1PE7333 O/N :0088

ANALYTICAL REPORT

		Dp3	Αų	Dp2	Αu	Dpl	Au	AMPLE	S.
						9.01	* !	28881	
2576	Men					1.01		28882	
						<0.01	< {	28883	
						0.01	< 0	28884	
						0.01	< 0	28885	;
						0.01		28886	
				- -		0.01		28887	
						0.01	< 0	8888	- 1
						0.01	< 0	28889	- 1
•						0.01	- <0	28890	3
						.01	<0	28891	2
		ppm		ppm		ppm		NITS	
		FAl		FA1		FA1		CHEME	50